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Abstract: In recent years, the amount of intelligent CCTV cameras installed in public places for
surveillance has increased enormously and as a result, a large amount of video data is produced
every moment. Due to this situation, there is an increasing request for the distributed processing
of large-scale video data. In an intelligent video analytics platform, a submitted unstructured
video undergoes through several multidisciplinary algorithms with the aim of extracting insights
and making them searchable and understandable for both human and machine. Video analytics
have applications ranging from surveillance to video content management. In this context, various
industrial and scholarly solutions exist. However, most of the existing solutions rely on a traditional
client/server framework to perform face and object recognition while lacking the support for more
complex application scenarios. Furthermore, these frameworks are rarely handled in a scalable
manner using distributed computing. Besides, existing works do not provide any support for
low-level distributed video processing APIs (Application Programming Interfaces). They also failed
to address a complete service-oriented ecosystem to meet the growing demands of consumers,
researchers and developers. In order to overcome these issues, in this paper, we propose a distributed
video analytics framework for intelligent video surveillance known as SIAT. The proposed framework
is able to process both the real-time video streams and batch video analytics. Each real-time
stream also corresponds to batch processing data. Hence, this work correlates with the symmetry
concept. Furthermore, we introduce a distributed video processing library on top of Spark. SIAT
exploits state-of-the-art distributed computing technologies with the aim to ensure scalability,
effectiveness and fault-tolerance. Lastly, we implant and evaluate our proposed framework with the
goal to authenticate our claims.
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1. Introduction

Recently, the volume of video data has increased dramatically on the internet and various sources
are actively contributing toward video generation. For example, YouTube users upload more than 300 h
of videos per minute [1], almost 58% of downstream traffic on the internet in video [2], and IntelliVision
deployed more than four million cameras worldwide for surveillance [3]. These unstructured video
data are reservoirs of knowledge and have a direct relation to the real world events, unlike other data
sources. Video data has the ability to provide us with information about people’s interactions and
behaviors. Furthermore, real-time video streams can help in behavior analysis whether it is of traffic
or human patterns. The security agencies used to process hours of surveillance video collected after
some sort of unwanted event occurs to determine moments where the suspects passed the cameras.
Similarly, search technology scans the meta-data saved with videos, like tags assigned during video
uploads to YouTube (‘science’, ‘kids’, ‘cat dancing’ or other keywords). Some domains exploit computer
vision techniques for video classification to detect objects, cars, or suspicious behavior in videos.
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However, video content has largely been overlooked in the discussion about big data. Video data can
be turned into useful big data and true video analytics are required while exploiting the concepts of
computer vision.

With the current abilities of computer vision technology, we have the expertise to mine this visual
data to acquire valuable insights about what is happening in the world. Video analytics has stakes
from surveillance to space. The demand for intelligent video analytics is expected to be driven by
many factors, such as low costs, flexibility, agility and security. According to Reference [4] intelligent
video analytics market is expected to grow from USD 3.23 Billion in 2018 to USD 8.55 Billion by 2023
(a nearly 21 percent growth rate). However, video processing applications require more time and
resources for processing. Extracting the insights from the large-scale video analytics system is a hectic
task. Substantial amounts of video data pose a big challenge for video management and manipulation,
which asks for the powerful computer to process and mine these video data. Moreover, due to the
large-scale video data, an elastic solution to save and process video data is needed for potential decision
making. However, most of the existing works [5,6] rely on a traditional client/server framework to
perform simple tasks (e.g., face and object recognition) [7] while lacks the support for more complex
application scenarios (e.g., activity recognition). Furthermore, these frameworks are rarely handled in
a scalable manner using distributed computing. Even though intelligent video surveillance has been
subject to tremendous advancement, there is still a lack of contributions from the domain of system
engineering to the field [6]. Besides, these works only focus the consumer’s (i.e., end-user) point of
view, while completed overlooked the third party developers.

In order to resolve the above-mentioned issues, in this paper, we propose a layered framework
for scalable video analytics in a distributed environment named SIAT. SIAT exploits state-of-the-art
distributed technologies and is composed of five layers, that is, a Big Data Curation Layer (BDCL),
Distributed Video Data Processing Layer (DVDPL), Distributed Video Data Mining Layer (DVDML),
Knowledge Curation Layer (KCL) and Service Curation Layer (SCL). The Big Data Curation Layer
(BDCL) is the base layer and is responsible for the large scale video stream, batch video, user profiles
and other SIAT’s metadata and verity management. BDCL provide role-based data management
restful services to the above layers. Distributed Video Data Processing Layer (DVDPL) is in
charge of pre-processing and extracting the important features from the raw videos which are
provided as input to the Distributed Video Data Mining Layer (DVDML). The DVDM Layer is
responsible for producing the high-level semantic result from the features generated by the DVDPL.
Knowledge Curation Layer (KCL) generates ontology and creates knowledge based on the extracted
higher level features which are obtained from DVDML. Finally, Service Curation Layer (SCL) provides
services to the end users. The proposed framework is able to process both the real-time video streams
and batch video analytics. For the offline video processing, in the beginning, all the batch video data
are stored in the Hadoop Distributed File System (HDFS) [8] and processed on the top of Spark [9,10].
In contrast, for online video processing, we adopted Apache Kafka [11] and Spark Streaming [12].
Apache Kafka is responsible for capturing video frames from multiple sources while Spark streaming is
responsible for the distributed computing of video frames. SIAT also enables the third party developers
to develop customized functions and video analytics services by exploiting provided distributed video
processing APIs and other machine learning libraries.

Apache Spark [9] is an on-demand distributed computing platform for large-scale data
analysis. However, Spark provides almost no support for complex data-types such as video.
Furthermore, Spark does not support any high-level APIs for image or video processing. To resolve
this issue, MMLSpark [13] introduced a novel open source library that integrates the popular image
processing library OpenCV with Spark. However, their work does not support any video processing
APIs. Besides, in References [14,15], the authors introduced a Streaming Video Engine (SVE) for
uploading and processing videos in a distributed manner and a framework for real-time video
analysis on Spark, respectively. Despite that, existing literature lacks support for the dynamic feature
extraction on a distributed environment, which is a very essential component to provide any high-level
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services [10,16]. To address this issue, we introduce a distributed video processing library that
provides video processing on top of Spark. Our work integrates the image and video processing library
JavaCV with Spark so that we can stay in the same ecosystem as much as possible. Our work not
only limited by providing basic distributed video processing APIs, but it also provides distributed
dynamic feature extraction APIs which extracts the prominent information the video data. Due to
the provided distributed video processing APIs, it increases the usability of the proposed framework
since developers do not need to pay much attention to behind distributed video processing algorithms,
which should hide the underlying technical complexities. The main contributions of this paper are:

• We propose and develop a novel layered framework for intelligent video surveillance which
has the ability to process both real-time streaming videos and offline batch processing in a
scalable manner. The SIAT framework can be used as the reference architecture for distributed
video analytics.

• We introduce a distributed video processing library that provides video processing on top of
Spark. Our work is not only limited to providing basic distributed video processing APIs but it
also provides distributed dynamic feature extraction APIs which extracts prominent information
from the video data.

• We also develop application scenarios for both online and offline distributed video data
processing services.

• Extensive experiments are performed to ensure scalability, fault-tolerance and effectiveness.

The remainder of the paper is planned as follows: Related work is discussed in Section 2,
while Section 3 thoroughly explains the proposed SIAT Framework; Section 4 presents the evaluations
of our framework; in the end, conclusions and future directions are shown in Section 5.

2. Related Work

The number of applications and systems for intelligent video surveillance has briskly developed
during recent years. However, only a few works have concentrated on the distributed environment.
In this section, we explore the intelligent video surveillance frameworks for both academic research
areas and the industrial arena.

In academic research, Zhang et al. [7] introduced a cloud-based architecture that can provide
both real-time processing and offline batch data analysis of large-scale videos. This work explored
Apache Kafka and Storm for real-time processing, while Hadoop based MapReduce framework
is used for batch video data processing. However, this work only focuses on video processing,
while video mining is not explored. Hu et al. [17] presented an evaluation platform for Intelligent
Video and Image Analysis. The framework comprises four components: a set of evaluation tools,
evaluation criteria, evaluation data sets and an evaluation operation system. A scalable Smart
Surveillance Framework is introduced in Reference [6], which allows researchers to execute their
solutions to the surveillance field. However, their work does not support distributed computing.
Chao and Jun [18] introduced a distributed real-time video surveillance framework, which is employed
to support the analysis of numerous surveillance data. In Reference [19], distributed real-time video
processing is developed for objects and event detection but this work is limited to fewer applications.
Hossain [5] presented a cloud-based client-server framework for the surveillance system that includes
segmentation, motion detection, tracking activity and recognition. Zhang et al. [20] presented an
online video surveillance framework that includes the distributed Kafka message queue and Spark
Streaming; however, they overlooked the offline video processing. Recently, BigDL [21] a distributed
deep learning framework is introduced, which is implemented on top of Apache Spark and allows
users to develop deep learning applications. In this literature, they showed efficiency with object
detection and image feature extraction. Furthermore, BigDL supports immensely efficient and scalable
distributed training. However, they do not provide support for video processing, since the existing
BigDL framework only brings out spatial information and does not consider dynamic information,
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which is an important feature for processing the videos. MMLSpark [13] provides a distributed
image processing library that integrates OpenCV with Spark and combines deep learning library
Cognitive Toolkit, with Apache Spark. However, their work is also limited to image processing
and does not provide any video processing APIs. Lv et al. [22] introduced a Spark based solution
for near-duplicate video detection while, in Reference [23], the authors proposed a distributed
solution for face search and classification. In contrast, Huang et al. [24] developed convolutional
neural networks based method for recognizing objects in traffic video data. This information is
stored and processed applying Spark. However, the raw video data are not processed using Spark.
Yaseen et al. [25] introduced object classification using the Hadoop MapReduce framework. Finally,
in Reference [26] the authors proposed both Hadoop and Spark based solutions for edge detection
using canny operator [27] and line detection using Hough transform. Despite these, most of the
existing literature lacks the support for distributed dynamic feature extraction APIs, which are a very
necessary part to produce higher-level applications. While our work introduces a distributed video
processing library, which is not only limited by providing basic distributed video processing APIs
(e.g., edge detection, background subtraction, keyframe extractor) but it also provides distributed
dynamic feature extraction APIs (e.g., dynamic texture feature extractor), which extracts the prominent
information the video data. Due to the provided distributed video processing APIs, it extends the
usability of the proposed framework since the developers do not need to spend much thought behind
distributed video processing algorithms. In contrast, numerous organizations have already deployed
the cloud-based distributed video processing system. Eagle Eye Networks [28] provides cloud-based
video surveillance system for real-time streaming. They also provide RESTful APIs for recording,
indexing and storing streaming videos. Intelli-Vision [29] offers AI-based video analysis for smart
cameras. They provide different services that include object tracking, human detection, vehicle counter,
face recognition, customer count, license plate detection, traffic analytics, video search, video summary,
and so forth. Google Vision API [30] offers a Video Data management and retrieval framework. They
also provide APIs for video processing but does not support an intelligent video surveillance system.
IBM Intelligent Video Analytics [31] provides batch video data processing and real-time video stream
processing. However, they do not support API based services.

3. SIAT Framework

The framework, depicted in Figure 1, which consists of five main layers, Big Data Curation
Layer (BDCL), Distributed Video Data Processing Layer (DVDPL), Distributed Video Data Mining
Layer (DVDML), Knowledge Curation Layer (KCL) and Service Curation Layer (SCL) respectively.
Moreover, the proposed framework has 3 basic users with roles: Administrator, Third Party
Developers and End-Users. An administrator is who provides and manages the platform. They are
also responsible for developing and providing end services to the users and providing APIs to the
developers. While Third Party Developer can use the existing video processing APIs provided by the
framework or can develop new APIs to produce new services. Finally, the End-User (Consumers) can
use the provided services after performing the registry and subscription. In the following, the SIAT
framework layers are discussed in detail.

3.1. Big Data Curation Layer

SIAT is supposed to consume 24/7 real-time video streaming in the cloud from millions of
multi-modal video data stream sources and a large scale of batch video data from millions of consumers
with the aim of intelligent video data analytics. The volume of the video data can easily reach the
petabytes scale. For the sack of distributed video analytics, SIAT’s DVDP and DVDM layers can
deploy different distributed video processing APIs and Spark’s MLLib algorithms, that is, supervised,
unsupervised or deep learning algorithms. The life cycle of a video analytics service is data intensive
and a systematic method is required to efficiently apply a wide spectrum of advanced distributed
video processing and mining algorithms for large-scale video analytics problems, using Big Models.
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In order to manage large scale streams, batch data and to meet the demands of distributed video
analytics life cycle and data management requirements of the DVDP and DVDM Layers, we introduce
SIAT’s Big Data Curation Layer (BDCL). BDCL is composed of three modules, that is, Video Data
Acquisition, Persistent Storage and Data Access Controller.

Figure 1. Proposed SIAT Framework.

3.1.1. Real-Time Video Stream Acquisition

SIAT BDCL has the ability to acquire a large scale of video streams from multi-model video data
sources for on-the-fly processing. For large scale stream acquisition, technologically, we deploy Apache
Kafka [11]. Apache Kafka is an open-source publishes-subscribe based messaging system responsible
for transferring data from one application to another. Kafka Messaging system is comprised of three
components, that is, Message Producer, Message Broker and Message Consumer [32]. Apache Kafka
runs in a server cluster that stores streams of records in categories called topics or categories.

For communication from a multi-modal video data source, a JSON object is defined. The contents
of this object consist of six fields, that is, user id, data source id, number of columns and number of
rows in a frame, type, timestamp of the data origination at a data source and payload. This JSON
object is known as Record. After the successful formation of the Record, the message needs to be sent
to the Kafka Broker. The Record is then compressed while using snappy compression algorithm [33]
with the aim to consume less network bandwidth and less space on the Kafka Cluster. The compressed
message is then forwarded to the Producer.

The Real-time Video Stream Acquisition extends the Kafka Producer APIs with the aim to rout
the mini batch of video streams to a specific topic in the Kafka Broker. Kafka Broker is an independent
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application that is responsible to buffer, and deliver the Records to the consumers being received from
the Producer. Kafka Broker is composed of multiple topics and each topic is a synonym to real-time
video stream analytics service. A topic consists of partitions and is used to ensure height throughput
and allow multiple consumers to read the mini batch of video stream data from the Kafka Broker.
The Kafka Buffer can be replicated with the aim to ensure fault-tolerance.

3.1.2. Big Data Persistence

The data persistent component is responsible for providing permanent and distributed big-data
persistence to both the structured and unstructured data of the SIAT framework. This module also
stores and manage the meta-data of the above layers of SIAT. Technologically, Data Persistent storage
is built on the top of Hadoop Distributed File System (HDFS) [8] and NoSQL data stores (HBase [34]
while using Apache Phoenix [35]) as a query execution engine.

Persistent Big Data Storage is built on top of HDFS and is responsible for storing raw data,
both batch video data and the streaming videos from various sources. Furthermore, it also
provides storage facilities to store and manage model learner. Similarly, the Structured Data Store,
that is, User Profile and Logs, is responsible for storing and managing structure data related to
users, access rights, distributed video data processing layer, distributed video data mining layer,
knowledge curation layer, metadata of the multi-modal video data stream sources, batch datasets,
Big Models, and service subscription information.

The above layer in SIAT needs either the bulk of data for batch processing or random read-write to
the data stores. For this purpose, we use Data Access Controller. Data Access Controller is responsible
to provide read-write access to the underlying data in a secure way according to SIAT business logic.

3.2. Service Curation Layer

SIAT design incorporates top-notch functionality into a simple unified role bases Service Curation
Layer (SCL). The SCL is built on the top of low-level access APIs. Logically, and for the ease of
understandability, the services can be categorized as Users Cloud Services, Data Sources Management
Services, Video Analytics Algorithms and Services and Cluster Management Services.

The SIAT provide role-based services and supports three types of Users, that is,
System Administrator, Third party developer and Consumers (end-user). System Administrator
has full control of the system maintenance and is responsible for developing distributed video
processing and mining APIs and services for the Consumers (end-user) and publishing new APIs
for the developers. The Developer role is allowed to extend the functionality of the framework by
developing new plugins (such as video analytics algorithms and services) while using the SDK services
as shown in the sequence diagram in Figure 2. Similarly, the end-user (i.e., Consumers) roles are
authorized to attach video data source and/or to upload the video datasets and the same can be
subscribed to the respective available video analytics services according to needs and demand.

In this work, we are providing our framework, SIAT, as Software-as-a-Service to the consumers
(end-users) who will directly use the end services as an application on a web browser based on the
service subscription. Here, the consumers (end-users) do not need to think about the insight into the
framework. While for the developers we are providing our framework SIAT as Platform-as-a-Service.
SIAT enables the developer to produce customized services using video analytics services by exploiting
the provided distributed video processing APIs and other machine learning libraries from Spark MLlib.
The main advantages of these APIs are that the developer can produce any higher level services using
these APIs without considering their insights, which makes the developer’s life easier and simpler.
Furthermore, the developer can also build their own APIs and can integrate with the system.

Cluster Management Services are provided for administration purposes to let the system
administrator monitor the health and functionality of the SIAT.
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Figure 2. Sequence Diagram for Algorithm and Service Creation. In the Actor lifeline, A and D
represents Admin and Developer respectively. These two roles are allowed to create new Video
Analytics Algorithm and Service.

3.3. Distributed Video Data Processing Layer

Apache Spark is a distributed computing framework for large-scale data processing.
Furthermore, Spark speeds up the process by supporting in-memory based computing.
However, Spark provides almost no support for complex data types such as video.
Furthermore, Spark does not support any high-level APIs for image or video processing. In this
regard, MMLSpark [13] introduced a novel open source library that integrates the popular image
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processing library OpenCV with Spark. However, their work does not provide any low-level
video processing APIs. Furthermore, the existing literature also lacks support for dynamic feature
extraction on the distributed environment, which is a very essential component to provide in any
high-level services [10,16]. In order to resolve the above-mentioned issues, in this work, we introduce
a distributed video processing library that provides distributed video processing on top of Spark.
Our work integrates the image and video processing library JavaCV with Spark, so stays in the same
ecosystem as much as possible. Our work was not only limited to providing basic distributed video
processing APIs, but also supports distributed dynamic feature extraction APIs which extracts the
prominent information in the video data. In our work, the Distributed Video Data Processing Layer
(DVDPL) is mainly in charge of pre-processing and extracting the important features from the raw
videos which are provided as input to the Distributed Video Data Mining Layer. It is composed of
two main components, namely, Distributed Video Pre-processor and Distributed Feature Extractor.
Distributed Video pre-processor is responsible for performing basic video processing algorithms
such as video conversion, video enhancement, video restoration, video encoding and decoding,
video compression, video segmentation, background subtraction, and so forth. While Distributed
Feature Extractor is in charge of extracting the predominant features from the videos in a distributed
manner. The component of Distributed Feature Extractor includes color feature extractor, dynamic and
frame based texture feature extractor, dynamic and frame based shape feature extractor, motion feature
extractor, object feature extraction and Key Frame extractor [10,16]. The pre-processing and Feature
Extraction are employed based on the selection of higher-level services. The output of the Feature
Extractor is represented either as Bag-of-Words [36] or Histogram [10,16] and stored in low-level result
DS in the Big Data Curation Layer.

Figure 3 demonstrates the architectural overview to produce higher-level services using our
proposed low-level distributed video processing APIs. Here, we integrated the popular image and
video processing library JavaCV with Spark to support basic video processing operations, for example,
frame extraction, frame conversion (RGB to gray-scale), and many more. On top of that, we built
our distributed video processing and mining APIs, which plays an important role to provide any
higher level services. Some sample APIs for distributed video processing are presented in Table 1.
Our wrapper APIs permit us to achieve most video processing operations in parallel in a distributed
environment, which reduces the processing time dramatically. Similar to our previous work [10,16],
in this work, we have implemented several video processing algorithms on top of Spark that
includes edge detection, video encoding, background subtraction, key-frame extraction and dynamic
feature extraction. For distributed dynamic feature extraction, we have built APIs for Volume Local
Binary Pattern (VLBP) [37], Volume Local Ternary Pattern (VLTP), Local Binary Pattern for three
orthogonal planes (LBP-TOP) [37] and Directional Local Ternary Pattern for three orthogonal planes
(DLTP-TOP) [16]. These dynamic feature extraction algorithms form a circularly symmetric neighbor
set. For edge detection, we have implemented distributed Sobel operator, distributed Laplacian
operator and distributed Canny operator [27]. Furthermore, we have developed distributed video
encoding using MPEG and H264 [38]. We also deployed distributed key frame extractor [39] using
Local Binary Pattern (LBP) [40] and Histogram of Oriented Gradient (HOG) [41] based features.
The main advantages of these APIs are developer can produce any higher level services using these
APIs without considering the insights of these APIs, which makes the developer life easy and simple.
However, the developer can also build their own APIs and can integrate with the system.

3.4. Distributed Video Data Mining Layer

The Distributed Video Data Mining Layer (VDML) is responsible for producing the high-level
semantic result from the features generated by the DVDPL. It provides two lower level services:
Batched video data processing and Real-time video stream processing. In the batch processing,
Video Classifier, Video Retrieval, Video Annotator are defined while in the real-time video stream
processing Future Behavior Predictor, Video classifier, Object Tracker and Video Annotator are defined.
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Video Classifier refers to classifying the videos based on pre-trained videos and Video Annotator
refers to automatically assigning tags to the object or actions performed on the videos, while Video
Retrieval refers to retrieving the similar looking videos from the Database. Lastly, Future Behavior
Predictor is responsible for predicting the near future behavior or action by analyzing the previous
few video frames. The parameter estimator is in charge of estimating the parameters. The result of
DVDML is stored to High-Level result DS in the Big Data Curation Layer which works as an input to
the Knowledge Curation Layer (KCL).

Figure 3. Architectural overview for wrapper API generation to produce the higher level services.

3.4.1. Video Data Mining Based on Spark MLlib

Spark MLlib [42] is a library developed on top of Apache Spark that provides access to a large
number of machine learning algorithms. Spark MLlib comprises of fast and scalable executions
of typical learning algorithms including classification, clustering, regression, collaborative filtering,
and dimensionality reduction. It also supports numerous underlying statistics, linear algebra and
optimization primitives including a generic gradient descent optimization algorithm. In our work,
we have integrated the Spark MLlib to perform the distributed mining on the low-level feature data
that are extracted by DVDPL.

3.4.2. Video Data Mining Based on Deep Learning Techniques

Recently, data-driven and computational intensive approaches like neural networks or deep
learning (DL) have attracted lots of attention from the research community. This is because of their
efficiency to extract hierarchical features from the raw data. Accordingly, they enable to discover
significantly meaningful information from the vast amount of large-scale databases. Among the
top deep learning techniques, Convolutional Neural Network (CNN) is the most popular one with
particular focus on classifying and learning image data. By inheriting the success of deep learning,
several tools or libraries (e.g., TensorFlowonSpark, Sparknet, DL4J, and BigDL) have been developed
by integrating DL capabilities with big data frameworks like Apache Spark. However, most of
the current tools have not been well-supported to video processing and Spark MLlib also lacks DL
functions. Therefore, to complement our video data mining based on Spark Mllib and overcome
existing limitations, we further incorporate DL libraries into our DVDML. Our DL library not only
fits into Spark APIs but also provide a uniform set of APIs for programming of video understanding
applications. In other words, this integration makes DL more accessible to scalable video processing.
Within the scope of this paper, we develop our DL library based on BigDL [21] stack, which not only is
compatible with most of popular DL framework (e.g., Tensorflow, Keras, and Caffe) but also provide
the comprehensive support of DL technologies such as training and inference in the distributed setting.
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Table 1. Sample APIs for distributed video data processing.

Category APIs Description

Background
Subtraction siat. dvdpl. BackgroundSubtractor. MOG (Video Data) Subtract the background from the foreground of a video.

Edge Detection siat. dvdpl. Edgedetector. SobelOperator (Video Data) Detect the edge on each frame of the video using the Sobel operator.
siat. dvdpl. Edgedetector. LaplacianOperator (Video Data) Detect the edge on each frame of the video using the Laplacian operator.

siat. dvdpl. Edgedetector. Canny(Video Data) Detect the edge on each frame of the video using the Canny algorithm.
Video Encoding siat. dvdpl. VideoEncoder. MPEG ( Video Data) Encode the video data for video data compression using MPEG algorithm.

siat. dvdpl. VideoEncoder. H264 ( Video Data) Encode the video data for video data compression using H264 algorithm.

Key Frame Extractor siat. dvdpl. KeyFrameExtractor. LBP (Video Data) Extract the key frames from each video using frame based feature extractor
Local Binary Pattern (LBP).

siat. dvdpl. KeyFrameExtractor. HOG ( Video Data) Extract the key frames from each video using frame based feature extractor
Histogram of Oriented Gradient (HOG).

Dynamic Feature
Extractor siat. dvdpl. DynamicFeatureExtractor. VLBP (Video Data) Extract the dynamic texture feature from each video using Volume Local

Binary Pattern (VLBP).

siat. dvdpl. DynamicFeatureExtractor. VLTP (Video Data) Extract the dynamic texture feature from each video using Volume Local
Ternary Pattern (VLTP).

siat. dvdpl. DynamicFeatureExtractor. ALMD (Video Data) Extract the dynamic motion feature from each video using Adaptive Local
Motion Descriptor (ALMD).

siat. dvdpl. DynamicFeatureExtractor. LBPTOP (Video Data) Extract the dynamic texture feature from each video using Local Binary
Pattern from Three orthogonal planes (LBP-TOP).

siat. dvdpl. DynamicFeatureExtractor. DLTPTOP (Video Data) Extract the dynamic texture feature from each video using Directional Local
Ternary Pattern from Three orthogonal planes (DLTP-TOP).

Deep Feature
Extractor siat. dvdpl. DeepFeatureExtractor. CNN ( Video Data ) Extract the deep spatial feature from each video using Convolutional Neural

Network (CNN).
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3.5. Knowledge Curation Layer

There are two types of approaches for ontology development in video surveillance domain:
developing ontology based on camera output, which is event detection using semantic technology
and getting extracted features from computer vision algorithms and developing ontology based
on those results [43,44]. In our framework, the knowledge curation layer generates ontology and
creates knowledge based on the extracted higher level features which are obtained from DVDML.
Since low-level features are inadequate for representing the video semantics that is why we are
using the high-level features from videos for concept mapping but those rely on human knowledge
and experience. Moreover, manual semantic concept tagging is time-consuming and very difficult,
sometimes it is biased because of the human error and impossible for surveillance videos in the
unconstraint environment. Therefore, collaborative semantic video annotation has been utilized in
our framework where more than one user annotating the same resource and improve the quality of
tagging. We have reused different ontologies like MPEG-7 [43], MediaOnt [45] and proposed some
new terms for annotation. After this, the Resource Description Framework (RDF) triples are generated
in accordance with our generated ontology. In the end, the higher level metadata is stored in an RDF
triple store which is then made available for querying and analysis on video data. Another challenge
that we have faced during development and immature in the literature is the concept mapping in
constrained videos like medical or sports domain is easy. However, in our case (unconstrained videos),
it is difficult, which we have addressed in our approach.

4. Experimental Analysis

4.1. Experimental Setup

For SIAT, we set up the distributed Hortonworks Data Platform (HDP 2.6.1.0) cluster consisting of
one server and 9 agents. HDP is created by a big data software company, Hortonworks, and integrates
different state of the art distributed computing and storage technologies like HDFS, YARN, Spark,
Hive, HBase and many more. We tune the YARN CPU and memory resources according to our
requirements. Furthermore, we used OpenJDK version 1.8 for coding purposes.

For networking purposes, we use the ProSafe GSM7328S fully managed switches delivering 24 and
48 ports of auto-sensing 1000 Mbps interfaces for high-density copper connectivity. The specification
and configuration of each system and the distributed cloud architecture is shown in Figure 4. In this
Figure 4, each node has four parameters i.e., i5|4|8|1000. These parameters show the processor
model, number of cores, size of ram in GBs and size of hard-dist in GB respectively.
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4.2. Application Scenarios

In order to evaluate the performance of the SIAT framework, we developed several application
scenarios for both offline and online video data processing. Moreover, we have used scalability,
Average Precision (AP) and fault tolerance as the evaluation metrics. Figure 5 illustrates the
flow diagram for distributed offline and online video data processing. By coupling offline batch
processing approach with real-time stream processing tools a version of symmetry can be accomplished.
The presented scenario also represents the Lambda architecture. For the offline distributed video
data processing, in the beginning, all the batch video data are stored in the HDFS, which are accessed
through the Big Data Curation Layer for the respective selected service. Afterward, the video data
are loaded into the Spark cluster. Subsequently, partitions of this video dataset are cached in each
worker node which is represented by the Spark Resilient Distributed Dataset (RDD). RDD operations
are performed in parallel to obtain a distributed result. In each partition, we perform distributed
video pre-processing and feature extraction using defined low-level APIs from the Distributed Video
Processing Layer. Finally, distributed mining algorithms from the DVDML are employed to obtain
meaningful results, which includes video classification, video retrieval, video annotation and so forth.
In contrast, for the online video data processing, we have adopted Apache Kafka and Spark Streaming.
Apache Kafka is responsible for capturing video frames from multiple sources while Spark streaming
is responsible for the distributed computing of video frames. Furthermore for online video processing,
in the Spark streaming portion of distributed video processing, APIs are employed to perform the
video pre-processing and dynamic feature extraction which plays a significant role in bringing out the
outstanding information.

Figure 5. Flow diagram for distributed video processing.

4.2.1. Offline Service Scenario Applications

In this experiment, we have implemented dynamic feature extraction, edge detection,
video encoding, and key frame extraction for batch video data in a distributed manner to measure
the performance of our framework. Furthermore, we also developed human action recognition
for large-scale video. In order to develop human action recognition in batch mode, we employed
our dynamic feature extraction API along with Spark MLLib Random Forest API [42]. Similar to
References [10,16], our distributed dynamic feature extraction API extracts the spatial and motion
information from the video data which are represented as a histogram in the feature vector. Then these
feature vectors are fed to the Spark MLLib Random Forest API to classify the human actions. In this
work, we employed the KTH dataset [46] and the UCF50 dataset [47] to measure the scalability of



Symmetry 2019, 11, 911 13 of 20

the proposed low-level distributed video processing APIs. Moreover, we also measured the Average
Precision (AP) of human action recognition application for large scale video data. The KTH dataset
consists of 600 videos including six human action classes: boxing, clapping, jogging, walking, running
and waving, while the UCF-50 dataset is one of the biggest action datasets that consist of 6681 videos
including 50 action categories.

Figure 6 demonstrates the scalability of low-level APIs for distributed video processing. In this
experimental setup, we have implemented distributed dynamic feature extraction APIs for Volume
Local Binary Pattern (VLBP) [37], Volume Local Ternary Pattern (VLTP), Local Binary Pattern for
three orthogonal planes (LBP-TOP) [37] and Directional Local Ternary Pattern for three orthogonal
planes (DLTP-TOP) [16]. For edge detection, we implemented distributed Sobel operator, distributed
Laplacian operator and distributed canny operator [27]. Furthermore, we have developed distributed
video encoding using MPEG and H264 [38]. We also deployed distributed key frame extractor [39]
using Local Binary Pattern (LBP) [40] and Histogram of Oriented Gradient (HOG) [41] based features.
From these experiments, we can see that with the increase of nodes our proposed distributed video
processing APIs requires less time to bring out the outcomes, which proves the scalability of our
framework. Furthermore on same experimental setup (using 4 worker nodes), we also compared
our distributed video processing APIs running time with [36] for human action recognition on large
scale video data. Figure 7 clearly demonstrates that our APIs shows better performance than the
existing approach in terms of running time on batch data. In Reference [36], the authors employed
trajectory based feature extraction, Gaussian Mixture Model and Fisher Vector Encoding algorithms
for extracting and representing the features from videos, whereas our distributed video processing
APIs only extracts the dynamic features and then these features are represented as histogram values.

Figure 6. Scalability of low-level APIs for distributed video processing (a) Time (in seconds) required
for the dynamic feature extraction on UCF50 dataset, (b) Time (in seconds) required for edge
detection on UCF50 dataset, (c) Time (in seconds) required for video encoding on UCF50 dataset
and (d) Time (in seconds) required for key frame extraction on UCF50 dataset.
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Figure 7. Comparison of proposed framework with existing work for human action recognition on
large-scale video data.

Lastly, Figure 8 shows the Average Precision for human action recognition on UCF50 dataset [47]
and KTH dataset [46] using distributed dynamic feature extraction approaches and Spark MLlib based
Random Forest classifier. This experiment also shows the comparison with Reference [36] in terms
of average precision. In Reference [36], the authors employed trajectory based feature extraction,
GMM generation and feature vector encoding on top of Spark with gives 91.8% average precision on
KTH dataset and 67.2% average precision on UCF50 dataset. Whereas our proposed APIs, ALMD and
DLTP-TOP show 92.3% and 92.9% average precision on KTH dataset and 79.3% and 86.2% average
precision on UCF50 dataset respectively. DLTP-TOP outperforms all other dynamic feature descriptors
in terms of precision since the DLTP-TOP obtain more detailed discriminative features by encoding
high-order derivative information.

Figure 8. Average Precision (AP) for the human action recognition on KTH and UCF50 dataset.
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Figure 9 further shows the scalability of our data mining layer based on deep learning API.
Particularly, we implemented the deep feature extraction and classification under distributed fashion
by using our DL library. Here, video datasets (i.e., Hollywood2 and UCF50) are loaded into RDD and
we then apply the “flatMap” Spark operation to transform the video-based RDD into the frame-based
RDD, which are fed into the pre-trained VGG16 model to extract the video features. We follow the
workflow of Reference [48] for classification but our pipeline is performed on the distributed cluster
rather than on a single machine. We run the deep feature extraction test and the classification test from
1 to 4 nodes. Both tests have shown the good scalability of our DL functions.

Figure 9. Scalability test of deep learning API for distributed feature extraction and training classifier.
(a), Running time for deep feature extraction on Hollywood2 dataset; (b), Running time for deep
feature extraction on UCF50 dataset; (c), Running time for training softmax classifier on Hollywood2
dataset; (d), Running time for training softmax classifier on UCF50 dataset.

4.2.2. Online Service Scenario Applications

To evaluate the performance real-time service in our framework, we implemented real-time face
recognition and real-time action recognition. For the online video data processing, 10 IP cameras
taking real-time video are employed for evaluation. These 10 cameras capture 250 frames (25 frames
by each camera) per second. The frame size is within 1M to 1.5M bytes for each frame. Figure 10 shows
the face recognition and action recognition processing time with a varying number of cameras and
nodes, which proves the scalability of our framework for real-time services. In this experimental setup,
we employed three nodes as Kafka broker while four nodes for video data processing using Spark
Streaming and each of these nodes operates as consumers. For the frame acquisition experiment, if we
employ one camera stream with one producer, one broker, and one consumer it takes 34.5 milliseconds
while employing three camera streams with two producers, two brokers and two consumers take
61.6 milliseconds to obtain the frames. From this experiment, we can see that, for the frame acquisition
if the increase the number of cameras and decrease the number of brokers then it requires more
time for the frame acquisition while increasing the number of brokers reduce the frame acquisition
time. Increasing the number of brokers helps to transmit more video frames since the number of
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partition is also increased based on the topic partitions of data. In addition, because the consumer
controls the volume of arrival video frames in the Kafka framework, it is possible to achieve efficient
transfer by varying the number of consumers. Subsequently, the processing time for face detection
and action recognition is also decreased by adding more nodes, since video data are processed in a
distributed manner. Figure 10c,d shows real-time face recognition time in (ms) with varying number
of cameras and nodes, and real-time action recognition time in (ms) with varying number of cameras
and nodes respectively. Furthermore, we also compared the proposed framework face recognition
time with video cloud platform [7]. In this experiment, for group 1 (3 node and 3 camera streams)
our platform takes 34.6 milliseconds while video cloud platform [7] takes 132.45 milliseconds and
similarly, for group 3 (4 node and 10 camera streams) our platform takes 138.4 milliseconds while
video cloud platform [7] takes 423.8 milliseconds to recognize face on each frame. We perform our
experiment on spark streaming while video cloud platform [7] employed Storm for real-time video
processing. Due to the facility of in-memory computing and micro-batching on spark streaming our
platform outperformed video cloud platform [7].

Figure 10. (a) Frame acquisition time in (ms) for online video processing, (b) comparison of proposed
framework with existing framework for face detection, (c) Face recognition time in (ms) with varying
number of cameras and nodes, and (d) Action recognition time in (ms) with varying number of cameras
and nodes.

In the SIAT framework, we employed Apache Spark, which by default supports fault tolerance
and we also used HDFS, in which a file is distributed into one or more blocks and these segments are
saved in a set of Data Nodes with having more than one copy. In this work, we also measured the
performance of our framework by killing nodes during face recognition. Figure 11 demonstrates the
evaluation result. During the online processing, we have used four nodes for frame processing using
spark streaming. Then we kill worker nodes and measure performance. In this experiment, when three
nodes are running then one node is killed, while two nodes are running then two nodes are killed.
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Eventually, all the experiments bring out the similar face recognition result for all the experimental
scenarios (i.e., with or without killing nodes). Similarly, when 10 cameras are employed and two nodes
are killed then it requires 308.2 ms for face recognition on each frame while if no nodes are killed then
it requires 138.4 ms.

Figure 11. Performance evaluation by killing nodes during face recognition.

5. Conclusions

Online and offline big-data video analytics are always expensive in terms of
transmission, storage, management and computation. In this paper, we proposed a robust,
distributed, pluggable, layered and service-oriented cloud architecture with the intentions to extract
the insight from a large scale video in almost real-time and/or offline. We then implement the proposed
SIAT framework while exploiting state-of-the-art distributed streaming, data storage and processing
technologies like Kafka, Hadoop, Hbase, Spark, Spark’s MLLib and JavaCV. Moreover, we have
introduced a distributed video processing library that provides video processing on top of Spark.
Furthermore, for evaluation and experimental reasons, we develop real-time and offline video
data mining services like Human Action recognition and Face recognition services respectively.
The evaluation authenticates the scalability and fault tolerance of the proposed system and can be a
candidate solution for large-scale video analytics.

The SIAT is an ongoing research project and demands further refinement. In the future, we will
develop more real-world domain specific video analytics algorithms and further attention will be given
to next-generation distributed deep learning and the back-propagation video analytics algorithms.
Further investigation and video indexing are required in the data layer to make it more efficient.
We will also perform experimental analysis for higher level services while considering the Knowledge
Curation Layer. Besides, in the future, we will also consider the issues of a cloud-based system,
for example, resource utilization, Security and Privacy, and so forth.
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