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Abstract: Tunnels commonly pass through inclined rock stratum, but research on the collapse of the
rock surrounding the tunnels in inclined rock strata is currently underdeveloped. The purpose of
this study was to predict the progressive asymmetrical collapse failure of deep-buried tunnels in
inclined rock strata to decrease the risk of collapse during tunnel construction. We constructed a new
two-dimensional progressive asymmetrical collapse failure mechanism for deep-buried tunnels in
inclined rock layers to analyze their collapse failure characteristics with the help of the nonlinear
Hoek–Brown yield criterion and the limit analysis theorem. The calculation equations of the range
and total weight of the asymmetrical collapsing block in rectangular and circular tunnels were
obtained via theoretical derivation. The validity of the proposed method in this work was verified by
comparison with existing research. To discuss the impact of different parameters on the range and
total weight of an asymmetrical collapsing block of the surrounding rock in inclined rock stratum,
the range and total weight of the asymmetrical collapsing block of the most common rectangular
and circular tunnels under the varied parameters are provided. The results of this study can provide
useful support for practical tunnel construction and design.

Keywords: deep tunnels; inclined rock stratum; progressive asymmetrical collapse; nonlinear failure
criterion; upper bound theorem

1. Introduction

Due to unfavorable factors such as excavation disturbances or late support, tunnels with weak
surrounding rock are prone to collapse. Tunnel collapse has always been one of the most troublesome
problems because its complex collapse failure mechanism has yet to be fully grasped. Therefore,
research is urgently required to provide a beneficial reference for practical engineering. Many scholars
have attempted to introduce various methods to analyze the stability of tunnels and predict tunnel
collapse failure [1–7]. Lee et al. [1] conducted a series of centrifuge model tests and numerical
simulations to investigate tunnel stability and arching effects in soft soils, and proposed the boundaries
of the positive and negative arching zones. Mollon et al. [2] provided design charts for the case of
a frictional and cohesive soil by determining the surface collapse pressure of a circular tunnel driven by
a pressurized shield based on a translational three-dimensional multiblock failure mechanism. Zhang
and Han [8] found that unfavorable factors such as rock weakening and large span caused a series of
collapses in Longyou Cave in Zhejiang province, China through site investigations and laboratory
tests, and proposed some effective measures to increase the safety of this cave, including slowing rock
weathering. However, the kinematics of tunnel collapse were not considered in these studies, which
does not reflect actual tunnel collapse mechanisms, and these methods are particularly difficult to use
widely in practical engineering.
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Despite the regular application of experimental and numerical methods in geotechnical
engineering, the limit analysis theorem is often used to investigate the collapse of tunnels (e.g.,
traffic tunnels) due to its extraordinary advantages, including obtaining more accurate results by
reducing assumptions and calculations [9–12]. Innovatively, Fraldi and Guarracino [13,14] identified
a collapse mechanism of cavities and tunnels which can be used to obtain analytical results based on
the upper bound theorem and the nonlinear Hoek–Brown yield criterion. Then, Huang and Yang [15]
introduced pore water pressure into the virtual equation, and the influence of pore water pressure
on the collapse of circular tunnels was determined by adopting a collapse mechanism similar to the
research of Fraldi and Guarracino [13,14]. Li and Yang [16] considered the variable separation speed
along the yield surface and introduced a simplified technique to investigate the collapse mechanism
of a tunnel roof based on previous research. Yang and Huang [17] employed a new curved failure
mechanism of shallow tunnels to discuss the collapsing shape of shallow circular tunnels with the
consideration of supporting pressure, and proposed a critical depth expression for classifying shallow
and deep tunnels. To more accurately describe the collapsing region in actual engineering, Yang and
Huang [18] extended the 2D failure mechanism proposed by Fraldi [13,14] to a 3D collapse mechanism,
and the 3D range of the collapsing blocks was found to be larger than that determined from the 2D
failure mechanism.

In previous research, relatively satisfactory progress in solving tunnel collapse has been made, but
these studies were limited to homogeneous and isotropic rock masses, resulting in larger dimensional
deviations of collapsing blocks. The reasonable prediction of tunnel collapse in layered rock masses
remains one of the most urgent problems to be solved in practical engineering [19]. To overcome the
shortage of research on tunnel collapse in layered rock masses, Qin and Yang [19] established a new
curved failure mechanism: a progressive failure mechanism with two intersecting continuous lines at
the interface. Based on the limit analysis theorem and the variational approach, analytic solutions of
the shape and region of collapsing blocks were acquired. Qin and Chian [20] also investigated the
effects of rock weathering and a changing water table on collapsing blocks in layered rock masses.
Yang and Zhou [21] employed a reliability-based analysis to examine the shape of collapsing blocks
in rectangular tunnels considering seepage pressure through further research, and found that the
supporting pressure had a profound impact on the reliability index. However, deep tunnels or cavities
are usually built in inclined rock layers. Tunnel collapse research regarding inclined layered rock
masses has been insufficient compared with tunnel collapse research in horizontal layered rock masses.
The collapsing blocks in the abovementioned studies were all symmetrical, but the incline of the rock
stratum results in asymmetrical collapsing blocks Therefore, it became necessary to propose a novel
tunnel collapse mechanism to investigate the asymmetrical collapse failure of tunnels in inclined
rock layers.

In this paper, the 2D progressive asymmetrical collapse mechanism of deep-buried tunnels in
two inclined rock layers is constructed with reference to the findings of previous studies, and this
failure mechanism is composed of four arbitrary curves. The explicit expressions of these curves are
deduced from the variational principle and upper bound theorem. The upper bound solutions to the
asymmetrical collapsing blocks of deep tunnels in inclined rock stratum are derived according to the
analytical expressions. To describe the influence of diverse parameters on the range and total weight
of the potential collapsing block, sensitivity analysis with rectangular and circular tunnels is described
in inclined rock strata.

2. Methods

2.1. Theoretical Basis

2.1.1. Upper Bound Theorem of Limit Analysis

Chen [22] introduced the limit analysis theory in 1975, which includes upper and lower bound
theorem. Then, the limit analysis theory was adopted to investigate geotechnical engineering
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problems because of its accuracy and convenience, especially for the upper bound theorem [9,15–21,23].
According to Chen, the upper bound theorem can be formulated as: the energy dissipated by the
external loads being equated to the energy dissipated by any kinematically admissible velocity field
to determine a rigorous upper bound on the true limit load while satisfying the velocity boundary
conditions, the plastic flue rule, and compatibility. The theorem can be expressed as:∫

s
Fivids +

∫
A

YividA ≤
∫

A
σi j

.
εi jdA, (1)

where Fi is a load acting on the boundary s, Yi indicates the body force, vi denotes the velocity across
the discontinuity surface A, and σij and

.
εi j are the stress tensor and plastic stain rate in the kinematically

admissible velocity field, respectively.
To enable the upper bound theorem of limit analysis to be more widely used in practical applications,

the following assumptions are proposed: the geotechnical materials have perfect plasticity and follow
the associated flow rule, and the potential collapsing blocks are rigid bodies with deformations too
small to be neglected.

2.1.2. Nonlinear Hoek–Brown Yield Criterion

The Hoek–Brown criterion was first introduced in the late 1970s to estimate the rock mass strength
for the design of underground excavation [24,25]. Since the development of this criterion, two forms of
expression have been widely adopted to investigate geotechnical engineering problems—especially
those for tightly interlocked hard rock masses [26]. One of the expressions has advantages when
calculating the energy dissipation caused by the normal and shear stresses along with the velocity
discontinuities [26]:

τ = Aσc

(
σn − σt

σc

)B{
A, B ∈ (0, 1), σt ≥ 0, σc ≥ 0

}
, (2)

where A and B are mechanics parameters describing the rock mass that can be obtained by triaxial
testing [27]; σc and σt represent the uniaxial compressive strength and the tensile strength at failure [13],
respectively; and σn and τ are the normal and shear stress [26], respectively.

2.2. Progressive Asymmetrical Collapse Mechanism in Inclined Rock Stratum

In previous studies, the upper bound theorem was often used to study the collapse mechanism
of arbitrary tunnel sections owing to its convenience. In this study, we constructed a progressive
asymmetrical collapse mechanism of rectangular and circular tunnels passing through two inclined
rock layers, with reference to Qin et al. [19,20] and Fraldi and Guarracino [13,14], and a new collapsing
block composed of four continuous sections was built to describe the most approximate mechanism
in inclined rock strata. Specifically, two pairs of corresponding mechanical parameters are used to
differentiate the different characteristics of the geomaterials. As shown in Figures 1 and 2, the coordinate
system consisting of two positive X axes is the focus, and the distance between the Z axis and the
longitudinal centerline of the tunnel is a. Notably, the two positive X axes of a circular tunnel may not
be on a line. Suppose the inclination angle of the inclined rock stratum is α, and the collapsing block
moves vertically downward at speed v. The arbitrary curves f 1(x) and f 3(x) extend from the roof of
rectangular or circular tunnels to the interface between the two inclined strata, respectively, and the
arbitrary curves f 2(x) and f 4(x) are constructed from the apex of collapsing block to the intersection of
the interface and the lower strata, respectively. The external rate of work and the energy dissipation
along the detaching surface can be calculated based on the above collapse mechanism.
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Figure 1. Progressive asymmetrical collapse mechanism of rectangular tunnels in an inclined
rock stratum.
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Figure 2. Progressive asymmetrical collapse mechanism of circular tunnels in an inclined rock stratum.

3. Upper Bound Analysis of Progressive Asymmetrical Collapsing Block

3.1. Upper Bound Analysis of Rectangular Tunnels

The energy dissipation rate and different detaching curves can be derived using the nonlinear
Hoek–Brown yield criterion with reference to the research of Fraldi [13,14]. Four different sections
compose the whole failure mechanism, and hence the internal forces result in the total rate of energy
dissipation at the potential collapse, which can be calculated as:

PD1 =

∫ L1

L2

{
−σt1 + σc1[A1B1 · f1′(x)]

1
1−B1 ·

(
1−

1
B1

)}
vdx, (3)
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PD2 =

∫ L2

0

{
−σt2 + σc2[A2B2 · f2′(x)]

1
1−B2 ·

(
1−

1
B2

)}
vdx (4)

PD3 =

∫ L3

L4

{
−σt1 + σc1[A1B1 · f3′(x)]

1
1−B1 ·

(
1−

1
B1

)}
vdx (5)

PD4 =

∫ L4

0

{
−σt2 + σc2[A2B2 · f4′(x)]

1
1−B2 ·

(
1−

1
B2

)}
vdx, (6)

where the detailed deduction of the total rate of energy dissipation is presented in Appendix A. L1 and
L3 are the half widths of the bottom of the right and left collapsing blocks in rectangular tunnels,
respectively; and L2 and L4 are the half widths of the middle of the right and left collapsing blocks
intersecting with the interface between the two inclined strata, respectively; A1, B1, σc1, and σt1 are the
Hoek–Brown mechanical parameters in the lower rock formation; A2, B2, σc2, and σt2 for the upper
rock stratum shown in Figure 1; and f 1

′(x), f 2
′(x), f 3

′(x), f 4
′(x) are the first derivatives of the unknown

continuous curves f 1(x), f 2(x), f 3(x), and f 4(x), respectively.
The work rate of the gravity of the collapsing block in rectangular tunnels can be obtained

as follows:

Pγ1 =

∫ L1

L2

γ1 f1(x)vdx− γ1L2h1v +
1
2

vγ1L2
2 tanα (7)

Pγ2 =

∫ L2

0
γ2 f2(x)vdx + γ2L2h1v−

1
2

vγ2L2
2 tanα (8)

Pγ3 =

∫ L3

L4

γ2 f3(x)vdx− γ1L4h3v−
1
2

vγ1L4
2 tanα (9)

Pγ4 =

∫ L4

0
γ1 f4(x)vdx + γ2L4h3v +

1
2

vγ2L4
2 tanα (10)

where γ1 and γ2 are the rock unit weight in the lower and upper rock stratum, respectively; and h1

and h3 describe the distance from the top of rectangular tunnels to the lower curves and the interface
between the two inclined strata, respectively. The supporting pressure in rectangular tunnels cannot
be neglected, and the work rate generated by the supporting pressure can be calculated as follows:

Pq1 = qvL1 cosπ (11)

Pq2 = qvL4 cosπ (12)

where q is the supporting pressure of the rectangular tunnels. Notice that the optimal upper bound
solution cannot be directly obtained by the virtual power equation. Consequently, constructing an
objective function consisting of the external working rate and the total internal dissipated energy of
half of the collapsing block is a prerequisite for obtaining the optimal upper solution. That is:

ς1[ f (x), f ′(x), x] = PD1 + PD2 − Pγ1 − Pγ2 − Pq1 =
∫ L1

L2
ψ1[ f1(x), f1′(x), x]vdx+∫ L2

0 ψ2[ f2(x), f2′(x), x]vdx− (γ2 − γ1)L2h1v− 1
2 v(γ1 − γ2)L2

2 tanα− qvL1 cosπ
(13)

ς2[ f (x), f ′(x), x] = PD3 + PD4 − Pγ3 − Pγ4 − Pq2 =
∫ L3

L4
ψ3[ f3(x), f3′(x), x]vdx+∫ L4

0 ψ4[ f4(x), f4′(x), x]vdx− (γ2 − γ1)L4h3v + 1
2 v(γ1 − γ2)L4

2 tanα− qvL4 cosπ
(14)

where the expressions of ψ1, ψ2, ψ3, and ψ4 can be written as follows:

ψ1[ f1(x), f1′(x), x] =
{
−σt1 + σc1[A1B1 · f1′(x)]

1
1−B1 ·

(
1−

1
B1

)}
− γ1 f1(x) (15)
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ψ2[ f2(x), f2′(x), x] =
{
−σt2 + σc2[A2B2 · f2′(x)]

1
1−B2 ·

(
1−

1
B2

)}
− γ2 f2(x) (16)

ψ3[ f3(x), f3′(x), x] =
{
−σt1 + σc1[A1B1 · f3′(x)]

1
1−B1 ·

(
1−

1
B1

)}
− γ1 f3(x) (17)

ψ4[ f4(x), f4′(x), x] =
{
−σt2 + σc2[A2B2 · f2′(x)]

1
1−B2 ·

(
1−

1
B2

)}
− γ2 f4(x) (18)

In Equations (13) and (14), ψ1, ψ2, ψ3, and ψ4 determine the extremes of the objective functions ς1

and ς2. Determining how to derive the upper bound solution from the objective function is important
and challenging. Referring to previous studies [13,14] and based on the variational principle, four
Euler equations can be obtained from by the expressions of ψ1, ψ2, ψ3, and ψ4, and the variational
equations can be expressed as:

δψ1[ f1(x), f1′(x), x] = 0⇒
∂ψ1

∂ f1(x)
−
∂
∂x

[
∂ψ1

∂ f1′(x)

]
= 0 (19)

δψ2[ f2(x), f2′(x), x] = 0⇒
∂ψ2

∂ f2(x)
−
∂
∂x

[
∂ψ2

∂ f2′(x)

]
= 0 (20)

δψ3[ f3(x), f3′(x), x] = 0⇒
∂ψ3

∂ f3(x)
−
∂
∂x

[
∂ψ3

∂ f3′(x)

]
= 0 (21)

δψ4[ f4(x), f4′(x), x] = 0⇒
∂ψ4

∂ f4(x)
−
∂
∂x

[
∂ψ4

∂ f4′(x)

]
= 0 (22)

Substitute Equations (15) and (18) into Equations (19) and (22), respectively, and then employ
integral calculation to derive the first derivatives of f 1(x), f 2(x), f 3(x), and f 4(x), which can be written
as follows:

f1′(x) =
1

B1
A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
x−

d1

γ1

) 1−B1
B1

(23)

f2′(x) =
1

B2
A2
−

1
B2

( γ2

σc2

) 1−B2
B2

(
x−

d2

γ2

) 1−B2
B2

(24)

f3′(x) =
1

B1
A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
x−

d3

γ1

) 1−B1
B1

(25)

f4′(x) =
1

B2
A2
−

1
B2

( γ2

σc2

) 1−B2
B2

(
x−

d4

γ2

) 1−B2
B2

(26)

where d1, d2, d3, and d4 are unknown constants to be determined. As illustrated in Figure 1, the slopes
of f 2(x) and f 4(x) are equal to 0 when the abscissa x = 0. Accordingly, the following equations and the
deterministic solutions of d3 and d4 can be obtained:

f4′(0) = f2′(0) = 0 (27)

f2′(0) = 0⇒ d2 = 0 (28)

f4′(0) = 0⇒ d4 = 0 (29)

Therefore, by substituting Equations (24) and (26) into Equations (28) and (29), the following
expressions of f 2

′(x) and f 4
′(x) are derived:

f2′(x) = f4′(x) =
1

B2
A2
−

1
B2

( γ2

σc2

) 1−B2
B2 x

1−B2
B2 (30)
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We found that the slopes of f 4(x) and f 3(x) are equal at the intersection of the two curves f 4(x) and
f 3(x), and the slopes of f 1(x) and f 2(x) are equal at the intersection of the two curves f 1(x) and f 2(x).
Two explicit equations can be given:

f4′(L4) = f3′(L4) (31)

f2′(L2) = f1′(L2) (32)

To facilitate the calculation of the energy dissipation, two coefficients m1 and m2 are introduced to
simplify the expressions:

m1 =
1

B1
A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(33)

m2 =
1

B2
A2
−

1
B2

( γ2

σc2

) 1−B2
B2 (34)

Substituting Equations (31)–(34) into Equations (23), (25), and (30), the expressions for d1 and d3

are respectively as follows:

d1 = γ1L2 − γ1

(
m2

m1
· L2

1−B2
B2

) B1
1−B1

(35)

d3 = γ1L4 − γ1

(
m2

m1
· L4

1−B2
B2

) B1
1−B1

(36)

Substituting Equation (35) into (23), the expression of detaching curve f 1(x) is finally given by an
integral operation:

f1(x) = A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
x−

d1

γ1

) 1
B1

+ k1 (37)

where k1 is the integration constant to be determined. Likewise, substituting Equation (30) into
Equations (24) and (26), and substituting Equation (36) into (25), the expressions of f 2(x), f 3(x), and
f 4(x) are derived by integrating the equations:

f2(x) = A2
−

1
B2

( γ2

σc2

) 1−B2
B2 x

1
B2 + k2 (38)

f3(x) = A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
x−

d3

γ1

) 1
B1

+ k3 (39)

f4(x) = A2
−

1
B2

( γ2

σc2

) 1−B2
B2 x

1
B2 + k4 (40)

where k2, k3, and k4 are integration constants to be determined. Since the deformation continuity should
be satisfied in the intersections, the following equations can be given according to the geometrical
relationship shown in Figure 1:

f1(L2) = f2(L2) = −(H2 + L2 · tanα) = −h1 (41)

f3(L4) = f4(L4) = −(H2 − L4 · tanα) = −h3 (42)

f2(0) = −h2 (43)

H2 = H3 + (b− a) tanα (44)

a = t0 · b (45)
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where H2 represents the distance from the coordinate system origin to the intersection of the Z axis
and the interface between the two strata; H1 and H3 denote the distance from the top of rectangular
tunnels to the interface between the two inclined strata, respectively; h2 is the maximum height of the
collapsing block; and t0 indicates the ratio of the half widths of rectangular tunnels. By introducing
Equations (37)–(40) into Equations (41)–(45), respectively, the specific expressions of d1, d2, d3, and d4

can be written as:

k1 = −A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
L2 −

d1

γ1

) 1
B1
− (H2 + L2 · tanα) (46)

k2 = −A2
−

1
B2

( γ2

σc2

) 1−B2
B2 L2

1
B2 − (H2 + L2 · tanα) = −h2 (47)

k3 = −A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
L4 −

d3

γ1

) 1
B1
− (H2 − L4 · tanα) (48)

k4 = −A2
−

1
B2

( γ2

σc2

) 1−B2
B2 L4

1
B2 − (H2 − L4 · tanα) (49)

Notice that the functions f 1(x) and f 3(x) are equal to 0 when the abscissa x = L1 and x = L2,
respectively, and the following equations are obtained:

f1(L1) = 0⇒ A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(L1 −
d1

γ1

) 1
B1
−

(
L2 −

d1

γ1

) 1
B1

− (H2 + L2 · tanα) = 0 (50)

f3(L3) = 0⇒ A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(L3 −
d3

γ1

) 1
B1
−

(
L4 −

d3

γ1

) 1
B1

− (H2 − L4 · tanα) = 0 (51)

Additionally, combining Equations (23)–(26), Equations (37)–(40), and Equations (15)–(18), the
expressions of ψ1, ψ2, ψ3, and ψ4 can be further formulated respectively as:

ψ1[ f1(x), f1′(x), x] = −σt1 −
1

B1
σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(
x−

d1

γ1

) 1
B1
− γ1k1 (52)

ψ2[ f2(x), f2′(x), x] = −σt2 −
1

B2
σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 x
1

B2 − γ2k2 (53)

ψ3[ f3(x), f3′(x), x] = −σt1 −
1

B1
σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(
x−

d3

γ1

) 1
B1
− γ1k3 (54)

ψ4[ f4(x), f4′(x), x] = −σt2 −
1

B2
σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 x
1

B2 − γ2k4 (55)

As a result, Equations (13) and (14) can be simplified and represented as:

ς1[ f (x), f ′(x), x] = F1(L1, L2) · v (56)

ς2[ f (x), f ′(x), x] = F2(L3, L4) · v (57)

where F1(L1,L2)·v and F2(L3,L4)·v are explained in Appendix B. According to the virtual power equation,
in the kinematically admissible field, the external rate of work is equal to the internal energy dissipation
power when the collapsing block is in the ultimate state. As such, an optimal analytical solution that
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satisfies the objective function can be determined. Therefore, when the objective functions are equal to
0, the geometric parameters L1, L2, L3, and L4 of the impending block can be derived individually:

F1(L1, L2) = 0 (58)

F2(L3, L4) = 0 (59)

where F1(L1,L2) = 0 and F2(L3,L4) = 0 are described in Appendix B. Then, substituting the obtained
analytical solutions of L1, L2, L3, and L4 into Equations (41)–(43) can be used to determine the analytical
solutions of constants h1, h2, and h3, respectively, describing the height of the progressive asymmetrical
collapsing block.

The total power of the gravity of the potential collapsing block is obtained by combining Equations
(7)–(10) and (37)–(40) with Equations (46)–(49), and then the total weight of the potential collapsing
block in rectangular tunnels can be expressed as W1, which is given in Appendix B.

3.2. Upper Bound Analysis of Circular Tunnels

In contrast to the rectangular tunnels above, the function of the circular tunnels’ profile is more
complicated. According to the geometric relationship in Figure 2, the expressions of a circular tunnel’s
contour on both sides of the Z axis are given as follows:

g1(x) =
√

R2 − (L1 − a)2
−

√
R2 − (x− a)2 (60)

g2(x) =
√

R2 − (L3 + a)2
−

√
R2 − (x + a)2 (61)

where R is the radius of the circular tunnel. The upper bound analysis process of the collapse
mechanism in circular tunnels is the same as in rectangular tunnels. According to the preceding
discussion, the tunnel profile only changes the expressions of the external working power, thus
replacing Equations (7)–(10) with Equations (62)–(65), describing the power worked by gravity:

Pγ1 =

∫ L1

L2

γ1 f1(x)vdx− γ1L2h1v +
1
2

vγ1L2
2 tanα− γ1

∫ L1

0
g1(x)vdx (62)

Pγ2 =

∫ L2

0
γ2 f2(x)vdx + γ2L2h1v−

1
2

vγ2L2
2 tanα (63)

Pγ3 =

∫ L3

L4

γ2 f3(x)vdx− γ1L4h3v−
1
2

vγ1L4
2 tanα− γ1

∫ L3

0
g2(x)vdx (64)

Pγ4 =

∫ L4

0
γ1 f4(x)vdx + γ2L4h3v +

1
2

vγ2L4
2 tanα (65)

where h1 and h3 describe the distance from the top of the circumference of circular tunnel to the lower
curves and the interface between the two inclined strata, respectively. Similarly, the power produced
by the supporting pressure in the roof of circular tunnels is rather different from rectangular tunnels;
hence, Equations (66) and (67) can be substituted for Equations (11) and (12):

Pq1 = Rqv · cosπ ·
∫ L1

0

√
1 + [g1

′(x)]2dx = Rqv · cosπ ·
(
arcsin

L1 − a
R

+ arcsin
a
R

)
(66)

Pq2 = Rqv · cosπ ·
∫ L3

0

√
1 + [g2′(x)]

2dx = Rqv · cosπ ·
(
arcsin

L3 + a
R
− arcsin

a
R

)
(67)

Since the expressions of the function ψ are independent of gravity and supporting pressure, the
same formulas of the detaching curves f 1(x), f 2(x), f 3(x), and f 4(x) as those of rectangular tunnels can
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be derived according to the previous discussion. Some boundary conditions in the collapse mechanism
of circular tunnels are:

f1(L2) = f2(L2) = −

[
H2 + (L2 − a) · tanα−

√
R2 − (L1 − a)2

]
= −h1 (68)

f3(L4) = f4(L4) = −

[
H2 − (L4 + a) · tanα−

√
R2 − (L3 + a)2

]
= −h3 (69)

a = t0 ·R (70)

The following integral constants can be obtained, which are different from Equations (46)–(49):

k1 = −A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
L2 −

d1

γ1

) 1
B1
−

[
H2 + L2 · tanα−

√
R2 − (L1 − a)2

]
(71)

k2 = −A2
−

1
B2

( γ2

σc2

) 1−B2
B2 L2

1
B2 −

[
H2 + L2 · tanα−

√
R2 − (L1 − a)2

]
(72)

k3 = −A1
−

1
B1

(
γ1

σc1

) 1−B1
B1

(
L4 −

d3

γ1

) 1
B1
−

[
H2 − L4 · tanα−

√
R2 − (L3 + a)2

]
(73)

k4 = −A2
−

1
B2

( γ2

σc2

) 1−B2
B2 L4

1
B2 −

[
H2 − L4 · tanα−

√
R2 − (L3 + a)2

]
(74)

Similar to the above analysis, Equations (50) and (51) can be replaced by the following equations:

f1(L1) = 0⇒ A1
−

1
B1

( γ1
σc1

) 1−B1
B1

[(
L1 −

d1
γ1

) 1
B1 −

(
L2 −

d1
γ1

) 1
B1

]
−

[
H2 + L2 · tanα−

√
R2 − (L1 − a)2

]
= 0 (75)

f1(L1) = 0⇒ A1
−

1
B1

( γ1
σc1

) 1−B1
B1

[(
L1 −

d1
γ1

) 1
B1 −

(
L2 −

d1
γ1

) 1
B1

]
−

[
H2 + L2 · tanα−

√
R2 − (L1 − a)2

]
= 0 (76)

Finally, if the objective functions are 0, the half width of the impending block can be derived from
the following equations:

E1(L1, L2) = 0 (77)

E2(L3, L4) = 0 (78)

where E1(L1,L2) = 0 and E2(L3,L4) = 0 are described in Appendix B. The total weight of the potential
collapsing block in circular tunnels can be expressed as W2, which is also described in Appendix B.

4. Results and Discussion

4.1. Rationale Verification

In this paper, we constructed the progressive asymmetrical collapse mechanism of rectangular
and circular tunnels in inclined rock stratum, and the calculation equations of the potential collapsing
range were derived based on the upper bound theorem of limit analysis and nonlinear Hoek–Brown
yield criterion. To demonstrate the validity of the method proposed in the literature, it was necessary
to compare the results of our method with existing results.

4.1.1. Rectangular Tunnels

To prove the validity of the collapse mechanism proposed in this work, we compared it with
existing research, and the findings of research on rectangular tunnels have been compared with
those reported by Fraldi and Guarracino [14]. Since Fraldi and Guarracino’s work was limited to the
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progressive collapse mechanism in isotropic and homogeneous rock masses, the formula had to be
converted before the comparison. In this paper, we supposed that the mechanical parameters in the
upper and lower rock layers were the same, and then the same formula as in Fraldi and Guarracino [14]
could be obtained when L = L1 = L2 or L = L3 = L4, q = 0, and a = b = t0 = H3 = 0 in Equations (58)
and (59) Thus, the progressive collapse mechanism of rectangular tunnels proposed in this paper
is valid.

4.1.2. Circular Tunnels

For a detailed comparison with Huang and Yang [15] and Qin and Chian [20], we referred to the
previous findings about the collapse mechanism of circular tunnels. Huang and Yang [15] estimated the
influence of the pore water pressure on circular tunnels’ stability. For the convenience of comparison,
we let the pore pressure coefficient ru = 0 in Huang and Yang [15], and we then obtained an equation
without the pore water pressure:

− σtL +
B

1 + B
σc

B−1
B A−

1
Bγ

1
B L

B+1
B +

γR2

2

arcsin
L
R
−

L
R

√
1−

( L
R

)2
 = 0 (79)

Similarly, the same equation as Equation (79) can be obtained when L = L1 = L2 or L = L3 = L4, q = 0
and a = t0 = H0 = 0 in Equations (77) and (78). Consequently, the study in Huang and Yang [15] and our
study were found to be consistent. Besides, Huang and Yang [15], investigated the collapse mechanism
of tunnels in two layered rock masses considering a varying water table. The equation calculated for
the potential collapsing range of a circular tunnel in Huang and Yang [15] can be transformed into
Equation (79) when the constants n1 = n2 = 0, n3 = 1, and L = L1 = L2 = L3.

Through the above comparison and discussion, we fully verified that our proposed method is
reasonable and valid. In addition, the proposed method can be used to further study the asymmetrical
collapse of tunnels in inclined rock stratum.

4.2. Sensitivity Analysis

As it is difficult to directly discuss the collapse of tunnels with arbitrary profiles, this section
discusses the collapse of circular and rectangular tunnels to analyze the effect of the changed parameters
on the range and weight of the potential collapsing block. Parameter sensitivity analysis is important,
and can provide theoretical reference for the design and construction of practical projects.

4.2.1. Cases with Rectangular Tunnels

According to the above discussion, the optimal computing solutions for the half width for
asymmetrical collapsing blocks in rectangular tunnels in inclined rock stratum can be obtained from
Equations (58) and (59) together with Equations (50) and (51), and the total weight of the potential
collapsing block in rectangular tunnels can also be obtained, when given specific parameters of inclined
rock stratum needed in the collapse mechanism. Then, the optimal upper bound solutions of height
for the asymmetrical collapsing block can be derived according to Equations (41)–(43).

Tables 1 and 2 illustrate the variation in the asymmetrical collapsing range and total weight of
rectangular tunnels in inclined rock stratum with varying rock mass mechanical parameters. According
to Tables 1 and 2, the influence of different rock mechanics parameters on the range and total weight of
the potential collapsing block in rectangular tunnels is inconsistent. Notably, the half widths L1, L2, L3,
and L4 and the heights h1, h2, and h3 of the collapsing block and total weight of the potential collapsing
block in rectangular tunnels increase when the mechanical parameters A1 and σc1 increase or B1 and
γ1 decrease. However, with the increase in σc2 and γ2 in the lower stratum, the collapsing width of
rectangular tunnels increase while the total height and total weight of the potential collapsing block
decreases. With the increase in A2, the collapsing width of the upper stratum tends to increase but the
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collapsing width of lower inclined rock decreases, and the total weight and height h2 of the collapsing
block tend to decrease. The width and height of the collapsing block decrease with the increase in B2,
and the weight of the collapsing block decreases as well.

Table 1. The collapse failure of rectangular tunnels with different physical parameters in the lower
rock strata.

A1 B1
σc1
/MPa

γ1
/kN·m−3

L1
/m

L2
/m

L3
/m

L4
/m

h1
/m

h2
/m

h3
/m

W1
/103 kN

0.1 0.8 8 20 1.88 0.37 1.92 0.44 6.65 6.75 6.51 0.34
0.2 0.8 8 20 3.72 0.69 3.85 0.92 6.71 6.94 6.43 0.67
0.3 0.8 8 20 5.53 0.98 5.78 1.49 6.76 7.14 6.32 1.01
0.4 0.8 8 20 7.33 1.35 7.70 2.44 6.82 7.43 6.16 1.38
0.5 0.8 8 20 9.16 2.23 9.98 5.41 6.98 8.23 5.63 2.11
0.4 0.76 8 20 8.80 2.42 9.23 4.49 7.01 8.42 5.79 1.94
0.4 0.77 8 20 8.40 2.05 8.83 3.88 6.95 8.06 5.90 1.76
0.4 0.78 8 20 8.03 1.75 8.44 3.33 6.90 7.78 6.00 1.61
0.4 0.79 8 20 7.67 1.53 8.07 2.85 6.86 7.58 6.09 1.48
0.4 0.8 7 20 6.02 0.17 6.07 0.29 6.62 6.65 6.54 0.92
0.4 0.8 8.5 20 7.85 1.86 8.22 3.18 6.91 7.88 6.03 1.58
0.4 0.8 9 20 8.32 2.32 8.63 3.77 7.00 8.32 5.92 1.76
0.4 0.8 10 20 9.10 3.12 9.29 4.71 7.14 9.16 5.76 2.10
0.4 0.8 8 19 7.84 1.85 8.31 3.32 6.91 7.87 6.00 1.59
0.4 0.8 8 21 6.86 0.91 7.10 1.59 6.75 7.09 6.31 1.22
0.4 0.8 8 22 6.43 0.53 6.55 0.86 6.68 6.84 6.43 1.11
0.4 0.8 8 23 6.07 0.22 6.10 0.33 6.63 6.67 6.53 1.04

(A2 = 0.3, B2 = 0.7, σc2 = 10 MPa, γ2 = 21 kN/m−3, t0 = 0.1, b = 10 m, α = 10◦, H3 = 5 m).

Table 2. The collapse failure of rectangular tunnels with different physical parameters in the upper
rock strata.

A2 B2
σc2
/MPa

γ2
/kN·m−3

L1
/m

L2
/m

L3
/m

L4
/m

h1
/m

h2
/m

h3
/m

W1
/103 kN

0.28 0.7 10 21 7.32 1.43 7.67 2.64 6.84 7.57 6.12 1.40
0.32 0.7 10 21 7.33 1.30 7.73 2.33 6.82 7.34 6.18 1.37
0.34 0.7 10 21 7.34 1.27 7.76 2.27 6.81 7.28 6.19 1.36
0.36 0.7 10 21 7.34 1.26 7.78 2.23 6.81 7.23 6.19 1.36
0.3 0.4 10 21 7.41 1.26 8.44 2.81 6.81 6.81 6.09 1.41
0.3 0.5 10 21 7.40 1.25 8.29 2.64 6.81 6.84 6.12 1.40
0.3 0.6 10 21 7.38 1.24 8.01 2.34 6.80 6.98 6.17 1.37
0.3 0.65 10 21 7.36 1.24 7.86 2.26 6.81 7.13 6.19 1.36
0.3 0.7 8 21 6.98 1.03 7.04 1.56 6.77 7.23 6.31 1.21
0.3 0.7 9 21 7.13 1.17 7.31 1.91 6.79 7.31 6.25 1.28
0.3 0.7 11 21 7.57 1.58 8.28 3.22 6.87 7.60 6.02 1.53
0.3 0.7 12 21 7.89 1.89 9.05 4.28 6.92 7.83 5.83 1.76
0.3 0.7 10 22 7.32 1.35 7.68 2.45 6.83 7.45 6.16 1.43
0.3 0.7 10 23 7.31 1.36 7.66 2.45 6.83 7.46 6.16 1.48
0.3 0.7 10 24 7.30 1.36 7.63 2.45 6.83 7.48 6.15 1.53
0.3 0.7 10 25 7.29 1.37 7.61 2.46 6.83 7.50 6.15 1.58

(A1 = 0.4, B1 = 0.8, σc1 = 8 MPa, γ1 = 20 kN/m−3, t0 = 0.1, b = 10 m, α = 10◦, H3 = 5 m).

An analysis of the influence of different geometric parameters on the potential collapsing range of
rectangular tunnels is shown in Figure 3 when the mechanical parameters of rock mass are given as:
A1 = 0.4, B1 = 0.8, σc1 = 8 MPa, γ1 = 20 kN/m—3, A2 = 0.3, B2 = 0.7, σc2 = 10 MPa, and γ2 = 21 kN/m−3.
Figure 3 shows that all collapsing widths and total weights of the collapsing block decrease and the
heights h1 and h3 increase with the values of α, t0, and b, and the height h2 also increases, whereas the
height h2 first decreases and then increases. The influence of the dip angle α of the rock stratum on the
potential collapsing range and the collapsing block is symmetrical, that is, L1 = L3 and L2 = L4 only
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when α = 0. The increases in the value of t0 result in the increase in all potential collapsing widths
and height h2, but heights h1 and h3 decrease gradually. Consequently, the inclination in the inclined
rock stratum significantly influences the range and total weight of the potential collapsing block in
rectangular tunnels so that the inclination of the rock stratum cannot be ignored when investigating
tunnel collapse.
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4.2.2. Cases with Circular Tunnels

Similarly, according to the previous analysis, the range and the weight of the potential collapsing
block in circular tunnels were found to vary with the parameters. Given the relevant calculation
parameters, the optimal upper bound solutions of the half widths of the collapsing block for circular
tunnels can be solved by combining Equations (75) and (76), and Equations (77) and (78), and the total
weight of the collapsing block can be obtained by W2, which can be found in Appendix B.

Tables 3 and 4 show the calculation results of the range and the total weight of the potential
collapsing block in circular tunnels with varying rock mechanical parameters. The half width, the total
height, and the total weight of the potential collapsing block in circular tunnels increase with the rock
mechanics parameters A1, σc1, A2, and σc2 increasing or B1, γ1, B2, and γ2 decreasing.
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Table 3. The collapse failure of circular tunnels with different physical parameters in the lower strata.

A1 B1
σc1
/MPa

γ1
/kN·m−3

L1
/m

L2
/m

L3
/m

L4
/m

h1
/m

h2
/m

h3
/m

W2
/103 kN

0.10 0.8 18 18 2.23 1.20 1.91 0.87 3.38 4.96 3.35 0.71
0.11 0.8 18 18 2.36 1.22 2.04 0.90 3.41 5.03 3.40 0.74
0.12 0.8 18 18 2.50 1.23 2.24 0.96 3.45 5.11 3.48 0.79
0.13 0.8 18 18 2.59 1.23 2.42 1.02 3.48 5.16 3.56 0.83
0.14 0.8 18 18 2.74 1.25 2.62 1.09 3.52 5.25 3.65 0.87
0.10 0.72 18 18 2.88 1.29 2.88 1.23 3.57 5.43 3.77 0.94
0.10 0.74 18 18 2.71 1.26 2.55 1.08 3.52 5.29 3.61 0.86
0.10 0.76 18 18 2.55 1.24 2.32 0.99 3.47 5.17 3.51 0.81
0.10 0.78 18 18 2.40 1.22 2.10 0.92 3.43 5.07 3.42 0.76
0.10 0.8 17 18 1.97 0.99 1.52 0.55 3.29 4.56 3.26 0.57
0.10 0.8 19 18 2.03 1.04 1.61 0.63 3.31 4.66 3.28 0.60
0.10 0.8 20 18 2.11 1.10 1.71 0.70 3.34 4.76 3.30 0.64
0.10 0.8 21 18 2.18 1.15 1.81 0.78 3.36 4.87 3.33 0.67
0.10 0.8 18 17 2.29 1.23 1.98 0.92 3.40 5.02 3.37 0.72
0.10 0.8 18 19 2.23 1.19 1.85 0.82 3.38 4.95 3.33 0.70
0.10 0.8 18 20 2.20 1.18 1.79 0.78 3.37 4.91 3.32 0.69
0.10 0.8 18 21 2.18 1.16 1.74 0.74 3.36 4.88 3.31 0.68

(A2 = 0.5, B2 = 0.9, σc2 = 10 MPa, γ2 = 25 kN/m−3, t0 = 0.1, R = 7 m, α = 20◦, H3 = 10 m).

Table 4. The collapse failure of circular tunnels with different physical parameters in the upper strata.

A2 B2
σc2
/MPa

γ2
/kN·m−3

L1
/m

L2
/m

L3
/m

L4
/m

h1
/m

h2
/m

h3
/m

W2
/103 kN

0.2 0.9 10 25 1.90 1.08 1.61 0.76 3.29 6.83 3.26 0.66
0.3 0.9 10 25 2.14 1.14 1.80 0.81 3.35 5.84 3.32 0.69
0.4 0.9 10 25 2.25 1.19 1.87 0.85 3.38 5.34 3.34 0.71
0.6 0.9 10 25 2.29 1.23 1.93 0.88 3.40 4.76 3.36 0.71
0.5 0.5 10 25 2.41 1.34 2.02 0.96 3.45 3.65 3.38 0.724
0.5 0.6 10 25 2.41 1.33 2.01 0.96 3.45 3.72 3.38 0.723
0.5 0.7 10 25 2.38 1.31 2.00 0.94 3.44 3.91 3.37 0.723
0.5 0.8 10 25 2.33 1.27 1.97 0.92 3.42 4.32 3.37 0.720
0.5 0.9 21 25 2.01 0.99 1.69 0.66 3.30 4.64 3.30 0.61
0.5 0.9 22 25 2.07 1.04 1.73 0.70 3.32 4.71 3.31 0.63
0.5 0.9 23 25 2.13 1.09 1.78 0.75 3.34 4.79 3.32 0.66
0.5 0.9 24 25 2.19 1.15 1.84 0.80 3.36 4.88 3.34 0.68
0.5 0.9 10 21 2.52 1.44 2.17 1.11 3.50 5.41 3.42 0.715
0.5 0.9 10 22 2.45 1.38 2.09 1.04 3.46 5.29 3.40 0.714
0.5 0.9 10 23 2.38 1.32 2.02 0.97 3.44 5.18 3.38 0.713
0.5 0.9 10 24 2.32 1.26 1.96 0.92 3.41 5.08 3.36 0.712

(A1 = 0.1, B1 = 0.8, σc1 = 18 MPa, γ1 = 18 kN/m−3, t0 = 0.1, R = 7 m, α = 20◦, H3 = 10 m).

Similarly, we analyzed the influence of the geometric parameters in the collapse mechanism of
circular tunnels on the collapse when the mechanical parameters of the rock mass were assumed to be:
A1 = 0.1, B1 = 0.8, σc1 = 18 MPa, γ1 = 18 kN/m−3, A2 = 0.5, B2 = 0.9, σc2 = 10 MPa, γ2 = 25 kN/m−3.
According to Figure 4a, the increase in α causes the increase in the half widths L1, L4, the total weight,
and the heights h1 and h2 of the potential collapsing block, whereas the half widths L2, L3, and the
height h3 decrease. Figure 4b reveals that the increase in the increase of t0 causes the increase in the
half width, height, and total weight of the collapsing block. Figure 4c indicates that the collapsing
weight and range, except L2, increase with t0, but L2 decreases. With the increase in H2, the half widths
L1 and L3 first decrease and then increase, the half widths L2 and L4, decrease constantly, while the
height and total weight of the collapsing block increase continually.
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5. Conclusions

Based on the upper bound theorem of limit analysis and the nonlinear Hoek–Brow yield criterion,
a progressive asymmetrical collapse mechanism of rectangular and circular tunnels in inclined rock
stratum was constructed to evaluate the stability of deep tunnels. Employing the variational principle,
the expressions of detaching curves describing the shape of collapsing blocks were deduced, and then
the theoretical formulas of the optimum upper bound solutions of the potential collapsing range and
weight were obtained. We compared the findings of our work with the existing research, thereby
confirming the rationality and validity of our method.

To describe the influence of variational parameters on the range and the total weight of the
potential collapsing block, we completed a parametric sensitivity analysis of the collapse of rectangular
and circular tunnels in inclined strata. According to the analytic solutions, there are some differences
between the potential collapsing ranges and weights of rectangular and circular tunnels with varying
parameters. The variation of the parameters affects the width, total height, and total weight of the
collapsing block. The dip angle α of rock stratum plays a marked role in the range and the total
weight of the potential collapsing block for rectangular and circular tunnels: the larger the α, the larger
the range and total weight. In short, the upper bound theorem of limit analysis is indispensable for
evaluating the stability of deep-buried tunnels, and the inclination of rock stratum should receive
special attention.
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Appendix A. Derivation of the Total Rate of Energy Dissipation

Geotechnical materials obey the associative flow rules, which leads to the coincidence of the
plastic potential surface and yield surface, so the plastic potential function can be written as:

Ω = τn −Aσc

(
σn + σt

σc

)B
(A1)

Thus, the plastic strain rate is in the form: .
εn = λ∂Ω

∂σ = −λAB
(
σn+σt
σc

)B−1

.
γn = λ∂Ω

∂τ = λ
(A2)

where λ is a constant. According to the geometric relationships of the collapse mechanism shown in
Figures 1 and 2, the plastic strain components can be expressed as:

.
εn = − 1√

1+ f ′(x)2
·

v
t

.
γn = −

f ′(x)√
1+ f ′(x)2

·
v
t

(A3)

where t shows the distance between the collapsing boundary and the surrounding rock mass and v
indicates the velocity. The dissipated energy at any point on the detaching curve of the collapsing
block in rectangular tunnels is:

D =
(
σn

.
εn + τn

.
γn

)
· t =

−σt + σc[AB · f ′(x)]1/(1−B)
·

(
1− B−1

)
√

1 + f ′(x)2
v (A4)

The dissipated energy of the detaching curve in rectangular tunnels can be denoted as:

PD =

∫ S

0
D · v · ds =

∫ S

0
D · v ·

√
1 + f ′(x)2dx =

∫ S

0

{
−σt + σc[AB · f ′(x)]

1
1−B ·

(
1−

1
B

)}
vdx (A5)

Appendix B. Calculation of the Range and Total Weight of the Collapsing Block

F1(L1, L2) · v = −σt1(L1 − L2)v− k1γ1(L1 − L2)v− 1
B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L1 −
d1
γ1

) B1+1
B1 −

(
L2 −

d1
γ1

) B1+1
B1

v
−σt2L2v− 1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L2

B2+1
B2 v− γ2k2L2v− (γ2 − γ1)L2h1v− 1

2 (γ1 − γ2)L2
2v tanα− qvL1 cosπ

(A6)

F2(L3, L4) · v = −σt1(L3 − L4)v− k3γ1(L3 − L4)v− 1
B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L3 −
d3
γ1

) B1+1
B1 −

(
L4 −

d3
γ1

) B1+1
B1

v
−σt2L4v− 1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L4

B2+1
B2 v− γ2k2L4v− (γ2 − γ1)L4h3v + 1

2 (γ1 − γ2)L4
2v tanα− qvL4 cosπ

(A7)
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F1(L1, L2) = −σt1(L1 − L2) −
1

B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L1 −
d1
γ1

) B1+1
B1 −

(
L2 −

d1
γ1

) B1+1
B1

− k1γ1(L1 − L2)

−σt2L2 −
1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L2

B2+1
B2 − γ2k2L2 − (γ2 − γ1)L2h1 −

1
2 (γ1 − γ2)L2

2 tanα− qL1 cosπ = 0

(A8)

F2(L3, L4) = −σt1(L3 − L4) −
1

B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L3 −
d3
γ1

) B1+1
B1 −

(
L4 −

d3
γ1

) B1+1
B1

− k3γ1(L3 − L4)

−σt2L4 −
1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L4

B2+1
B2 − γ2k4L4 − (γ2 − γ1)L4h3 +

1
2 (γ1 − γ2)L4

2 tanα− qL4 cosπ = 0

(A9)

W1 = γ1
B1

B1+1 A1
−

1
B1

( γ1
σc1

) 1−B1
B1

(L2 −
d1
γ1

) B1+1
B1 −

(
L1 −

d1
γ1

) B1+1
B1

− k1γ1(L1 − L2) − γ2k2L2 +
1
2 (γ1 − γ2)L2

2 tanα

−γ2
B2

B2+1 A2
−

1
B2

( γ2
σc2

) 1−B2
B2 L2

B2+1
B2 + γ1

B1
B1+1 A1

−
1

B1
( γ1
σc1

) 1−B1
B1

(L4 −
d3
γ1

) B1+1
B1 −

(
L3 −

d3
γ1

) B1+1
B1

+ (γ2 − γ1)L2h1

−k3γ1(L3 − L4) − γ2
B2

B2+1 A2
−

1
B2

( γ2
σc2

) 1−B2
B2 L4

B2+1
B2 − γ2k4L4 + (γ2 − γ1)L4h3 −

1
2 (γ1 − γ2)L4

2 tanα

(A10)

E1(L1, L2) = −σt1(L1 − L2) −
1

B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L1 −
d1
γ1

) B1+1
B1 −

(
L2 −

d1
γ1

) B1+1
B1

− k1γ1(L1 − L2) −
1
2 (γ1 − γ2)L2

2 tanα

−σt2L2 −
1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L2

B2+1
B2 − γ2k2L2 − (γ2 − γ1)L2h1 −Rq · cosπ ·

(
arcsin L1−a

R + arcsin a
R

)
+γ1

[
L1

√
R2 − (L1 − a)2

−
L1−a

2

√
R2 − (L1 − a)2

−
R2

2 · arcsin L1−a
R + a

2

√

R2 − a2 + R2

2 · arcsin a
R

]
= 0

(A11)

E2(L3, L4) = −σt1(L3 − L4) −
1

B1+1σc1

B1−1
B1 A1

−
1

B1 · γ1
1

B1

(L3 −
d3
γ1

) B1+1
B1 −

(
L4 −

d3
γ1

) B1+1
B1

− k3γ1(L3 − L4) −
1
2 (γ2 − γ1)L4

2 tanα

−σt2L4 −
1

B2+1σc2

B2−1
B2 A2

−
1

B2 · γ2
1

B2 · L4

B2+1
B2 − γ2k4L4 − (γ2 − γ1)L4h3 −Rq · cosπ ·

(
arcsin L3+a

R − arcsin a
R

)
+γ1

[
L3

√
R2 − (L3 + a)2

−
L3+a

2

√
R2 − (L3 + a)2

−
R2

2 · arcsin L3+a
R + a

2

√

R2 − a2 − R2

2 · arcsin a
R

]
= 0

(A12)

W2 = γ1
B1

B1+1 A1
−

1
B1

( γ1
σc1

) 1−B1
B1

(L2 −
d1
γ1

) B1+1
B1 −

(
L1 −

d1
γ1

) B1+1
B1

− k1γ1(L1 − L2) + (γ2 − γ1)L2h1 +
1
2 (γ1 − γ2)L2

2 tanα

−γ2
B2

B2+1 A2
−

1
B2

( γ2
σc2

) 1−B2
B2 L2

B2+1
B2 − γ2k2L2 − γ1

B1
B1+1 A1

−
1

B1
( γ1
σc1

) 1−B1
B1

(L3 −
d3
γ1

) B1+1
B1 −

(
L4 −

d3
γ1

) B1+1
B1


+γ1

[
L1

√
R2 − (L1 − a)2

−
L1−a

2

√
R2 − (L1 − a)2

−
R2

2 · arcsin L1−a
R + a

2

√

R2 − a2 + R2

2 · arcsin a
R

]
+(γ2 − γ1)L4h3 −

1
2 (γ1 − γ2)L4

2 tanα+ γ2
B2

B2+1 A2
−

1
B2

( γ2
σc2

) 1−B2
B2 L4

B2+1
B2 − γ2k4L4 − k3γ1(L3 − L4)

−γ1

[
L3

√
R2 − (L3 + a)2

−
L3+a

2

√
R2 − (L3 + a)2

−
R2

2 · arcsin L3+a
R + a

2

√

R2 − a2 − R2

2 · arcsin a
R

]
(A13)
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