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1. Introduction and Preliminaries

Convexity is a natural notion and plays an important and fundamental role in mathematics,
physics, chemistry, biology, economics, engineering, and other sciences. To solve practical problems,
several interesting concepts of generalized convexity or generalized concavity have been introduced
and studied. Recent important investigations and developments in convex analysis have focused on the
study of Schur-convexity, and Schur-geometric and Schur-harmonic convexity of various symmetric
functions; see, e.g., [1–20] and references therein. It is worth mentioning that discovering and judging
Schur-convexity of various symmetric functions is an important topic in the study of the majorization
theory. A lot of achievements in this field have been investigated by several authors; for more details,
see the first author’s monographs [21,22].

Throughout this paper, we denote by N and R, the set of positive integers and real numbers,
respectively. Let X be a nonempty set. Denote R+ := (0,+∞) and R− := (−∞, 0). For a positive
integer n, the set Xn for the Cartesian product is the collection of all n-tuples of elements of X. Therefore,
we can write Rn, Rn

+ and Rn
− as follows:

Xn = X× X× · · · × X︸ ︷︷ ︸
n times

,

where X ∈ {R,R+,R−}.
Let x = (x1, · · · , xn) and y = (y1, · · · , yn) in Rn. A set D ⊂ Rn is said to be convex if x, y ∈ D and

0 ≤ α ≤ 1 imply

αx + (1− α)y = (αx1 + (1− α)y1, · · · , αxn + (1− α)yn) ∈ D.

Let D ⊂ Rn be a convex set. A function f : D → R is said to be convex on D if

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y)
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for all x, y ∈ D, and all α ∈ [0, 1]. The function f is said to be concave on D if and only if − f is convex
on D.

For the reader’s convenience and explicit later use, we now recall some basic definitions and
notation that will be needed in this paper.

Definition 1 (see [23,24]). (i) A set Ω ⊂ Rn is called symmetric, if x ∈ Ω implies xP ∈ Ω for every n× n
permutation matrix P.

(ii) A function ϕ : Ω → R is called symmetric if for every permutation matrix P, ϕ(xP) = ϕ(x) for
all x ∈ Ω.

Definition 2 (see [23,24]). Let x = (x1, · · · , xn) and y = (y1, · · · , yn) ∈ Rn.

(i) x ≥ y means xi ≥ yi for all i = 1, 2, · · · , n.
(ii) Let Ω ⊂ Rn, ϕ: Ω→ R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said to be decreasing

if and only if −ϕ is increasing.

Definition 3 (see [23,24]). Let x = (x1, · · · , xn) and y = (y1, · · · , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if ∑k
i=1 x[i] ≤ ∑k

i=1 y[i] for k = 1, 2, · · · , n− 1 and
∑n

i=1 xi = ∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a

descending order.
(ii) Let Ω ⊂ Rn, the function ϕ: Ω → R is said to be Schur-convex on Ω if x ≺ y on Ω implies

ϕ (x ) ≤ ϕ (y) . ϕ is said to be a Schur-concave function on Ω if and only if −ϕ is a Schur-convex
function on Ω.

The following useful characterizations of Schur-convex and Schur-concave functions were
established in [23,24].

Lemma 1 (see [23,24]). Let Ω ⊂ Rn be symmetric and have a nonempty interior convex set. Ω◦ is the interior
of Ω. ϕ : Ω→ R is continuous on Ω and differentiable in Ω◦. Then ϕ is a Schur-convex (or Schur-concave,
respectively) f unction if and only if ϕ is symmetric on Ω and

(x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0 (or ≤ 0, respectively) (1)

holds for any x ∈ Ω◦.

In 1923, Professor Issai Schur made the first systematic study of the functions preserving the
ordering of majorization. In Schur’s honor, such functions are said to be “Schur-convex”. It is known
that Schur-convexity can be applied extensively in analytic inequalities, combinatorial optimization,
quantum physics, information theory, and other related fields (see, e.g., [23]).

Definition 4 (see [25,26]). Let x = (x1, x2, . . . , xn) ∈ Rn
+ and y = (y1, y2, . . . , yn) ∈ Rn

+.

(i) A set Ω ⊂ Rn
+ is called a geometrically convex set if (xα

1 yβ
1 , xα

2 yβ
2 , . . . , xα

nyβ
n) ∈ Ω for all x,y ∈ Ω and

α,β ∈ [0, 1] such that α + β = 1.
(ii) Let Ω ⊂ Rn

+. The function ϕ : Ω → R+ is said to be Schur-geometrically convex on Ω if
(log x1, log x2, . . . , log xn) ≺ (log y1, log y2, . . . , log yn) on Ω implies ϕ (x) ≤ ϕ (y). The function ϕ

is said to be a Schur-geometrically concave on Ω if and only if −ϕ is Schur-geometrically convex on Ω.

Lemma 2. (Schur-geometrically convex function decision theorem) [25,26] Let Ω ⊂ Rn
+ be a symmetric and

geometrically convex set with a nonempty interior Ω◦. Let ϕ : Ω→ R+ be continuous on Ω and differentiable
in Ω◦. If ϕ is symmetric on Ω and

(log x1 − log x2)

(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (or ≤ 0, respectively) (2)
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holds for any x = (x1, x2, . . . , xn) ∈ Ω◦, then ϕ is a Schur-geometrically convex (or Schur-geometrically
concave, respectively) function.

The Schur-geometric convexity was first proposed and studied by Zhang [25] in 2004 and was
widely investigated and improved by many authors, see [27–29] and references therein. We also note
that some authors use the term “Schur multiplicative convexity”.

In 2009, Chu [1–3] introduced the notion of Schur-harmonically convex function and established
some interesting inequalities for Schur-harmonically convex functions.

Definition 5 (see [1]). Let Ω ⊂ Rn
+ or Ω ⊂ Rn

−.

(i) A set Ω is said to be harmonically convex if
xy

λx + (1− λ)y
∈ Ω for every x, y ∈ Ω and λ ∈ [0, 1],

where xy = ∑n
i=1 xiyi and

1
x
=
( 1

x1
,

1
x2

, . . . ,
1
xn

)
.

(ii) A function ϕ : Ω → R+ is said to be Schur-harmonically convex on Ω if
1
x
≺ 1

y
implies ϕ(x) ≤

ϕ(y). A function ϕ is said to be a Schur-harmonically concave function on Ω if and only if −ϕ is a
Schur-harmonically convex function.

Lemma 3. (Schur-harmonically convex function decision theorem) [1] Let Ω ⊂ Rn
+ or Ω ⊂ Rn

− be a symmetric
and harmonically convex set with inner points and let ϕ : Ω→ R be a continuously symmetric function which
is differentiable on Ω◦. Then ϕ is Schur-harmonically convex (or Schur-harmonically concave, respectively) on
Ω if and only if

(x1 − x2)

(
x2

1
∂ϕ(x)

∂x1
− x2

2
∂ϕ(x)

∂x2

)
≥ 0 (or ≤ 0, respectively), x ∈ Ω◦. (3)

In 2010, Yang [30] defined and introduced the concepts of the Schur- f -convex function and
Schur-power convex function which are the generalization and unification of the concepts of
Schur-convexity, Schur-geometric convexity, and Schur-harmonic convexity. He established useful
characterizations of Schur m-power convex functions and presented their important properties; see [30].

Definition 6 (see [30]). Let f : R+ → R be defined by

f (x) =


xm − 1

m
, m 6= 0;

ln x, m = 0.
(4)

Then a function ϕ : Ω ⊂ Rn
+ → R is said to be Schur m-power convex on Ω if

( f (x1), f (x2), . . . , f (xn)) ≺ ( f (y1), f (y2), . . . , f (yn))

for all x = (x1, x2, . . . , xn) ∈ Ω and y = (y1, y2, . . . , yn) ∈ Ω implies ϕ(x) ≤ ϕ(y).
If −ϕ is Schur m-power convex, then we say that ϕ is Schur m-power concave.

Lemma 4 (see [30]). Let Ω ⊂ Rn
+ be a symmetric set with nonempty interior Ω◦ and ϕ : Ω → R+ be

continuous on Ω and differentiable in Ω◦. Then ϕ is Schur m-power convex on Ω if and only if ϕ is symmetric
on Ω and

xm
1 − xm

2
m

[
x1−m

1
∂ϕ(x)

∂x1
− x1−m

2
∂ϕ(x)

∂x2

]
≥ 0, if m 6= 0 (5)

and

(log x1 − log x2)

[
x1

∂ϕ(x)
∂x1

− x2
∂ϕ(x)

∂x2

]
≥ 0, if m = 0 (6)

for all x ∈ Ω◦.
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For x = (x1, x2, . . . , xn) ∈ Rn, recall that the complete symmetric function cn(x, r) is defined by

cn(x, r) = ∑
i1+i2+···+in=r

xi1
1 xi2

2 · · · x
in
n , (7)

where c0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.
The collection of complete symmetric functions is an important class of symmetric functions which

has been investigated by many mathematicians and there are many interesting results in the literature.
In 2006, Guan [5] discussed the Schur-convexity of cn(x, r) and proved the following result.

Proposition 1. cn(x, r) is increasing and Schur-convex on Rn
+.

Subsequently, Chu et al. [2] established the following proposition.

Proposition 2. cn(x, r) is Schur-geometrically convex and Schur-harmonically convex on Rn
+.

In 2016, Shi et al. [19] further studied the Schur-convexity of cn(x, r) on Rn
− and presented the

following important result.

Proposition 3 (see [19]). If r is even integer (or odd integer, respectively), then cn(x, r) is decreasing and
Schur-convex (or increasing and Schur-concave, respectively) on Rn

−.

Recall that the dual form of the complete symmetric function cn(x, r) is defined by

c∗n(x, r) = ∏
i1+i2+···+in=r

n

∑
j=1

ijxj, (8)

where c∗0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.

In 2013, Zhang and Shi [18] established the following two interesting propositions.

Proposition 4 (see [18]). For r = 1, 2, . . . , n, c∗n(x, r) is increasing and Schur-concave on Rn
+.

Proposition 5 (see [18]). For r = 1, 2, . . . , n, c∗n(x, r) is Schur-geometrically convex and Schur-harmonically
convex on Rn

+.

Notice that
c∗n(−x, r) = (−1)rc∗n(x, r).

It is not difficult to prove the following result.

Proposition 6. If r is even integer (or odd integer, respectively), then c∗n(x, r) is decreasing and Schur-concave
(or increasing and Schur-convex, respectively) on Rn

−.

In 2014, Sun et al. [6] studied the Schur-convexity, Schur-geometric and harmonic convexities of
the following composite function of cn(x, r):

cn

(
x

1− x
, r
)
= ∑

i1+i2+···+in=r

n

∏
j=1

(
xj

1− xj

)ij

. (9)

By using Lemmas 1–3, they proved the following Theorems 1–3, respectively.

Theorem 1. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,
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(i) cn
( x

1−x , r
)

is increasing and Schur-convex on (0, 1)n;
(ii) if r is even integer (or odd integer, respectively), then cn

( x
1−x , r

)
is Schur-convex (or Schur-concave,

respectively) on (1,+∞)n, and is decreasing (or increasing, respectively).

Theorem 2. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,

(i) cn
( x

1−x , r
)

is Schur-geometrically convex on (0, 1)n;
(ii) if r is even integer (or odd integer, respectively), then cn

( x
1−x , r

)
is Schur-geometrically convex

(or Schur-geometrically concave, respectively) on (1,+∞)n.

Theorem 3. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,

(i) cn
( x

1−x , r
)

is Schur-harmonically convex on (0, 1)n;
(ii) if r is even integer (or odd integer, respectively), then cn

( x
1−x , r

)
is Schur-harmonically convex

(or Schur-harmonically concave, respectively) on (1,+∞)n.

In 2016, Shi et al. [19] applied the properties of Schur-convex, Schur-geometrically convex,
and Schur-harmonically convex functions respectively to give simple proofs of Theorems 1–3.

Recall that the dual form of the function cn
( x

1−x , r
)

is defined by

c∗n

(
x

1− x
, r
)
= ∏

i1+i2+···+in=r

n

∑
j=1

ij

(
xj

1− xj

)
. (10)

A function associated with this function is

c∗n

(
x

x− 1
, r
)
= ∏

i1+i2+···+in=r

n

∑
j=1

ij

(
xj

xj − 1

)
. (11)

In this work, we will establish some important results for the Schur-power convexity of symmetric
functions c∗n

( x
x−1 , r

)
and c∗n

( x
1−x , r

)
. As their applications, some new inequalities are obtained

in Section 3.

2. Main Results

The following lemmas are very crucial for our main results.

Lemma 5. Let m ≥ −1. For x1, x2 ∈ (1,+∞) and x1 > x2, we have

x1(x1 − 1)x1−m
2 ≥ x2(x2 − 1)x1−m

1 ; (12)

(x1 − 1)2x1−m
2 ≥ (x2 − 1)2x1−m

1 ; (13)

(x1 − 1)2x2−m
2

x2 − 1
≥

(x2 − 1)2x2−m
1

x1 − 1
. (14)

Proof. Since

((t− 1)tm)′ = tm−1[t(m + 1)−m] ≥ tm−1[(m + 1)−m] ≥ 0, f or t > 1,

we have
(x1 − 1)xm

1 ≥ (x2 − 1)xm
2 , f or x1 > x2.

This inequality is equivalent to inequality (12). Since(
(t− 1)2

t(1−m)

)′
=

(t− 1)[t(m + 1) + 1−m]

tmt[2(1−m)]
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≥ (t− 1)[(m + 1) + 1−m]

tmt[2(1−m)]
≥ 0, f or t > 1,

we obtain
(x1 − 1)2

x(1−m)
1

≥ (x2 − 1)2

x(1−m)
2

, f or x1 > x2.

This inequality is equivalent to inequality (13). Since(
(t− 1)3

t(2−m)

)′
=

(t− 1)2t1−m[t(m + 1) + 2−m]

t[2(2−m)]

≥ (t− 1)2t1−m[(m + 1) + 2−m]

t[2(2−m)]
≥ 0, f or t > 1,

we get
(x1 − 1)3

mx(2−m)
1

≥ (x2 − 1)3

mx(2−m)
2

, f or x1 > x2.

This inequality is equivalent to inequality (14).

Lemma 6. Let m ≤ 0. For x1, x2 ∈ (0, 1) and x1 > x2, we have

x1−m
1 x2(1− x2) ≤ x1−m

2 x1(1− x1); (15)

x1−m
1 (1− x2)

2 ≤ x1−m
2 (1− x1)

2; (16)

(1− x2)
2x2−m

1
1− x1

≤
(1− x1)

2x2−m
2

1− x2
. (17)

Proof. Since

((1− t)tm)′ = tm−1[m(1− t)− t] = tm−1[m− t(m + 1)] ≤ 0, f or t ∈ (0, 1),

we get
(1− x1)xm

1 ≤ (1− x2)xm
2 , f or x1 > x2.

This inequality is equivalent to inequality (15). Since(
(1− t)2

t(1−m)

)′
=

(t− 1)[m(1− t)− (t + 1)]
tmt[2(1−m)]

≤ 0, f or t ∈ (0, 1),

we obtain
(1− x1)

2

x(1−m)
1

≥ (1− x2)
2

x(1−m)
2

, f or x1 > x2.

This inequality is equivalent to inequality (16). Since(
(1− t)3

t(2−m)

)′
=

(1− t)2t1−m[m(1− t)− 2(1 + t)]
t[2(2−m)]

≤ 0, f or t ∈ (0, 1),

we have
(1− x1)

3

mx(2−m)
1

≥ (1− x2)
3

mx(2−m)
2

, f or x1 > x2.

This inequality is equivalent to inequality (17).

Now, we establish the following new result for the Schur-power convexity of c∗n((x/(x− 1)), r).
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Theorem 4. Let r ∈ N. If m ≥ −1, then c∗n
( x

x−1 , r
)

is decreasing and Schur m-power convex on (1,+∞)n.

Proof. Let q(t) = t
t−1 . Then

q′(t) = − 1
(t− 1)2 , q′′(t) =

2
(t− 1)3 . (18)

From Proposition 4, we know that c∗n(x, r) is increasing on Rn
+, but q(t) is decreasing on R,

therefore, the function c∗n
( x

x−1 , r
)

is decreasing on (1,+∞)n.
For r = 1 and r = 2, it is easy to prove that c∗n

( x
x−1 , r

)
is Schur m-power convex on (1,+∞)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n
( x

x−1 , r
)
, without loss of generality, we may

assume x1 > x2. So

c∗n

(
x

x− 1
, r
)
= ∏

i1+i2+···+in=r
i1 6=0,i2=0

n

∑
j=1

ijxj

xj − 1
× ∏

i1+i2+···+in=r
i1=0,i2 6=0

n

∑
j=1

ijxj

xj − 1

× ∏
i1+i2+···+in=r

i1 6=0,i2 6=0

n

∑
j=1

ijxj

xj − 1
× ∏

i1+i2+···+in=r
i1=0,i2=0

n

∑
j=1

ijxj

xj − 1
.

Then we have

∂c∗n
( x

x−1 , r
)

∂x1
= c∗n

(
x

x− 1
, r
)

×

 ∑
i1+i2+···+in=r

i1 6=0,i2=0

−i1

(x1 − 1)2
n
∑

j=1

ijxj
xj−1

+ ∑
i1+i2+···+in=r

i1 6=0,i2 6=0

−i1

(x1 − 1)2
n
∑

j=1

ijxj
xj−1


= c∗n

(
x

x− 1
, r
) (

∑
k+k3+...+kn=r

k 6=0

−k

(x1 − 1)2( kx1
x1−1 +

n
∑

j=3

kjxj
xj−1 )

(19)

+ ∑
k+m+i3+···+in=r

k 6=0,m 6=0

−k

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n
∑

j=3

kjxj
xj−1 )

)
.

By the same arguments, we get

∂c∗n
( x

x−1 , r
)

∂x2
= c∗n

(
x

x− 1
, r
) (

∑
k+k3+···+kn=r

k 6=0

−k

(x2 − 1)2( kx2
x2−1 +

n
∑

j=3

kjxj
xj−1 )

+ ∑
k+m+i3+···+in=r

k 6=0,m 6=0

−k

(x2 − 1)2( kx2
x2−1 + mx1

x1−1 +
n
∑

j=3

kjxj
xj−1 )

)
, (20)

then, it follows from (19) and (20) that

x1−m
1

∂c∗n
( x

x−1 , r
)

∂x1
− x1−m

2
∂c∗n

( x
x−1 , r

)
∂x2

= c∗n

(
x

x− 1
, r
)
(C1 + C2),
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where

C1 = ∑
k+k3+···+kn=r

k 6=0

 −kx1−m
1

(x1 − 1)2( kx1
x1−1 +

n
∑

j=3

kjxj
xj−1 )

−
−kx1−m

2

(x2 − 1)2( kx2
x2−1 +

n
∑

j=3

kjxj
xj−1 )


= k ∑

k+k3+···+kn=r
k 6=0

λ1

(x1 − 1)2( kx1
x1

+
n
∑

j=3

kjxj
xj−1 )(x2 − 1)2( kx2

x2−1 +
n
∑

j=3

kjxj
xj−1 )

with

λ1 = k[x1(x1 − 1)x1−m
2 − x2(x2 − 1)x1−m

1 ] + [(x1 − 1)2x1−m
2 − (x2 − 1)2x1−m

1 ]
n

∑
j=3

k jxj

xj − 1

and

C2 = ∑
k+m+i3+···+in=r

k 6=0,m 6=0

( −kx1−m
1

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n
∑

j=3

kjxj
xj−1 )

−
−kx1−m

2

(x2 − 1)2( kx2
x2−1 + mx1

x1−1 +
n
∑

j=3

kjxj
xj−1 )

)

= k ∑
k+m+i3+···+in=r

k 6=0,m 6=0

λ2

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n
∑

j=3

kjxj
xj−1 )(x2 − 1)2( kx2

x2−1 + mx1
x1−1 +

n
∑

j=3

kjxj
xj−1 )

,

with

λ2 = k[x1(x1 − 1)x1−m
2 − x2(x2 − 1)x1−m

1 ] + m

[
(x1 − 1)2x2−m

2
x2 − 1

−
(x2 − 1)2x2−m

1
x1 − 1

]

+ [(x1 − 1)2x1−m
2 − (x2 − 1)2x1−m

1 ]
n

∑
j=3

k jxj

xj − 1
.

By Lemma 5, it is easy to see that C1 ≥ 0 and C2 ≥ 0 for x ∈ (1,+∞)n, so

x1−m
1

∂c∗n
( x

x−1 , r
)

∂x1
− x1−m

2
∂c∗n

( x
x−1 , r

)
∂x2

≥ 0.

By Lemma 4, we prove that c∗n
( x

x−1 , r
)

is Schur m-Power convex on (1,+∞)n for m ≥ −1.
The proof is completed.

Next, we present some new results for the Schur-power convexity of c∗n((x/(1− x)), r).

Theorem 5. Let r ∈ N.

(i) c∗n
( x

1−x , r
)

is increasing on Rn
+ and Schur-convex on [ 1

2 , 1)n;
(ii) If m ≤ 0, then c∗n

( x
1−x , r

)
is Schur-m-power convex on (0, 1)n;

(iii) For m ≥ −1, if r is even integer (or odd integer, respectively), then c∗n
( x

1−x , r
)

is Schur-m-power convex
(or Schur-m-power concave, respectively) on (1,+∞)n.

Proof. (i) Let p(t) = t
1−t . Then

p′(t) =
1

(1− t)2 , p′′(t) =
2

(1− t)3 . (21)
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From Proposition 4, we know that c∗n(x, r) is increasing on Rn
+, but p(t) is increasing on R,

therefore, the function c∗n
( x

1−x , r
)

is increasing on Rn
+.

For the case of r = 1 and r = 2, it is easy to prove that c∗n
( x

1−x , r
)

is Schur-convex on [ 1
2 , 1)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n
( x

1−x , r
)
, without loss of generality, we may

assume x1 > x2. So

c∗n

(
x

1− x
, r
)
= ∏

i1+i2+···+in=r
i1 6=0,i2=0

n

∑
j=1

ijxj

1− xj
× ∏

i1+i2+···+in=r
i1=0,i2 6=0

n

∑
j=1

ijxj

1− xj

× ∏
i1+i2+···+in=r

i1 6=0,i2 6=0

n

∑
j=1

ijxj

1− xj
× ∏

i1+i2+···+in=r
i1=0,i2=0

n

∑
j=1

ijxj

1− xj
.

Then we obtain

∂c∗n
( x

1−x , r
)

∂x1
= c∗n

(
x

1− x
, r
)

×

 ∑
i1+i2+···+in=r

i1 6=0,i2=0

i1

(1− x1)2
n
∑

j=1

ijxj
1−xj

+ ∑
i1+i2+···+in=r

i1 6=0,i2 6=0

i1

(1− x1)2
n
∑

j=1

ijxj
1−xj


= c∗n

(
x

1− x
, r
) (

∑
k+k3+···+kn=r

k 6=0

k

(1− x1)2( kx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)
(22)

+ ∑
k+m+i3+···+in=r

k 6=0,m 6=0

k

(1− x1)2( kx1
1−x1

+ mx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)

)
. (23)

By the same arguments,

∂c∗n
( x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r
) (

∑
k+k3+···+kn=r

k 6=0

k

(1− x2)2( kx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)

+ ∑
k+m+i3+···+in=r

k 6=0,m 6=0

k

(1− x2)2( kx2
1−x2

+ mx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)

)
, (24)

∂c∗n
( x

1−x , r
)

∂x1
−

∂c∗n
( x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r
)
(D1 + D2),

where

D1 = ∑
k+k3+···+kn=r

k 6=0

 k

(1− x1)2( kx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)
− k

(1− x2)2( kx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)



= k ∑
k+k3+···+kn=r

k 6=0

k(x1 + x2 − 1)(x1 − x2) + (x1 − x2)(2− x1 − x2)
n
∑

j=3

kjxj
1−xj

(1− x1)2( kx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)(1− x2)2( kx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)
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and

D2 = ∑
k+m+i3+···+in=r

k 6=0,m 6=0

( k

(1− x1)2( kx1
1−x1

+ mx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)
− k

(1− x2)2( kx2
1−x2

+ mx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)

)

= k ∑
k+m+i3+···+in=r

k 6=0,m 6=0

δ1

(1− x1)2( kx1
1−x1

+ mx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)(1− x2)2( kx2
1−x2

+ mx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)

with

δ1 = k(x1 + x2 − 1)(x1 − x2) +

(
(1− x2)

2mx1

1− x1
− (1− x1)

2mx2

1− x2

)
+ (x1 − x2)(2− x1 − x2)

n

∑
j=3

k jxj

1− xj
.

Let q(t) = (1−t)3

mt . Then q′(t) = −m(1+2t)(1−t)2

m2t2 ≤ 0 which implies that q(t) is descending on R+.

So that (1−x1)
3

mx1
≤ (1−x2)

3

mx2
, namely (1−x2)

2mx1
1−x1

− (1−x1)
2mx2

1−x2
≥ 0. It is easy to see that D1 ≥ 0 and D2 ≥ 0

for x ∈ [ 1
2 , 1)n, so

∂c∗n
( x

1−x , r
)

∂x1
−

∂c∗n
( x

1−x , r
)

∂x2
≥ 0.

By Lemma 1, we obtain c∗n
( x

1−x , r
)

is Schur-convex on [ 1
2 , 1)n.

(ii) For r = 1 and r = 2, it is easy to prove that c∗n
( x

1−x , r
)

is Schur m-power convex on (0, 1)n.
Now consider the case of r ≥ 3. By the symmetry of c∗n

( x
1−x , r

)
, without loss of generality, we may

assume x1 > x2. From (22) and (24), we have

x1−m
1

∂c∗n
( x

1−x , r
)

∂x1
− x1−m

2
∂c∗n

( x
1−x , r

)
∂x2

= c∗n

(
x

1− x
, r
)
(F1 + F2),

where

F1 = ∑
k+k3+···+kn=r

k 6=0

( kx1−m
1

(1− x1)2( kx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)
−

kx1−m
2

(1− x2)2( kx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)

)

= k ∑
k+k3+···+kn=r

k 6=0

δ1

(1− x1)2( kx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)(1− x2)2( kx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)

with

δ1 = k[x1−m
1 x2(1− x2)− x1−m

2 x1(1− x1)] + [x1−m
1 (1− x2)

2 − x1−m
2 (1− x1)

2]
n

∑
j=3

k jxj

1− xj

and

F2 = ∑
k+m+i3+···+in=r

k 6=0,m 6=0

( kx1−m
1

(1− x1)2( kx1
1−x1

+ mx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)
−

kx1−m
2

(1− x2)2( kx2
1−x2

+ mx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)

)

= k ∑
k+m+i3+···+in=r

k 6=0,m 6=0

δ2

(1− x1)2( kx1
1−x1

+ mx2
1−x2

+
n
∑

j=3

kjxj
1−xj

)(1− x2)2( kx2
1−x2

+ mx1
1−x1

+
n
∑

j=3

kjxj
1−xj

)
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with

δ2 = k[x1−m
1 x2(1− x2)− x1−m

2 x1(1− x1)] + m

[
(1− x2)

2x2−m
1

1− x1
−

(1− x1)
2x2−m

2
1− x2

]

+ ([x1−m
1 (1− x2)

2 − x1−m
2 (1− x1)

2]
n

∑
j=3

k jxj

1− xj
.

By Lemma 6, it is easy to see that F1 ≥ 0 and F2 ≥ 0 for x ∈ (0, 1)n, and then

x1−m
1

∂c∗n
( x

1−x , r
)

∂x1
− x1−m

2
∂c∗n

( x
1−x , r

)
∂x2

≥ 0.

By Lemma 4, we show that c∗n
( x

1−x , r
)

is Schur-m power convex on (0, 1)n.
(iii) Notice that

c∗n

(
x

x− 1
, r
)
= (−1)rc∗n

(
x

1− x
, r
)

, (25)

and combining with the Schur-power convexity of c∗n
( x

x−1 , r
)

on (1,+∞)n (see Theorem 4), we can
prove (iii). The proof is completed.

According to the relationship between the Schur-power convex function and the Schur-convex
function, the Schur-geometrically convex function, and the Schur-harmonically function, we can
establish the following two corollaries immediately.

Corollary 1. Let r ∈ N. Then c∗n
( x

x−1 , r
)

is Schur-convex, Schur-geometrically convex, and Schur-
harmonically convex on (1,+∞)n.

Corollary 2. Let r ∈ N.

(i) The function c∗n
( x

1−x , r
)

is Schur-geometrically convex and Schur-harmonically convex on (0, 1)n.
(ii) If r is even integer (or odd integer, respectively), then c∗n

( x
1−x , r

)
is Schur-convex, Schur-geometric

convex, and Schur-harmonic convex (or Schur-concave, Schur-geometric concave, and Schur-harmonic
concave, respectively) on (1,+∞)n.

Finally, an open problem arises naturally at the end of this section.

Problem 1. For x ∈
(

0, 1
2

)n
, what is the Schur-convexity of c∗n

( x
1−x , r

)
? Is it Schur-convex or Schur-concave,

or is it uncertain?

3. Some Applications

It is not difficult to prove the following theorem by applying Corollary 2 and the
majorizing relation

(An(x), An(x), . . . , An(x)) ≺ (x1, x2, . . . , xn) .

Theorem 6. If x = (x1, x2, . . . , xn) ∈ [ 1
2 , 1)n and r ∈ N, or r is even integer and x ∈ (1,+∞)n, then

c∗n

(
x

1− x
, r
)
≥
(

rAn(x)
1− An(x)

)(n+r−1
r )

, (26)

where An(x) = 1
n ∑n

i=1 xi and (n+r−1
r ) = (n+r−1)!

r!((n+r−1)−r)! .
If r is odd and x ∈ (1,+∞)n, then the inequality (26) is reversed.
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By Corollary 2 and the majorizing relation

(log Gn(x), log Gn(x), . . . , log Gn(x)) ≺ (log x1, log x2, . . . , log xn) ,

we can establish the following result.

Theorem 7. If x = (x1, x2, . . . , xn) ∈ (0, 1)n and r ∈ N or r is even integer x ∈ (1,+∞)n, then

c∗n

(
x

1− x
, r
)
≥
(

rGn(x)
1− Gn(x)

)(n+r−1
r )

, (27)

where Gn(x) = n
√

∏n
i=1 xi and (n+r−1

r ) = (n+r−1)!
r!((n+r−1)−r)! .

If r is odd integer and x ∈ (1,+∞)n, then the inequality (27) is reversed.

By using Corollary 2 and the majorizing relation(
1

Hn(x)
,

1
Hn(x)

, . . . ,
1

Hn(x)

)
≺
(

1
x1

,
1
x2

, . . . ,
1
xn

)
,

we obtain the following theorem.

Theorem 8. If x = (x1, x2, . . . , xn) ∈ (0, 1)n and r ∈ N, or r is even integer and x ∈ (1,+∞)n, then

c∗n

(
x

1− x
, r
)
≥
(

rHn(x)
1− Hn(x)

)(n+r−1
r )

, (28)

where Hn(x) = n
∑n

i=1 x−1
i

and (n+r−1
r ) = (n+r−1)!

r!((n+r−1)−r)! .

If r is odd and x ∈ (1,+∞)n, then the inequality (28) is reversed.

4. Conclusions

In this paper, we establish the following two important main results of this paper for the
Schur-power convexity of symmetric functions c∗n

( x
x−1 , r

)
and c∗n

( x
1−x , r

)
:

• (see Theorem 4) Let r ∈ N. If m ≥ −1, then c∗n
( x

x−1 , r
)

is decreasing and Schur m-power convex
on (1,+∞)n.

• (see Theorem 5) Let r ∈ N.

(i) c∗n
( x

1−x , r
)

is increasing on Rn
+ and Schur-convex on [ 1

2 , 1)n;
(ii) If m ≤ 0, then c∗n

( x
1−x , r

)
is Schur-m-power convex on (0, 1)n;

(iii) For m ≥ −1, if r is even integer (or odd integer, respectively), then c∗n
( x

1−x , r
)

is
Schur-m-power convex (or Schur-m-power concave, respectively) on (1,+∞)n.

As applications of our new results, some new inequalities are presented in Section 3.
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