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Abstract: A decision-making environment is full of uncertainty and complexity. Existing tools include
fuzzy sets, soft sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets (PFSs) and so on. Compared
with intuitionistic fuzzy sets (IFSs), PFSs proposed by Yager have advantages in handling vagueness
in the real world and possess good symmetry. The entropy measure is the most widespread form
of uncertainty measure. In this paper, we improve the technique for order preference by similarity
to an ideal solution (TOPSIS) method to better deal with multiple-attribute group decision making
(MAGDM) problems based on Pythagorean fuzzy soft sets (PFSSs). To better determine the weights
of attributes, we firstly define a novel Pythagorean fuzzy soft entropy which is more reasonable and
valid. Meanwhile the entropy has good symmetry. Entropy for PFSSs which is used to determine the
subjective weights of attributes is also defined. Then we introduce a measure to calculate integrated
weights by combining objective weights and subjective weights. Based on the integrated weights,
the TOPSIS method is generalized and improved to solve the MAGDM problem. A distance measure
taking into account the characteristics of Pythagorean fuzzy numbers (PFNs) is used to calculate
distance between alternatives and ideal solutions. Finally, the proposed MAGDM method is applied
in the case of selecting a missile position. Compared with other methods, it is shown that the proposed
method can rank alternatives more reasonably and have higher distinguishability.

Keywords: Pythagorean fuzzy sets; soft sets; entropy; multiple attribute group decision making

1. Introduction

Decision making is a common problem which occurs in almost every field. But the environment
of decision making is full of uncertainty and complexity. Zadeh [1] first proposed the very influential
theory of fuzzy sets in 1965. The theory breaks through the traditional cantor set’s limits by assigning
each element a value between 0 and 1 as a single membership [2]. Intuitionistic fuzzy sets [3] was firstly
proposed by Atanassov in 1986, which is an extension of Zadeh’s fuzzy sets. An intuitionistic fuzzy
set is distinguished from a fuzzy set by adding a hesitance index. It has three parameters which are
membership function, non-membership function and hesitance index (intuitionistic fuzzy index). These
three parameters can respectively be used to describe the states of support, opposite, and neutrality in
human cognition [4,5]. Soft set theory [6], introduced by Molodtsov from a parametrization perspective in
1999, has been considered as a valid tool for modeling uncertainties [7]. In some senses, fuzzy sets can be
considered as a special case of Molodtsov’s soft sets. Yager [8,9] proposed Pythagorean fuzzy set recently.

Pythagorean fuzzy sets (PFSs) theory is a generalization of the intuitionistic fuzzy sets theory and
has good symmetry. It allows the sum of the membership degree and non-membership degree to be
larger than one but restrict that their square sum is equal to or less than one. The ability of PFSs to
model such uncertainty of decision-making is much stronger than intuitionistic fuzzy sets. So PFSs
theory is a more powerful tool for expressing uncertain information when making decisions. It is
characterized by four parameters which are membership degree, non-membership degree, strength of
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commitment about membership, and direction of commitment [10]. Li [10] also proposed some novel
distance measures for PFSs and Pythagorean fuzzy numbers (PFNs).

Multiple-attribute group decision making (MAGDM) aims to determine an optimal alternative
from a set of feasible alternatives [11]. Multiple attributes and a group of people are the problems’
characteristics. MAGDM problems occur frequently in the real world. The process of MAGDM is full
of fuzziness and uncertainty.

C.L. Hwang and K. Yoon firstly introduced technique for order preference by similarity to an
ideal solution (TOPSIS) [12] method in 1981. This method effectively solves the problem of ranking
alternatives. Then, the fuzzy set theory and TOPSIS method are often combined to deal with multiple
criteria decision-making (MCDM) problems. Chen [13] solved supplier selection problem by using
linguistic values and fuzzy TOPSIS method. Pawel Ziemba [14] applied the multi-criteria decision
analysis (MCDA) method and fuzzy TOPSIS method to solve online comparison problems with
uncertain and certain criteria. Intuitionistic fuzzy sets theory also has a good combination with the
TOPSIS method. Chen [15] proposed a multiple attributes decision making method based on the
TOPSIS method and the similarity measures between intuitionistic fuzzy sets. P. Muthukumara [16]
proposed a novel similarity measure and a new weighted similarity measure on intuitionistic fuzzy
soft sets (IFSSs).

Entropy measure [17,18] and its complementary concept knowledge measure [19] are effective
ways to determine the weights vector of attributes when making decisions. Rodger considered the
decision-maker’s intrinsic state and solved the decision-making problem by entropy principles [20].
Harish [21] proposed intuitionistic fuzzy entropy-based method to deal with MCDM problems with
unknown criteria weights. Szmidt’s intuitionistic fuzzy entropy [22] measure is widely used in related
studies. But it has some flaws.

Pythagorean fuzzy sets are also developed to solve multiple attributes decision-making (MADM)
problems [23]. To fuse information, Li [24] proposed Pythagorean fuzzy Hamy mean (PFHM) operator,
weighted Pythagorean fuzzy dual Hamy mean (WPFDHM) operator and so on to deal with MAGDM
problems. Xue [11] solved a railway project investment decision-making problem by Pythagorean
fuzzy LINMAP method based on the entropy theory. But their entropy definition does not accord with
reality and fails to describe the maximum degree of fuzziness in PFSs objectively. Zhang [25] extended
TOPSIS to multiple-attributes decision making with Pythagorean fuzzy sets. However, their weight
vector of the attributes is directly given by the committee and the distance between two PFNs defined by
them is also directly an extension of the distance between intuitionistic fuzzy numbers. Their distance
measure considered the difference between the membership degrees, the non-membership degrees,
and the degrees of hesitancy, but ignores the influence of the directions of Pythagorean fuzzy numbers.
This may lead to unreasonable results in some cases [10]. Moreover, to our knowledge, there is little
work on Pythagorean fuzzy soft sets.

To settle the problem of MAGDM and enrich the study of PFSSs, following the pioneering studies
of the above people, we redefine entropy for Pythagorean fuzzy soft sets, introduce a novel Pythagorean
fuzzy entropy and extend it to Pythagorean fuzzy soft entropy. Based on that, we then propose a
new method for MAGDM based on improved TOPSIS and a novel PFS entropy. When calculating
the distance between PFNs, we use the distance measure proposed by Li [10] to avoid unreasonable
results sometimes.

The rest of this article is organized as follows. In Section 2, we recall some basic definitions
and formulas of IFSs, PFSs, soft sets etc. In Section 3, we analyze some definitions of Pythagorean
fuzzy entropy and related measures, and point out their flaws. Based on that, we introduce a novel
Pythagorean fuzzy entropy definition and propose new entropy measures for Pythagorean fuzzy sets
and Pythagorean fuzzy soft sets. In Section 4, we introduce a measure calculating objective attribute
weights based on our entropy measure. Then, we introduce a measure calculating integrated weights
which combines objective weights and subjective weights of attributes. In Section 5, we explain our
MAGDM method based on the novel Pythagorean fuzzy soft entropy step by step. In Section 6,
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the proposed multiple attributes group decision-making method based on PFSSs is applied in the
case of selecting missile position as the proposed method’s illustrative example. The results show the
effectiveness of the method. In the last Section, conclusions are given.

2. Preliminaries

Zadeh firstly introduced the concept of fuzzy set in 1965. It was defined as follows.

Definition 1. Let X be a universe of discourse, A fuzzy set A in the X is an object having the form [1]

A = {
〈
x,µA(x)

〉
|x ∈ X } (1)

where µA(x) : X→ [0, 1] is the degree of membership for x with respect to A.

Definition 2. An Atanassov’s intuitionistic fuzzy set A over the universe U can be defined as follows:
A ={(x,µA(x), νA(x)) : x ∈ U}, where µA(x):U→ [0, 1], νA(x):U→ [0, 1] with the property 0 ≤ µA(x) +
νA(x)≤ 1,∀x ∈ U. Among of them, the values µA(x) and νA(x) respectively represent the degree of membership
and the non-membership of x to A. πA(x) = 1− (µA(x) + νA(x)) is called the intuitionistic fuzzy index or
hesitance index [3,26].

Definition 3. (Soft set) A pair (F, E) is called a soft set(over U) if and only if F is a mapping of E into the set of
all subsets of the set U [6].

Definition 4. (Fuzzy soft sets) Let U be an initial universe set and E be the set of parameters. Let F(U) denotes
the fuzzy power set of the initial universe set U. Let A ⊂ E. A pair (F, A) is called a soft set over U, where F is a
mapping given by F : A→ F(U) [27].

Definition 5. (Pythagorean fuzzy set [8,9]) Let X be a universe of discourse, a Pythagorean fuzzy set in X can
be given by

P ={
〈
x,µp(x), νP(x)

〉
|x ∈ X} (2)

where µp : X→ [0, 1] represents the degree of membership and νp : X→ [0, 1] represents the degree of
non-membership of the element x ∈ X to the Pythagorean fuzzy set P, respectively, with the condition that

0 ≤ (µp(x))
2 + (νp(x))

2
≤ 1. The degree of hesitancy πp(x) =

√
1− (µp(x))

2
− (νp(x))

2.

Definition 6. (Intuitionistic fuzzy soft sets.) Let U be an initial universe set and E be a set of parameters.
Let IFU represent the collection of all intuitionistic fuzzy subsets of U. Let A ⊂ E. A pair (F, A) is called
intuitionistic fuzzy soft sets (IFSSs) over U, where F is a mapping given by F: A→ IFU [28].

Then, we can easily expand intuitionistic fuzzy soft sets to Pythagorean fuzzy soft sets.
(Pythagorean fuzzy soft sets [28].) Let U be an initial universe set and E be a set of parameters. Let PFU

represent the collection of all Pythagorean fuzzy subsets of U. Let A ⊂ E. A pair (F, A) is called Pythagorean
fuzzy soft sets (PFSSs) over U, where F is a mapping given by F: A→ PFU .

Definition 7. (Entropy on Pythagorean Fuzzy Soft Sets [29].) Let U = {x1, x2, · · · , xm} be a universe of
discourse. Let E ={e1, e2, · · · en} be a set of parameters. PF(U) means the set of all Pythagorean fuzzy soft set
over U. Let A ⊆ E. A pair (F, A) is a Pythagorean fuzzy soft set over the universe of discourse U, where F is a
mapping given by F : A→ PF(U) .



Symmetry 2019, 11, 905 4 of 14

Definition 8. The operations on PFNs defined by Zhang and Xu [25] are shown as below:

(1) βc = P(νβ,µβ);

(2) β1 ⊕ β2 = P
(√

µ2
β1
+ µ2

β2
− µ2

β1
µ2
β2

, νβ1νβ2

)
;

(3) β1 ⊗ β2 = P
(
µβ1µβ2 ,

√
ν2
β1
+ ν2

β2
− ν2

β1
ν2
β2

)
;

(4)λβ = P(
√

1− (1− µ2
β)
λ, (νβ)

λ),λ > 0;

(5) βλ = P((µβ)
λ,

√
1− (1− ν2

β)
λ
),λ > 0.

Definition 9. (Zhang and Xu’s distance between PFSs [25].) Inspired by the distance between IFSs, Zhang and
Xu calculate the distance between Pythagorean fuzzy sets as follows:

d(p(xi), p(x j)) =
1
2

(∣∣∣µp(xi)
2
− µp(x j)

2
∣∣∣+ ∣∣∣νp(xi)

2
− νp(x j)

2
∣∣∣+ ∣∣∣πp(xi)

2
−πp(x j)

2
∣∣∣) (3)

Definition 10. (Li’s distance between PFSs [10].) Li and Zeng [10] take into account the characteristics of
PFNs parameters and then systematically proposed a series of distance measures of PFNs and PFSs.

Let p1 and p2 be two PFNs, Li [10] define the normalized generalized distance between them as follows:

DG(P1, P2) = [ 1
4n

n∑
i=1

(
∣∣∣µp1(xi) − µp2(xi)

∣∣∣λ + ∣∣∣νp1(xi) − νp2(xi)
∣∣∣λ +

∣∣∣rp1(xi) − rp2(xi)
∣∣∣λ + ∣∣∣dp1(xi) − dp2(xi)

∣∣∣λ)]1/λ (4)

where λ ≥ 1.
If decision makers have different preferences on the four parameters, the weighted distance measure between

them can be defined as follows [10]:

DωG(P1, P2) = [
n∑

i=1
(ω1

∣∣∣µp1(xi) − µp2(xi)
∣∣∣λ +ω2

∣∣∣νp1(xi) − νp2(xi)
∣∣∣λ

+ω3
∣∣∣rp1(xi) − rp2(xi)

∣∣∣λ +ω4
∣∣∣dp1(xi) − dp2(xi)

∣∣∣λ)]1/λ
(5)

Definition 11. For the purpose of comparing the PFNs, Zhang and Xu [25] proposed a score function of the
PFN. Let β= P

(
µβ, νβ

)
be a PFN. The score function of β is defined as:

s(β) = (µβ)
2
− (νβ)

2 (6)

The higher the score, the larger the PFN.

Definition 12. Yager [9] also gave a way to compare Pythagorean membership grade. He utilized the
characteristic of polar coordinates and put forward two new parameters to represent PFN, p =

(
rp, dp

)
. rp is

called the strength of p and dp is called the direction of the rp. The relationships between the four parameters
µp, νp, rp, dp,θp are as follows:

µp = rp cos(θp), νp = rp sin(θp), where dp = 1− 2θp/π

The functions are established through the Takagi–Sugeno approach and can be expressed as below:

F(r, d) =
1
2
+ r(d−

1
2
)
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And because d = 1− 2θ
π , the function can also be expressed as:

F(r,θ) =
1
2
+ r

(1
2
−

2θ
π

)
To compare PFNs, Yager [9] proposed a formula as follows:

V(p) =
1
2
+ rp

(
dp −

1
2

)
=

1
2
+ rp

(
1
2
−

2θp

π

)
(7)

Li and Zeng [10] compare several laws [9,25,30] of comparing PFNs and find that the Yager’s method is more
credible. Their laws [10] of comparing two PFNs are as follows:

Let p1 =
(
µp1 , νp1

)
and p2 =

(
µp2 , νp2

)
be two PFVs, then (1) If V(p1) > V(p2), then p1 � p2;

(2)If V(p1) = V(p2), then p1 ∼ p2.

Definition 13. Yager [9] proposed the weighted averaging aggregation operator to aggregate PFNs. PFNs
consist of p1, p2, . . . , pn. Each pi =

(
µpi, νpi

)
is associated with an importance weight ωi ∈ [0, 1](i = 1, 2, . . . , n)

and
n∑

i=1
ωi = 1, the Pythagorean fuzzy weighted average is defined as below:

C(p1, p2, · · · , pn) = (
n∑

i=1

ωiµpi,
n∑

i=1

ωiνpi) (8)

3. Pythagorean Fuzzy Entropy and Pythagorean Fuzzy Soft (PFS) Entropy

Entropy measure is the most widespread form of uncertainty measures. Xue [11] popularized the
concept of entropy for intuitionistic fuzzy sets [22].

Definition 14. Let PFSs(X) denote the set of all PFSs in X. A crisp function E : PFE(X)→ [0, 1] is said to
be an entropy on PFSs(X), if it satisfies the following properties [11,22,31].

(D1) EP(β) = 0 if and only if(iff) β is a crisp set;
(D2) EP(β) = 1 iff µβ(xi) = νβ(xi) for ∀xi ∈ X;
(D3) Ep(β1) ≤ Ep(β2) if β1 is less fuzzy than β2, i.e.νβ1(xi) ≥ νβ2(xi) and µβ1(xi) ≤ µβ2(xi) for µβ2(xi) ≤

νβ2(xi), ∀xi ∈ X, or νβ1(xi) ≤ νβ2(xi) and µβ1(xi) ≥ µβ2(xi) for µβ2(xi) ≥ νβ2(xi), ∀xi ∈ X;

(D4) EP(β)= EP
(
βC

)
.

Xue and Xu [11] then presented and proved a definition for Pythagorean fuzzy entropy as follows:

Ep(β) =
1
n

n∑
i=1

[1− (µ2
β(xi) + ν2

β(xi))
∣∣∣∣µ2
β(xi) − ν

2
β(xi)

∣∣∣∣] (9)

However, the property (D2) in Xue’s Definition 14 does not accord with reality and fails to describe
the maximum degree of fuzziness in PFSs objectively. There are several reasons for that. Firstly, only
when µβ(x) = νβ(x) = 0, we know nothing about the universe of discourse [32]. It is very obvious
that we know more in the case of µβ(x) = νβ(x) , 0 than in the case of µβ(x) = νβ(x) = 0. Secondly,
hesitancy degree or intuitionism has been ignored in the (D2). In fact, even if membership is equal to
non-membership, but when membership and non-membership increase in the meantime, it means
that we know more about the universe of discourse and entropy should decrease in that case. But this
situation will not happen according to the property (D2). Thirdly, IFSs and PFSs entropy measure
should become the maximum value when µβ(x) = νβ(x) = 0. Bustince [33] call this situation as IFSs
completely intuitionistic. In conclusion, we think unreasonable condition in Definition 14 should be
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revised and changed. Inspired by the paper [11,22,29,32], we give our Pythagorean fuzzy entropy
definition and entropy measure as Definitions 15 and 16. It is obvious that our definition and measure
have good symmetry.

Definition 15. (A novel Pythagorean fuzzy entropy definition.) Let PFSs(X) denote the set of all PFSs
in the universe of discourse X. A crisp function E : PFE(X)→ [0, 1] is said to be a novel entropy on
PFSs(X) [11,22,29,32], if it satisfies the following properties:

(P1) EP(β) = 0 if and only if(iff) β is a crisp set;
(P2) EP(β) = 1 if and only if µβ(xi) = νβ(xi) = 0 for ∀xi ∈ X;
(P3) Ep(β1) ≤ Ep(β2) if β1 is less fuzzy than β2, i.e.νβ1(xi) ≥ νβ2(xi) and µβ1(xi) ≤ µβ2(xi) for µβ2(xi) ≤

νβ2(xi), ∀xi ∈ X, or νβ1(xi) ≤ νβ2(xi) and µβ1(xi) ≥ µβ2(xi) for µβ2(xi) ≥ νβ2(xi), ∀xi ∈ X;

(P4) EP(β)= EP
(
βC

)
.

Definition 16. (A novel Pythagorean fuzzy entropy.) Let P ={
〈
x,µβ(x),µβ(x)

〉∣∣∣∣x ∈ X } be a PFSs in the
universe of discourse X ={x1, x2, · · · xn}. βi(i = 1, 2, · · · , n) be a separate element from β, then the novel
Pythagorean fuzzy entropy EPF(β) is defined as follows:

EPF(β) =
1

2n

n∑
i=1

(
2− µβ(xi) − νβ(xi) −

∣∣∣µβ(xi) − νβ(xi)
∣∣∣) (10)

Lemma 1. EPF(β) satisfies all properties in Definition 15.

Proof (P1): EPF(β) = 0⇔ EPF(βi) = 0⇔ 2− µβ(xi) − νβ(xi) −
∣∣∣µβ(xi) − νβ(xi)

∣∣∣ = 0 when µβ(xi) ≥

νβ(xi),
∣∣∣µβ(xi) − νβ(xi)

∣∣∣ =µβ(xi) − νβ(xi), then 2 − µβ(xi) − νβ(xi) −
∣∣∣µβ(xi) − νβ(xi)

∣∣∣ = 2 − µβ(xi) −

νβ(xi) −
(
µβ(xi) − νβ(xi)

)
= 2 − 2µβ(xi) = 0 iff µβ(xi) = 1, νβ(xi) = 0. In a similar way, when

µβ(xi) ≥ νβ(xi), we can get µβ(xi) = 0, νβ(xi) = 1. So EP(β) = 0 if and only if(iff) β is a crisp set; �

Proof (P2): EPF(β) = 1⇔ EPF(βi) = 1⇔2− µβ(xi) − νβ(xi) −
∣∣∣µβ(xi)− νβ(xi)

∣∣∣ = 2, So µβ(xi) + νβ(xi) +∣∣∣µβ(xi)− νβ(xi)
∣∣∣ = 0. ∵ µβ(xi) ≥ 0, νβ(xi) ≥ 0

∣∣∣µβ(xi)− νβ(xi)
∣∣∣ ≥ 0, Then we can get µβ(xi) = 0, νβ(xi) = 0.

�

Proof (P3): When νβ1(xi) ≥ νβ2(xi) and µβ1(xi) ≤ µβ2(xi) for µβ2(xi) ≤ νβ2(xi),∀xi ∈ X, we can
have 0 ≤ µβ1(xi) ≤ µβ2(xi) ≤ νβ2(xi) ≤ νβ1(xi) ≤ 1, µβ1(xi) + νβ1(xi) +

∣∣∣µβ1(xi) − νβ1(xi)
∣∣∣ =

µβ1(xi) + νβ1(xi) + νβ1(xi) − µβ1(xi) =2νβ1(xi). µβ2(xi) + νβ2(xi) +
∣∣∣µβ2(xi) − νβ2(xi)

∣∣∣ =µβ2(xi) +

νβ2(xi) + νβ2(xi) − µβ2(xi) =2νβ2(xi).
Since νβ2(xi) ≤ νβ1(xi), we can have 2 − 2νβ1(xi) ≤ 2 − 2νβ2(xi). Then 2 − µβ1(xi) − νβ1(xi) −∣∣∣µβ1(xi) − νβ1(xi)

∣∣∣≤ 2 − µβ2(xi) − νβ2(xi) −
∣∣∣µβ2(xi) − νβ2(xi)

∣∣∣ So EPF(β1) ≤ EPF(β2). When νβ1(xi) ≤

νβ2(xi) and µβ1(xi) ≥ µβ2(xi) for µβ2(xi) ≥ νβ2(xi),∀xi ∈ X. In a similar way, We have EPF(β1) ≤ EPF(β2).
�

Proof (P4): EPF(β)=
1

2n

n∑
i=1

(
2−µβ(xi)− νβ(xi)−

∣∣∣µβ(xi)− νβ(xi)
∣∣∣)= 1

2n

n∑
i=1

(
2− νβ(xi)−µβ(xi)−

∣∣∣νβ(xi)−µβ(xi)
∣∣∣)=

EPF(βC). �

Definition 17. (Entropy on Pythagorean Fuzzy Soft Sets): Let U = {x1, x2, · · · , xm} denote a universe of
discourse. Let E ={e1, e2, · · · en} denote a set of parameters. (F, E) and

(
F, e j

)
( j = 1, 2 · · · , n) are the Pythagorean

fuzzy soft sets. Let,

H(F, E) =
1
n

n∑
i=1

H
(
F, e j

)
(11)
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H
(
F, e j

)
=

1
2m

m∑
i=1

(2− µF(e j)
(xi) − νF(e j)

(xi) −
∣∣∣∣µF(e j)

(xi) − νF(e j)
(xi)

∣∣∣∣) (12)

We can call H(F, E) as the entropy on PFSSs. According to Definition 16 and the proof process of
Lemma 1, it is obvious that we can prove H(F, E) is entropy on the Pythagorean fuzzy soft sets. Due to
the limitation of space, it is omitted here.

4. Integrated Weight of Attributes Based on the PFS Entropy

Existing uncertainty measure are mostly defined based on entropy. When the entropy of an
attribute becomes smaller, it means the uncertainty decreases and the evaluation information under
this attribute is more reliable and certain. So this attribute is more important for decision making
and should be given a greater weight. The entropy weight method avoids the secondary uncertainty
brought by expert weighting model. We adopt a method combining the above two methods. Firstly,
we determine the objective attribute weight based on Pythagorean fuzzy soft entropy. Then we adjust
the objective attribute weights to reflect the subjective preferences of decision makers. At last, we get
the integrated weight of attributes.

For an MADM problem, let Ui(i = 1, 2, · · ·m) be the alternatives. The performance of the alternative
Ui is assessed across a set of attributes {e1, e2, · · · en}. The decision makers give the subjective weights
vector λ = {λ1,λ2, · · ·λn}, the process of calculating the objective attribute weights and the integrated
weights of attributes are as follows.

Definition 18. The objective weight ρ j of attribute e j is [18]:

ρ j =
1−H(F, e j)

n∑
j=1

(1−H(F, e j))

, j = 1, 2, · · · , n (13)

where

H
(
F, e j

)
=

1
2m

m∑
i=1

(2− µF(e j)
(Ui) − νF(e j)

(Ui) −
∣∣∣∣µF(e j)

(Ui) − νF(e j)
(Ui)

∣∣∣∣)
The integrated weight of attribute e j is defined as follows:

ω j =
ρ jλ j

n∑
j=1

ρ jλ j

, j = 1, 2, · · · , n (14)

5. Multiple-Attribute Group Decision Making (MAGDM) Method Based on the Novel
Pythagorean Fuzzy Soft Entropy

Suppose that there are l experts participating in the decision-making process. Let {U1, U2, · · · , Um}

be the alternatives and {e1, e2, · · · en} be the attribute set. The attributes are independent of each other.
Because every expert has different knowledge structure and they are not familiar with every attributes,
they usually give evaluation values only for certain attributes. The evaluation values are given by
Pythagorean fuzzy numbers < µ(k)

F(e j)
(Ui), ν

(k)
F(e j)

(Ui) >(1 ≤ k ≤ l, 1 ≤ i ≤ m, 1 ≤ j ≤ n). It means that the

kth expert give < µ(k)
F(e j)

(Ui), ν
(k)
F(e j)

(Ui) > as the evaluation value of ith alternative under jth attribute.

The decision group gives the subjective weights vector of attributes λ = {λ1,λ2, · · ·λn}.
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Step 1. Suppose that there are p j(1 ≤ p j ≤ k) experts whose weight vector is θ = {θ1,θ2, · · ·θp j } giving
evaluation values under jth attribute. By the formula (8), we now obtain the overall evaluation
value as follows.

< µi j, νi j >=<

p j∑
q=1

θqµ
(k)
F(e j)

(Ui),
p j∑

q=1

θqν
(k)
F(e j)

(Ui) >

Step 2. Let { U1, U2, · · · , Um} be the universe of discourse and {e1, e2, · · · en} be a set of parameters. We
can establish a binary table form of PFSSs (F, E) as Table 1.

Step 3. Calculate fuzzy entropy H
(
F, e j

)
of different attributes on Pythagorean fuzzy soft sets by

utilizing Equation (12).
Step 4. Obtain the objective weight ρ j and integrated weight ω j of attribute by utilizing Equation (13)

and Equation (14).
Step 5. Determine alternatives’ positive ideal solution (PIS) R+ and negative ideal solution (NIS) R− in

Pythagorean fuzzy model for synthetic judgement as follows:

R+ = {
〈
µ+1 , ν+1

〉
,
〈
µ+2 , ν+2

〉
, · · · ,

〈
µ+n , ν+n

〉
} (15)

R− = {
〈
µ−1 , ν−1

〉
,
〈
µ−2 , ν−2

〉
, · · · ,

〈
µ−n , ν−n

〉
} (16)

For benefit attributes: where µ+j = max
1≤i≤m

{µi j}, ν+j = min
1≤i≤m

{νi j}( j = 1, 2, · · · , n),µ−j =

min
1≤i≤m

{µi j}, ν−j = max
1≤i≤m

{νi j}( j = 1, 2, · · · , n) For cost attributes: where µ+j = min
1≤i≤m

{µi j}, ν−j =

max
1≤i≤m

{νi j}( j = 1, 2, · · · , n),µ−j = max
1≤i≤m

{µi j}, ν+j = min
1≤i≤m

{νi j}( j = 1, 2, · · · , n) Zhang [25] determine

PIS and NIS for each attribute according to score function of each element (< µi j, νi j >). But their
score function are pointed out that the comparison result is sometimes unreasonable [10,30].
And our method also has another advantage which possesses higher distinguish degree.
Because the distance between alternatives and PIS or NIS will be larger with our method in
same distance measure. It is obvious that any elements in our PIS will be better than [25] under
several laws of comparing PFNs [9,25,30].

Step 6. Calculate the weighted Pythagorean fuzzy distance D(Ui, R+) between alternative Ui and
positive ideal solution(PIS) R+ and the weighted Pythagorean fuzzy distance D(Ui, R−) between
alternative Ui and negative ideal solution (NIS) R−. We think the four parameters are equal here.

D
(
Ui, R+

)
=

1
4

n∑
j=1

ω j(
∣∣∣∣µi j − µ

+
j

∣∣∣∣ + ∣∣∣∣νi j − ν
+
j

∣∣∣∣ + ∣∣∣∣ri j − r+j

∣∣∣∣+ ∣∣∣∣di j − d+j

∣∣∣∣λ) (17)

D(Ui, R−) =
1
4

n∑
j=1

ω j(
∣∣∣∣µi j − µ

−

j

∣∣∣∣+ ∣∣∣∣νi j − ν
−

j

∣∣∣∣ + ∣∣∣∣ri j − r−j
∣∣∣∣+ ∣∣∣∣di j − d−j

∣∣∣∣λ) (18)

Step 7. Calculate the relative closeness coefficient [34] Ci to the Pythagorean ideal solution.

Ci =
D(Ui, R−)

D(Ui, R+) + D(Ui, R−)
(19)

Step 8. Rank the alternatives according to the above relative closeness coefficient Ci. The lager the Ci
is, the better the alternative Ui is.
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Table 1. The binary table form of Pythagorean fuzzy soft sets (PFSSs).

e1 e2 . . . en

U1 < µ11, ν11 > < µ12, ν12 > . . . < µ1n, ν1n >
U2 < µ21, ν21 > < µ22, ν22 > . . . < µ2n, ν2n >
. . . . . . . . . . . . . . .
Um < µm1, νm1 > < µm2, νm2 > . . . < µmn, νmn >

6. Illustrative Example

We have proposed a MAGDM method based on the novel PFS entropy measure. In this section,
the method will be used in selecting a missile position. Assuming that in the process of making a battle
plan, staff officers need to select a place as missile position. The primary factors which they considered
are the following:

e1: The operational intensions of superiors
e2: The geological conditions of positions
e3: The efficiency of firepower exertion
e4: Maneuverability
e5: Battlefield viability
Through a wide screening and comparison, six places {U1, U2, U3, U4, U5, U6} are preliminarily

selected as alternatives. To make a better decision, three experts are invited to give their PFNs
evaluation values to the alternatives according to collected information, data, and their experiences.
Expert A is familiar with {e1, e2, e3}, Expert B is familiar with {e2, e3, e4}, Expert C is familiar with
{e3, e4, e5}. Their evaluation values are in the Table 2.

Table 2. The Pythagorean fuzzy numbers (PFNs) evaluation values of three experts.

2.1. The PFNs evaluation values of expert A

U1 U2 U3 U4 U5 U6

e1 <0.5, 0.8> <0.7, 0.6> <0.6, 0.3> <0.4, 0.7> <0.5, 0.2> <0.8, 0.6>
e2 <0.2, 0.3> <0.5, 0.3> <0.8, 0.4> <0.7, 0.5> <0.6, 0.2> <0.7, 0.4>
e3 <0.7, 0.2> <0.8, 0.2> <0.6, 0.6> <0.8, 0.4> <0.7, 0.6> <0.4, 0.5>

2.2. The PFNs evaluation values of expert B

U1 U2 U3 U4 U5 U6

e2 <0.3, 0.6> <0.7, 0.6> <0.6, 0.3> <0.8, 0.4> <0.7, 0.3> <0.4, 0.2>
e3 <0.2, 0.7> <0.6, 0.3> <0.7, 0.6> <0.6, 0.6> <0.8, 0.1> <0.7, 0.4>
e4 <0.6, 0.5> <0.3, 0.8> <0.5, 0.7> <0.5, 0.3> <0.9, 0.2> <0.7, 0.6>

2.3. The PFNs evaluation values of expert C

U1 U2 U3 U4 U5 U6

e3 <0.2, 0.8> <0.7, 0.4> <0.8, 0.2> <0.6, 0.3> <0.6, 0.5> <0.8, 0.2>
e4 <0.3, 0.6> <0.1, 0.9> <0.4, 0.6> <0.3, 0.8> <0.7, 0.2> <0.9, 0.0>
e5 <0.8, 0.3> <0.6, 0.3> <0.7, 0.6> <0.6, 0.4> <0.8, 0.4> <0.3, 0.7>

Step 1. Now we consider a simple condition. The three experts’ weight vector is equal. By the
Formula (8), we can obtain the overall evaluation values.

Step 2. We establish a binary table form of PFSSs (F, E) as Table 3 according to the overall
evaluation values.

Step 3. Calculate fuzzy entropy H
(
F, e j

)
by utilizing Equation (12)

H(F, e1) = 0.317, H(F, e2) = 0.375, H(F, e3) = 0.338, H(F, e4) = 0.3, H(F, e5) = 0.3
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Table 3. The overall evaluation values of three experts.

e1 e2 e3 e4 e5

U1 <0.5, 0.8> <0.25, 0.45> <0.37, 0.57> <0.45, 0.55> <0.8, 0.3>
U2 <0.7, 0.6> <0.6, 0.45> <0.7, 0.3> <0.2, 0.85> <0.6, 0.3>
U3 <0.6, 0.3> <0.7, 0.35> <0.7, 0.47> <0.45, 0.65> <0.7, 0.6>
U4 <0.4, 0.7> <0.7, 0.5> <0.67, 0.43> <0.4, 0.55> <0.6, 0.4>
U5 <0.5, 0.2> <0.75, 0.25> <0.7, 0.4> <0.8, 0.2> <0.8, 0.4>
U6 <0.8, 0.6> <0.55, 0.3> <0.63, 0.37> <0.8, 0.3> <0.3, 0.7>

Step 4. Experts give their subjective weights vector λ = {0.24, 0.17, 0.18, 0.23, 0.18} after careful
consideration and discussion. Calculate the objective weight and integrated weight of the
attribute by utilizing Equations (13) and (14). The results of calculating are shown in Table 4.

Table 4. The weights of attributes.

λ ρ ω

e1 0.24 0.2027 0.2449
e2 0.17 0.1855 0.1588
e3 0.18 0.1964 0.1780
e4 0.23 0.2077 0.2347
e5 0.18 0.2077 0.1837

Step 5. Determine the alternatives’ positive ideal solution R+ and negative ideal solution R− by
utilizing Equations (15) and (16).

R+ = {< 0.8, 0.2 >,< 0.75 0.25 >,< 0.7 0.3 >,< 0.8, 0.2 >,< 0.8, 0.3 >}

R− = {< 0.4, 0.8 >,< 0.25, 0.5 >,< 0.37, 0.57 >, < 0.2, 0.85 >,< 0.3, 0.7 >}

Step 6. Calculate the weighted distance D(Ui, R+) and D(Ui, R−) by utilizing Equations (17) and (18).

D
(
U1, R+

)
= 0.2061, D(U1, R−) = 0.1433, D

(
U2, R+

)
= 0.1713, D(U2, R−) = 0.1507

D
(
U3, R+

)
= 0.1602, D(U3, R−) = 0.2455, D

(
U4, R+

)
= 0.1969, D(U4, R−) = 0.1851

D
(
U5, R+

)
= 0.0629, D(U5, R−) = 0.2884, D

(
U6, R+

)
= 0.1442, D(U6, R−) = 0.1985

Step 7. Calculate the relative closeness coefficient Ci to the Pythagorean ideal solution by utilizing
Equation (19).

C1 = 0.4101, C2 = 0.4680, C3 = 0.6051, C4 = 0.4846, C5 = 0.8210, C6 = 0.5792.

According to the principle of “the lager the relative closeness coefficient is, the better the alternative
is”. So the missile position alternatives are ranked as U5 � U3 � U6 � U4 � U2 � U1, U5 is selected as
the best missile position among the alternatives.

Zhang [25] extended TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets.
They determine PIS and NIS according to the following Formula (20) and (21) based on the score
function Equation (6) and they defined.

R+ = {e j, max
i

〈
s(e j(Ui))

〉∣∣∣ j = 1, 2, · · · n } (20)

R− = {e j, min
i

〈
s(e j(Ui))

〉∣∣∣ j = 1, 2, · · · n } (21)
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They calculate distance by the Formula (3). And their weight vector of attributes is directly given
by the experts. To compare the methods, we can see the Table 2 as a decision matrix in this case. If we
take their approach, the results are as follows:

C1 = 0.3718, C2 = 0.4882, C3 = 0.5731, C4 = 0.5268, C5 = 0.7251, C6 = 0.6648

The alternatives are ranked as U5 � U6 � U3 � U4 � U2 � U1. The ranking results of two methods
are similar (shown in Figure 1). The best alternative is the same. But the ranking order between U6

and U3 is different. U3 � U6 for our method, whereas it is U6 � U3 for Zhang’s method.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 15 
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From Figure 2, we can see that the green line is more steeper. This means that the degrees of
difference between alternatives are larger by our method.

We calculate the distinguishability Ki between neighboring alternatives by Formula (23) to analyze
the evaluation differences between the two methods quantitatively.

Ki =

∣∣∣Ci −Ci+1
∣∣∣

1
6

6∑
j=1

C j

× 100%(i = 1, 2, 3, 4, 5) (23)
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Table 6 shows the results of the distinguishability between neighboring alternatives by two
methods and their mean values. It means that the evaluation of alternatives and the effectiveness of
decision making are better if the distinguishability values are larger. By our method, the mean value of
Ki is higher. So the proposed method has better distinguishability in evaluation results.

Table 6. Comparison table of the distinguishability between neighboring alternatives.

K1 K2 K3 K4 K5 Mean Value

Zhang’s method 20.85 15.21 8.29 35.52 10.80 18.13
The proposed method 10.31 24.42 21.47 59.93 43.08 31.84

Furthermore, the Pythagorean fuzzy soft entropy measure proposed by us is another reason for
better distinguishability. If we extend Xue’s Pythagorean Fuzzy entropy measure to Pythagorean fuzzy
soft entropy measure, we may obtain unreasonable results especially in the case of µβ(x) = νβ(x).
The property (D2) in Xue’s Pythagorean fuzzy entropy Definition 14 does not accord with reality to
some extent and fails to describe the maximum degree of fuzziness in PFSs objectively. The analysis
has been shown in Section 3.

7. Conclusions

To solve multiple attributes group decision-making problem, we improved the TOPSIS method
to better deal with the MAGDM problems with Pythagorean fuzzy soft sets. In this process, we
proposed a novel PFS entropy to better determine the weights of attributes. Results of an example and
analysis of comparison with other methods shows the proposed method has higher reliability and better
distinguishability in evaluation results. The main contributions of this paper are summarized as below:

(1) We combined PFSs and soft sets which have advantages in handling vague and uncertain
information.

(2) In most cases, experts may only be familiar with some particular attributes. We considered this
situation and introduced a method to aggregate evaluation information.

(3) We redefined PF entropy and proposed novel PF and PFS entropy measures which are more
reasonable and valid.

(4) To better determine the weights of attributes, we used PFS entropy to obtain objective weights.
Then we combined objective weights and experts’ subjective weights which includes decision
makers’ subjective intention to obtain integrated weights.

(5) To better apply the TOPSIS method in PFSSs, we introduced more reasonable ways of determining
positive ideal solutions, negative ideal solutions and calculating distances between PFNs, etc.
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