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Abstract: This paper adapts the multivariate optimal control theory to a Riemannian setting. In this
sense, a coherent correspondence between the key elements of a standard optimal control problem
and several basic geometric ingredients is created, with the purpose of generating a geometric version
of Pontryagin’s maximum principle. More precisely, the local coordinates on a Riemannian manifold
play the role of evolution variables (“multitime”), the Riemannian structure, and the corresponding
Levi–Civita linear connection become state variables, while the control variables are represented by
some objects with the properties of the Riemann curvature tensor field. Moreover, the constraints are
provided by the second order partial differential equations describing the dynamics of the Riemannian
structure. The shift from formal analysis to optimal Riemannian control takes deeply into account the
symmetries (or anti-symmetries) these geometric elements or equations rely on. In addition, various
submanifold integral cost functionals are considered as controlled payoffs.
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1. Introduction

For many centuries, researchers were preoccupied with finding the perfect description for
geometric objects (curves, surfaces, and others) with some optimizing features. Therefore, important
problems were phrased and solved. Among these, let us recall:

- The Plateau problem concerning the existence of minimal surfaces with isoperimetric constraints;
- The minimal submanifolds as solutions for the volume optimizing problem;
- The harmonic maps resulting from optimizing the energy functional;
- Dirichlet’s principle, which identifies the minimizers of the Dirichlet’s energy with the solutions

of a Poisson equation subject to boundary constraints;
- Fermats’s principle which states that the path followed by some ray of light is the one taking the

least time;
- Hilbert’s isoperimetric problem, stating that the Einstein manifolds are minimizers for the total

scalar curvature, with isoperimetric constraints;
- Dieudonne–Rashevsky type problems referring to optimization of multiple integral cost

functionals with first order partial differential equations constraints, with applicability in elasticity
(the torsion of a prismatic bar), population dynamics (age structure related models), image processing,
and others.

Many of these important problems were solved using calculus of variations. Nevertheless, in the
last few decades, the optimal control theory has benefited from a consistent development, providing
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an improvement of the variational techniques and, ultimately, replacing them. Moreover, an important
step forward related to optimal control was made by increasing the dimension of the time variable.

Motivated by this mathematical trend, we appreciate as necessary any consistent approach on
optimal control theory in geometric framework as it should be suitable for reanalyzing the classical
examples, like those presented above, as well as for defining and solving relevant new problems. It is
the basic objective of this paper to give answers to the following questions: Is it possible to provide
an unitary approach on optimal control which could lead to general tools or formulas for solving
all the mentioned problems and possibly others? What are the convenient ways to phrase optimal
control problems in the Riemannian context (more precisely, what type of cost functional could be
considered)? Which geometric elements will play the key roles of (multi)time, state, and control
variables? Which geometric elements interfere in the constraints? What is the geometric significance of
the co-state variables?

The main results of our study are Theorem 1 and Corollaries 1–4, containing a formal approach
on the Pontryagin’s maximum principle (see [1–4]), for multivariate optimal control problems with
various types of submanifolds integral type payoffs. Later, in Corollaries 5–9, they are rephrased for a
new class of geometric optimal control problems, continuing the ideas from the paper [5]. Not least,
Example 2 reconsiders Hilbert’s isoperimetric problem in this newly provided setting, while Example 3
provides an additional argument for the utility of this geometric approach. We point out the idea that
our Riemannian optimal control is completely distinct from the geometric optimal control described
in [6–8], where the role of the evolution variable was the classical one (time variable), while the state
and control variables were assumed to be lying on differentiable manifolds.

Our source of inspiration and the research tools cover the following topics:
- Classical optimal control, meaning the original optimal control theory involving a unique time

variable, a cost functional including, in general, a running payoff and a terminal payoff, as well as a
set of dynamic constraints expressed by ordinary differential equations as well as static constraints
expressed generally by inequalities ([9–12]);

- Various statements of the Pontryagin’s maximum principle, via a properly defined
Hamiltonian ([1–4,13]);

- Multivariate optimal control, initially considered in connection with Dieudonne–Rashevsky
problems which involve payoff functionals expressed via multiple integrals and dynamic constraints
expressed by first order partial differential equations (see [14–19]);

- Differential geometry under its general aspects, but, more importantly, Riemannian geometry;
the most important elements we borrow from Riemannian geometry are the Riemannian metric, the
Levi–Civita linear connection, the curvature tensor field, and the equations describing the way they
connect (see [20,21]).

A first attempt in the direction of Riemannian optimal control was related to solving two flow-type
optimal control problems in the Riemannian setting: The total divergence of a fixed vector field and the
total Laplacian (the gradient flux) of a fixed differentiable function. Both times, the cost functional was
a multiple-type integral functional (Riemannian extension of Dieudonne–Rashevsky type problems).
This paper extends all these ideas by varying the considered type of cost functionals and by considering
second order geometric dynamics.

Reaching the above ideas, as well as the ideas developed throughout this paper, was possible
after a consistent analysis of multivariate optimal control problems, from different points of views and
more extensively than the preliminary approach initiated by Cesari [14] for Dieudonne–Rashevsky
problems. For instance, the multivariate optimal control achieved new dimensions by considering
other types of cost functionals (stochastic integrals [22], curvilinear-type integrals [23], or mixt payoffs
containing both multiple or curvilinear integrals [24]), as well as various types of evolution dynamics
(second order partial differential equations, nonholonomic constraints [25]), or different working
techniques (multivariate dynamic programming [26], multivariate needle-shaped variations [24,27]).
The applicative features of the multivariate Pontryagin’s maximum principle were emphasized in [5],
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where the minimal submanifolds, the harmonic maps, or the Plateau problem were approached under
this new light. In addition, multivariate controllability- and observability-related features were studied
in [28], while [29] provides a comparison analysis of various types of cost functionals.

In optimal control issues, the variables involved play distinct roles. In this case, the states represent
entities with geometric features (Riemannian metric, linear connection, etc.), and the local coordinates
of the manifold are variables of evolution. Usually, an object having the properties of the curvature
tensor field plays the role of the control element.

The rest of the paper is organized as follows. Section 2 contains a formal overview regarding
the multivariate optimal control theory, introducing the specific terminology and establishes the
methodology. Section 3 is a review of geometric elements. Section 4 contains the main results derived
from applying the technical results from Section 2 to the geometric framework provided in Section 3.
Section 5 contains the conclusions and policy implications.

2. Optimal Control Formalism

2.1. Single-Time Case

We start our approach with recalling the standard statement of an optimal control problem, in its
most simple form, by namely using a one-dimensional evolution variable. The purpose of this is just to
fix the specific terminology and techniques. Later, these elements will be adapted to multi-dimensional
evolution variables and ultimately, to geometric objects, by properly identifying the role of each
of them.

Formally, an optimal control problem refers to finding:

max
c(·)∈C

J(c(·)) =
∫ T

t0

X0(x, s(x), c(t))dx + χ(T, s(T))

subject to: {
s0 ∈ S;
ṡ = X(x, s(x), c(x)), x ∈ [0, T].

The nature or the meaning of the elements involved in the expressions above are as follows:

• The real number T is called the final time or horizon; t0 is called initial time. Usually, x ∈ [t0, T]
represents the time variable, but this comes just from the fact that the optimal control problems
which originated this theory used to have temporal evolutions. We prefer to instead call them
evolution variables since this terminology is more compatible with the idea of increasing the
dimension (we have even avoided to denote it with t);

• U ⊂ Rk is called the set of control variables. A function c : [0, T]→ U is called the control strategy.
Sometimes there are additional requirements concerning the control strategies (for instance, the
local integrability condition or static constraints) resulting the set of admissible strategies C;

• S ⊂ Rm is called the set of state variables. For a given control strategy c(·) and a given initial state
s0 ∈ S, the solution of the evolution equation s(·) = s(·, s0, c(·)) is called the state trajectory;

• X0 : [0, T]× S× C → R is called instantaneous performance index. Moreover, χ : [0, T]× S→ R
is called the payoff from the final state;

• The functional J on the set of admissible control strategies is called the cost functional or
payoff functional.

2.2. Multivariate Case

This section is dedicated to featuring the general aspects of the multivariate optimal control (in a
Euclidean setting). The basic ingredients are N ⊂ Rn with global coordinates (x1, ..., xn), S ⊂ Rm with
global coordinates (s1, ..., sm), and U ⊂ Rk having global coordinates (c1, ..., ck). Let us denote by D a
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bounded Lipschitz domain of a p-dimensional submanifold of N, with a (p− 1)-dimensional oriented
boundary ∂D. In particular, when p = n we denote by Ω a bounded Lipschitz domain in N, when
p = n− 1 we denote by Σ a bounded oriented hyper-surface while, we use C to denote a differentiable
curve in N with given endpoints xi and x f .

Let X = (Xα
i ) : N × S× C → Rmn be a C1 tensor field. For a given control function c : N → U,

we define the following completely integrable evolution system:

∂sα

∂xi (t) = Xα
i (x, s(x), c(x)), x ∈ N. (1)

The multivariate evolution system in Equation (1) is used as constraint when we want to optimize
various integral-type cost functionals.

Problem 1. p-Dimensional integral cost functional.

This section reflects the most general expression of multivariate optimal control problems, by
considering p-dimensional domains in N and cost functionals defined as integrals on these domains.

Denote:

Iσ =

{
{(i1i2...in−σ) | 1 ≤ i1 < i2 < ... < in−σ ≤ n}, σ = 1, n− 1, p ≤ n− 1;
∅, p = n.

We define the cost functional:

JD[c(·)] =
∫

D
∑

I∈Ip

X I(x, s(x), c(x))dxI +
∫

∂D
∑

I∈Ip−1

χI(x, s(x))dxI ,

where, if I = (i1i2...in−p), then dxI is the p-form resulted from the multiple interior product of the
n-form dx with the vector fields ∂in−p , ..., ∂i1 .

The corresponding control Hamiltonian (n− p)-form has the components

H I(x, s, p, c) = X I(x, s, c) + pIs
α Xα

s (x, s, c), ∀I ∈ Ip.

In order to keep the expressions as simple as possible, let us introduce the following notations:
Given a multi-index I = (i1i2...in−p) ∈ Ip, let ∂I = ∂i1 ∧ ∂i2 ∧ ...∧ ∂in−p , let G denote the induced inner
product on the exterior algebra of vector fields, N1 ∧ ... ∧ Nn−p be the cross (wedge) product of the
normal distribution on submanifold D, while {η1, η2, ..., ηn−p+1} denotes a normal distribution on ∂D.

Theorem 1. (Multivariate maximum principle for p-dimensional integral cost functional) Suppose

c∗(·) is optimal for
(

max
c(·)

JD, Equation (1)
)

and s∗(·) is the corresponding optimal n-sheet. Then there exists

a costate mapping (p∗) = (p∗I
α ) : D → Rmnn−p

, p∗I
α = −p∗τ(I)

α , ∀τ(I) a transposition of the multi-index
I ∈ Ip, such that the following equations are satisfied:

• State equations:

∂s∗α

∂xi =
∂H I

∂pIi
α

(x, s∗, p∗, c∗), ∀I ∈ Ip, ∀i = 1, n, ∀α = 1, m, ∀x ∈ D;

• Adjoint equations:

G
([

∂p∗Is
α

∂xs +
∂H I

∂sα
(x, s∗, p∗, c∗)

]
∂I , N1 ∧ ...∧ Nn−p

)
= 0, ∀α = 1, m, ∀x ∈ D;
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• Optimality conditions

G
(

∂H I

∂ca (x, s∗, p∗, c∗)∂I , N1 ∧ ...∧ Nn−p

)
= 0, ∀a = 1, k, ∀x ∈ D.

• The boundary conditions

G
([

p∗I
α −

∂χI

∂sα

]
∂I , η1 ∧ ...∧ ηn−p+1

)
= 0, ∀α ∈ 1, m, ∀x ∈ ∂D.

Proof. If c∗(·) is an optimal control, consider a variation cε(·) = c∗(·) + εv(·), ε ∈ (−ε0, ε0). This

generates a variational state sε(·), with
dsα

ε

dε

∣∣∣∣
ε=0

= τα and a cost function:

Jε = JD[cε(·)] =
∫

D
∑

I∈Ip

X I(x, sε, cε)dxI +
∫

∂D
∑

I∈Ip−1

χI(x, sε)dxI

=
∫

D
∑

I∈Ip

[
H I(x, sε, p, cε)− pIs

α Xα
s (x, sε, cε)

]
dxI +

∫
∂D

∑
I∈Ip−1

χI(x, sε)dxI

=
∫

D
∑

I∈Ip

[
H I(x, sε, p, cε)− pIs

α
∂sα

ε

∂xs

]
dxI +

∫
∂D

∑
I∈Ip−1

χI(x, sε)dxI

=
∫

D
∑

I∈Ip

[
H I(x, sε, p, cε)−

∂
(

pIs
α sα

ε

)
∂xs +

∂pIs
α

∂xs sα
ε

]
dxI +

∫
∂D

∑
I∈Ip−1

χI(x, sε)dxI

=
∫

D
∑

I∈Ip

[
H I(x, sε, p, cε) +

∂pIs
α

∂xs sα
ε

]
dxI +

∫
∂D

∑
I∈Ip−1

[
−pI

αsα
ε + χI(x, sε)

]
dxI .

Since c∗ is a optimal solution, it follows that ε = 0 is a critical point for ε→ Jε. That is:

0 =
∫

D
∑

I∈Ip

[(
∂H I

∂sα
(x, s∗, p, c∗) +

∂pIs
α

∂xs

)
τα +

∂H I

∂ca (x, s∗, p, c∗)va
]

dxI

+
∫

∂D
∑

I∈Ip−1

[
−pI

α +
∂χI

∂sα
(x, s∗)

]
ταdxI .

Choosing the costate tensor p∗ as solution for the adjoint partial differential equations system:

G
([

∂pIs
α

∂xs +
∂H I

∂sα
(x, s∗, p, c∗)

]
∂I , N1 ∧ ...∧ Nn−p

)
= 0, ∀α = 1, m, ∀x ∈ D

with a boundary condition:

G
([

pI
α −

∂χI

∂sα

]
∂I , η1 ∧ ...∧ ηn−p+1

)
= 0, ∀x ∈ ∂D,

we find: ∫
D

∑
I∈Ip

∂H I

∂ca (x, s∗, p∗, c∗)vadxI = 0, ∀va,

leading to the optimality conditions:

G
(

∂H I

∂ca (x, s∗, p∗, c∗)∂I , N1 ∧ ...∧ Nn−p

)
= 0, ∀a = 1, k, ∀x ∈ D.
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Remark 1. A better way to phrase the optimality conditions is given by the inequality∫
D

[
H I(x, s∗, p∗, c∗)− H I(x, s∗, p∗, c)

]
dxI ≥ 0, ∀c(·) ∈ C.

A proof leading to this condition is based on needle-shaped control variations and, beside the fact that
provides a more general formula, it also allows control variables to reach boundary values (for more details about
this technique, please see see [5,24]). Moreover, this expression is preferable when the Hamiltonians are linear
with respect to the control variables, i.e., H I(x, s, p, c) = σI(x, s, p) · c + ψI(x, s, p). If such is the case, two
approaches are possible. If σ(x, s(x), p(x)) = 0 almost everywhere on D, the problem is control-free and the
optimal solutions are of a singular-type. Otherwise, the optimal control is a bang-bang, meaning that it switches
abruptly between boundary values.

Problem 2. Multiple integral cost functional.

This is a particular case of the general one analyzed above, since Ω ⊂ N can be considered as a
domain of maximal dimension p = n. The general expression for a multiple integral cost functional is:

JΩ[c(·)] =
∫

Ω
X(x, s(x), c(x)) dx +

∫
∂Ω

χl(x, s(x)) dxl .

and the corresponding Hamiltonian function (0-form) is:

H(x, s, p, c) = X(x, s, c) + ps
αXα

s (x, s, c).

Then, Theorem 1 reads as in the following Corollary.

Corollary 1. (Multitime maximum principle for multiple integral cost functional) Suppose c∗(·) is

an optimal solution of the control problem
(

max
c(·)

JΩ, Equation (1)
)

and t∗(·) is the corresponding optimal

state. Then there exists a costate tensor p∗ = (p∗iα ) : Ω→ Rmn to satisfy:

• State equations
∂s∗α

∂xi =
∂H
∂pi

α

(x, s∗, p∗, c∗), ∀x ∈ Ω, ∀α = 1, m, ∀i = 1, n;

• Adjoint equations
∂p∗sα

∂xs = − ∂H
∂sα

(x, s∗, p∗, c∗), ∀x ∈ Ω, ∀α = 1, m;

• Optimality conditions
∂H
∂ca (x, s∗, p∗, c∗) = 0, ∀x ∈ Ω, ∀a = 1, k;

• Boundary conditions [
−p∗lα +

∂χl

∂sα
(x, s∗)

]
∂

∂xl ∈ Tx∂Ω, ∀x ∈ ∂Ω, ∀α = 1, m.

Problem 3. Hyper-surface integral cost functional.

When considering o domain Σ of dimension p = n− 1 it results in the following cost functional:

JΣ[c(·)] =
∫

Σ
Xl(x, s(x), c(x))dxl +

∫
∂Σ

∑
1≤i<j≤n

χij(x, s(x))dxij,
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where dxl = i ∂

∂xl
dx and dxij = i ∂

∂xj
dxi.

Similar to previous paragraphs, the multitime maximum principle involves some appropriate
Hamiltonian vector field with components:

Hl(x, s, p, c) = Xl(x, s, c) + pls
α Xα

s (x, s, c),

and Theorem 1 conducts to the next statement.

Corollary 2. (Multitime maximum principle for hyper-surface integral cost functional) Suppose

c∗(·) is optimal for
(

max
c(·)

JΣ, Equation (1)
)

and s∗(·) is the corresponding optimal n-sheet. Then there

exists a co-state mapping (p∗) = (p∗ijα ) : Σ→ Rmn, p∗ijα = −p∗ji
α to satisfy:

• State equations
∂s∗α

∂xi =
∂Hl

∂pli
α

(x, s∗, p∗, c∗), ∀i = 1, n, ∀α = 1, m, ∀x ∈ Σ;

• Adjoint equations [
∂p∗lsα

∂xs +
∂Hl

∂sα
(x, s∗, p∗, c∗)

]
∂

∂xl ∈ TxΣ, ∀α = 1, m, ∀x ∈ Σ;

• Optimality conditions

∂Hl

∂ca (x, s∗, p∗, c∗)
∂

∂xl ∈ TxΣ, ∀a = 1, k, ∀x ∈ Σ;

• Boundary condition

G

(
∑

1≤i<j≤n

[
−p∗ijα +

∂χij

∂sα
(x, s∗)

]
∂

∂xi ∧
∂

∂xj , η1 ∧ η2

)
= 0, ∀x ∈ ∂Σ,

where G denotes the induced inner product on the exterior algebra of vector fields and η1 ∧ η2 is the cross
product of the normal distribution {η1, η2} on ∂Σ.

Problem 4. Curvilinear integral cost functional.

When the selected domain is a curve C, the corresponding dimension is p = 1. The expression of
the curvilinear integral cost functional is:

JC[c(·)] =
∫

C
Xl(x, s(x), c(x)) dxl + χ(x f , s(x f ))− χ(xi, s(xi)),

where xi and x f are the endpoints of C.
The corresponding Hamiltonian is an 1-form with components:

Hl(x, s, p, c) = Xl(x, s, c) + pαXα
l (x, s, c)

leading to the following statement for the maximum principle.

Corollary 3. (Multitime maximum principle for curvilinear integral cost functional) Suppose c∗(·)

is an optimal solution of the control problem
(

max
c(·)

JC, Equation (1)
)

and s∗(·) is the corresponding optimal

state. Then there exists a costate mapping p∗ = (p∗α) : C → Rm to satisfy:
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• State equations
∂s∗α

∂xl =
∂Hl
∂pα

(x, s∗, p∗, c∗), ∀x ∈ C, ∀α = 1, m, ∀l = 1, n;

• Adjoint equations

δls
[

∂p∗α
∂xl +

∂Hl
∂sα

(x, s∗, p∗, c∗)
]

∂

∂xs ∈ T⊥C, ∀x ∈ C, ∀α = 1, m;

• Optimality conditions

δls ∂Hl
∂ua (x, s∗, p∗, c∗)

∂

∂xs ∈ T⊥C, ∀x ∈ C, ∀a = 1, k;

• Terminal conditions 
p∗α(x f ) =

∂χ

∂sα
(x f , s∗(x f ));

p∗α(xi) =
∂χ

∂sα
(xi, s∗(xi)), ∀α ∈ 1, m.

Problem 5. Evolution equations with symmetries.

The previous sections phrased optimal control conditions for the evolution system in Equation (1)
and for different types of integral costs. The section instead aims to describe the optimal control
behavior, when dealing with an evolution system supporting some sort of symmetries. Assume that
the dimension of the considered domain D is p ≥ 2. We define:

1. A symmetric-type evolution system:

∂sα
j

∂xi (x) +
∂sα

i
∂xj (x) = Xα

ij(x, s(x), c(x)) + Xα
ji(x, s(x), c(x)). (2)

2. An ntisymmetric-type evolution system:

∂sα
j

∂xi (x)−
∂sα

i
∂xj (x) = Xα

ij(x, s(x), c(x))− Xα
ji(x, s(x), c(x)). (3)

The multivariate maximum principles (necessary conditions) corresponding to the optimal control

problems
(

max
c(·)

JD, Equation (2)
)

and
(

max
c(·)

JD, Equation (3)
)

connects the existence of an optimal

control c∗ to co-state mappings p∗ = (p∗I
α )I∈Ip−2 , with some symmetry particularities:

(p1) in the case of symmetric-type evolution system, pI = −pτ(I) for each transposition of the
multi-index I ∈ Ip−2, except the transposition τ0 of the last two elements of the multi-index, for which
pI = pτ0(I);
(p2) in the case of antisymmetric-type evolution system, pI = −pτ(I) for each transposition of the
multi-index I ∈ Ip−2, with no exceptions.

These costate mappings allow the definition of the Hamiltonian (n− p)-form of components:

H I(x, s, p, c) = X I(x, s, c) + pIij
α Xα

ij(x, s, c), ∀I ∈ Ip.

Using their symmetries, similar arguments as in the proof of Theorem 1 lead to the outcome
stated below.

Corollary 4. (multitime maximum principle for symmetric/antisymmetric evolution equations)

Suppose c∗(·) is optimal for
(

max
c(·)

JD, Equation (2)
)

or
(

max
c(·)

JD, Equation (3)
)

and that t∗(·) is the
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corresponding optimal n-sheet. Then there exists a co-state mapping p∗ with properties (p1) and (p2),
respectively, to satisfy:

• State equations:
∂s∗α

j

∂xi ±
∂s∗α

i
∂xj =

[
∂H I

∂pIij
α

± ∂H I

∂pI ji
α

]
(x, s∗, p∗, c∗),

∀x ∈ D, ∀I ∈ Ip, ∀i, j = 1, n, ∀α = 1, m;

• Adjoint equations:

G
([

∂p∗Isi
α

∂xs +
∂H I

∂sα
i
(x, s∗, p∗, c∗)

]
∂I , N1 ∧ ...∧ Nn−p

)
= 0,

∀x ∈ Ω, ∀i = 1, n, ∀α = 1, m;

• Optimality conditions:

G
(

∂H I

∂ua (x, s∗, p∗, c∗)dxI , N1 ∧ ...∧ Nn−p

)
= 0, ∀x ∈ D, ∀a = 1, k;

• Boundary conditions:

G
([

p∗Il
α −

∂χI

∂sα
l
(x, s∗)

]
∂I , η1 ∧ ...∧ ηn−p+1

)
= 0, ∀x ∈ ∂D, ∀α = 1, m, ∀l = 1, n.

3. Basics on Riemannian Geometry

Let (M, g) be a Riemannian manifold and (x1, ..., xn) be local coordinates on M. A basic result
in Riemannian geometry ([20,21]) states the existence of the Levi–Civita connection, i.e., the unique
torsion-free (∇XY−∇YX = [X, Y]) and metric compatible (∇g = 0) linear connection ∇ associated
to g.

In coordinates, the Levi–Civita connection can be described using the Christoffel symbols
Γ =

(
Γk

ij

)
. The torsion free condition is then equivalent to the symmetry property Γk

ij = Γk
ji, while the

compatibility with the metric is given by the following partial differential equations:

∂gij

∂xk (x) = gps(x)
[
δ

p
i Γs

jk(x) + δ
p
j Γs

ik(x)
]

, i, j, k = 1, ..., n, (4)

or, equivalent,

∂gij

∂xk (x) = −gps(x)
[
δi

pΓj
sk(x) + δ

j
pΓi

sk(x)
]

, i, j, k = 1, ..., n, (5)

where g−1 = (gij) is the dual metric tensor field, i.e., gisgsj = δi
j, ∀i, j = 1, ..., n.

Moreover, a second order covariant differentiation of the Riemannian structure g generates the
Riemann curvature (1, 3)-tensor field:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

which, in terms of local coordinates R = (Rl
ijk), is defined by:

Rl
kij =

∂Γl
kj

∂xi −
∂Γl

ki
∂xj + Γs

kjΓ
l
si − Γs

kiΓ
l
sj, i, j, k, l = 1, ..., n,

or, equivalent:
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∂Γl
kj

∂xi −
∂Γl

ki
∂xj = Rl

kij − Γs
kjΓ

l
si + Γs

kiΓ
l
sj, i, j, k, l = 1, ..., n. (6)

Lowering the index via the metric g, allows the introduction of the Riemann curvature (0, 4)-type
tensor field Rijkl = gisRs

jkl , having the symmetry properties:

Rijkl = Rklij; Rijkl = −Rjikl (7)

and satisfying the Bianchi identities:

Rijkl + Rikl j + Ril jk = 0; Rijkl,r + Rijlr,k + Rijrk,l = 0, (8)

where a comma denotes the covariant derivative. We introduce the set of curvature like tensor fields:

CT 0
4 = {Tijkl |with the properties from relations (7), (8)}.

In the following, we shall switch the order of the geometric ingredients. Given a (0, 4)-tensor
field R = (Rijkl) in CT 0

4 , we ask ourselves whether there exist a linear connection Γ and a Riemannian
structure g on M satisfying Equations (4) and (6), respectively Equations (5) and (6). More precisely,
adding initial conditions:

gij(x0) = ηij, Γk
ij(x0) = γk

ij(x0),

we consider the relations in Equations (4) and (6) and Equations (5) and (6) as controlled evolution laws
and we shall call them second order metric compatibility evolution system.

Hereafter, the metric tensor g = (gij) and the linear connection Γ = (Γk
ij) will denote symmetric

state objects, the local coordinates x = (x1, ..., xn) will play the role of the evolution variables, and the
tensor field R = (Rijkl) will denote a control object with symmetries.

The partial differential equations system provided by Equations (4) and (6) has solutions if and
only if the complete integrability conditions:

∂
∂xl

{
gps

[
δ

p
i Γs

jk + δ
p
j Γs

ik

]}
= ∂

∂xk

{
gps

[
δ

p
i Γs

jl + δ
p
j Γs

il

]}
;

0 = ∂
∂xp

(
Rl

kij − Γs
kjΓ

l
si + Γs

kiΓ
l
sj

)
+ ∂

∂xi

(
Rl

kjp − Γs
kpΓl

sj + Γs
kjΓ

l
sp

)
+ ∂

∂xj

(
Rl

kpi − Γs
kiΓ

l
sp + Γs

kpΓl
si

)
are satisfied. Explicitly, this means Rijkl = −Rjikl and Rijkl,r + Rijlr,k + Rijrk,l = 0. These relations
are among the properties of R = (Rijkl) since we have assumed R = (Rijkl) to be described by the
conditions in Equations (7) and (8).

4. Riemannian Optimal Control

In order to motivate our further approach, we provide the following example from [5], which
proves that some problems turn out to be very interesting optimal control issues, by properly stating
them and by properly assigning roles for the involved variables.

Example 1. If D is a compact set of Rm = (t1, . . . , tm), with a piecewise smooth (m− 1)-dimensional boundary
∂D, then its volume can be expressed as follows:

V(D) =
∫

D
dt =

1
m

∫
∂D

δαβtαNβdσ,

where N denotes the exterior unit normal vector field on the boundary. On the other hand, by taking a
parametrization of ∂D, having the parameters’ domain U ⊂ Rm−1 = {η1, . . . , ηm−1}, the area of the boundary
surface is:
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A(∂D) =
∫

∂D
dσ =

∫
U

√
δαβN αN βdη,

where N stands for the exterior normal vector field, hence dσ = ||N ||dη.
Let us show that of all solids having a given surface area, the sphere being the one that has the greatest

volume. To prove this statement, we take the normal vector fieldN as a control and we formulate the multivariate
optimal control problem with (static) isoperimetric constraint:

max
N

∫
∂D

δαβtαN βdη subject to
∫

U

√
δαβN αN βdη = const..

The corresponding Hamiltonian is:

H(t, p,N ) = δαβtαN β + p
√

δαβN αN β, p = const.

and the optimality conditions lead to:

0 =
∂H
∂N

= t− pN on ∂D,

which, knowing that ||N|| = 1, describes the boundary of D as being the solution for ||t||2 = p2. Hence D is
precisely the ball of radius p.

If (M, g) is a n-dimensional Riemannian manifold, let x = (x1, ..., xn) denote the local coordinates
relative to a fixed local map (V, h). We use the same notations as in the formal case: Ω is a bounded
Lipschitz domain of M, with oriented boundary ∂Ω, Σ is a bounded oriented hyper-surface, while C
denotes a differentiable curve on M with given endpoints xi and x f .

We shall further consider several types of cost functionals.
I. Curvature related functionals

1. Multiple integral-type functional:

JΩ[R(·)] =
∫

Ω
X(x, g(x), Γ(x), R(x))dx +

∫
∂Ω

χi(x, g(x), Γ(x))dxi,

where dx = dx1 ∧ ... ∧ dxn denotes the canonical differential n-form on M and dxl = i ∂

∂xl
dx, iX

denoting the interior product of a differential form with respect to a vector field X.
2. Hyper-surface integral-type functional:

JΣ[R(·)] =
∫

Σ
Xl(x, g(x), Γ(x), R(x))dxl +

∫
∂Σ

∑
1≤i<j≤n

χij(x, g(x), Γ(x))dxij,

where dxij = i ∂

∂xj
dxi.

3. Path independent curvilinear integral-type cost:

JC[R(·)]=
∫

C
Xl(x, g(x), Γ(x), R(x))dxl + χ(x f , g(x f ), Γ(x f ))− χ(xi, g(xi), Γ(xi)).

II. Connection related functionals

4. I. Multiple integral-type functional:

JΩ[Γ(·)] =
∫

Ω
X(x, g(x), Γ(x))dx +

∫
∂Ω

χi(x, g(x))dxi.
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5. Hyper-surface integral-type functional:

JΣ[Γ(·)] =
∫

Σ
Xl(x, g(x), Γ(x))dxl +

∫
∂Σ

∑
1≤i<j≤n

χij(x, g(x))dxij.

6. Path independent curvilinear integral-type cost:

JC[Γ(·)]=
∫

C
Xl(x, g(x), Γ(x))dxl + χ(x f , g(x f ))− χ(xi, g(xi)).

Definition 1. The problem of maximizing (minimizing) one of the cost functionals (JΩ)− (JC), subject to one
of the metric evolution systems given by Equations (4) and (6) or Equations (5) and (6) is called the Riemannian
optimal control problem.

All the outcomes resulted in connection with the functionals above are in fact the expressions
from Corollaries 1–3, for the particular choice of the state variables s = (g, Γ) and control variables
c = R (or s = g and c = Γ if the curvature tensor is not involved at all). Since the main ingredients
of this Riemannian optimal control problem (the state variables, the control variables, and evolution
constraints) have some sort of symmetries, we shall derive adapted multitime maximum principles,
based on co-state variables with symmetries as in Corollary 4. In the following, we list these outcomes,
together with the Hamiltonians they rely on.

4.1. Riemannian Control with Multiple Integral Cost Functional

Problem 6. Optimize JΩ[R(·)] subject to Equations (5) and (6).

For that, let us consider Lagrange multipliers of type pk
ij = pk

ji and

qk ij
s = −qk ji

s and the control Hamiltonian:

H(x, g, Γ, R, p, q) = X(x, g, Γ, R)− gisΓj
sk pk

ij + qk ij
s

(
1
2

Rs
kij − Γp

kjΓ
s
pi

)
.

Corollary 5. Suppose the tensor field R∗(·) is an optimal solution for max
R(·)

JΩ[R(·)], constraint by the evolution

laws in Equations (5) and (6) and that g∗(·) and Γ∗(·) are the corresponding optimal Riemannian structure and
the optimal linear connection, respectively. Then there exist the dual objects p∗ = (p∗kij = p∗kji ) and

q∗ = (q∗k ij
s = −q∗k ji

s ) satisfying:

• The state equations: 
∂g∗ij

∂xk =
∂H
∂pk

ij
+

∂H
∂pk

ji
,

∂Γs
kj

∂xi −
∂Γs

ki
∂xj =

∂H

∂qk ij
s
− ∂H

∂qk ji
s

;

• The adjoint equations: 
∂p∗kij

∂xk +

(
∂H
∂gij +

∂H
∂gji

)
= 0,

∂q∗i kj
s

∂xk +
∂q∗j ki

s

∂xk +

(
∂H
∂Γs

ij
+

∂H
∂Γs

ji

)
= 0;

• The optimality conditions:
∂H

∂Rs
kij
− ∂H

∂Rs
kji

= 0;
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• The boundary conditions:


p∗kij |∂Ω =

[
∂χk

∂gij +
∂χk

∂gji

]
∂Ω

,

[
q∗i kj

s + q∗j ki
s

]
∂Ω

=

[
∂χk

∂Γs
ij
+

∂χk

∂Γs
ji

]
∂Ω

.

Remark 2. If (g∗, Γ∗, R∗) is an optimal solution with corresponding dual objects (p∗, q∗) and

H∗ij = Hi
j(g∗, Γ∗, R∗, p∗, q∗) = X(g∗, Γ∗, R∗)δi

j − g∗ksΓ∗lsj p∗ikl + q∗k il
s

∂Γ∗skl
∂xj

is an autonomous anti-trace Hamiltonian, then the following conservation law is satisfied

Di H∗ij = 0, ∀j = 1, n.

Example 2. (Hilbert’s isoperimetric problem) Consider the functional I[R(·)] = ρ(Ω), where ρ(Ω) =
∫

Ω
ρdv

denotes the total scalar curvature. Therefore, we try to minimize I[R(·)] =
∫

Ω gijRk
ikj
√

gdx, subject to the
controlled evolution system defined by Equations (5) and (6) and to the isoperimetric constraint vol(Ω) = C.
We start by introducing a Lagrangian functional:

JΩ[R(·)] = ρ(Ω)− λvol(Ω) =
∫

Ω

[
gijRk

ikj
√

g− λ
√

g
]

dx.

We may identify X(x, g, Γ, R) = gijRk
ikj
√

g− λ
√

g and χk(x, g, Γ) = 0. The corresponding Hamiltonian
density is

H(x, g, Γ, R, p, q) = gijRk
ikj
√

g− λ
√

g− gisΓj
sk pk

ij + qk ij
l

(
1
2

Rl
kij − Γs

kjΓ
l
si

)
.

Denoting σ
kij
l (g, Γ, p, q) =

1
2

(
qkij

l + gkjδi
l
√

g− gkiδ
j
l
√

g
)

and

ψ(g, Γ, p, q) = −λ
√

g− gisΓj
sk pk

ij − qkij
l Γs

kjΓ
l
si, we may rewrite the autonomous Hamiltonian

H(g, Γ, R, p, q) = σ
kij
l (g, Γ, p, q)Rl

kij + ψ(g, Γ, p, q),

which is linear with respect to the control variables. For bang-bang optimal control, we impose ||R(·)|| ≤ M,
where the norm is the Riemannian one. To judge in the sense of singular optimal control, we need σ(x) ≡ 0, x ∈
Ω1 ⊂ Ω. Therefore, the optimal solutions may exhibit both bang-bang and singular sub-sheets as described in
Remark 1.

Let us search for singular solutions (see [9]), that is (i) σ(x) ≡ 0 and (ii) the conservation law for the
autonomous anti-trace Hamiltonian is satisfied.

The first condition, combined with the antisymmetry property of q, provides:

qk ij
l =

[
gkiδ

j
l − gkjδi

l

]√
g.

In addition to this, the singular solution also satisfies the adjoint partial differential equations system:

∂pk
ij

∂xk = pk
isΓs

jk + pk
jsΓs

ik +
[
−2Rk

ikj + (ρ− λ)gij

]√
g

and:
∂qi kj

l
∂xk +

∂qj ki
l

∂xk = pj
skgsi + pi

skgsj + Γi
skqs jk

l + Γk
slq

j si
k + Γj

skqs ik
l + Γk

slq
i sj
k .
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Replacing q in the latter leads to pj
skgsi + pi

skgsj = 0, with the solution

pk
ij = 0.

Finally, by substituting p in the first adjoint set of equations, we obtain Rk
ikj =

ρ− λ

2
gij, that is the

Einstein Equation in vacuum Ricij =
λ

n− 2
gij.

Moreover, the anti-trace autonomous Hamiltonian is:

H∗ij =

[
(ρ− λ)δi

j + g∗ki ∂Γ∗sks
∂xj − g∗ks ∂Γ∗iks

∂xj

]
√

g∗

and the conservation law Di H∗ij = 0 is satisfied by the Einstein structure, therefore, the Einstein manifolds are
singular critical points for the total scalar curvature functional with isoperimetric constraints.

Problem 7. Optimize JΩ[Γ(·)] subject to Equation (5).

The corresponding Hamiltonian has a simplified expression:

H(x, g, Γ, p, q) = X(x, g, Γ)− gisΓj
sk pk

ij

and the multitime maximum principle is described by the following Corollary.

Corollary 6. Suppose the linear connection Γ∗(·) is an optimal solution for
(

max
Γ(·)

JΩ(Γ(·), Equation (5)
)

and

that g∗(·) is the corresponding optimal Riemannian structure. Then there exist a dual object p∗ = (p∗kij = p∗kji )

satisfying:

• The state equations:
∂g∗ij

∂xk =
∂H
∂pk

ij
+

∂H
∂pk

ji
;

• The adjoint equations:
∂p∗kij

∂xk +

(
∂H
∂gij +

∂H
∂gji

)
= 0;

• The optimality conditions:
∂H
∂Γk

ij
+

∂H
∂Γk

ji
= 0;

• The boundary conditions:

p∗kij |∂Ω =

[
∂χk

∂gij +
∂χk

∂gji

]
∂Ω

.

Example 3. Consider the least squares Lagrangian-type cost functional:

J[Γ] =
1
2

∫
Ω

gijΓk
isΓs

jkdx,

which measures the mean square deviation tensor Γ− Γ0, where Γ is a linear connection and Γ0 = 0 is the
Euclidean linear connection. The corresponding Hamiltonian density is:

H =
1
2

gijΓk
isΓs

jk − gisΓj
sk pk

ij
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and, according to Corollary 6, we have:

• The optimality conditions: gisΓj
sk + gjsΓi

sk − gis pj
sk − gjs pi

sk = 0, leading to the general solution

pk
ij = Γk

ij − γk
ij, or, invariant p = Γ− T,

where T = (γk
ij) is a (1,2) symmetric tensor field, satisfying the anti-symmetry condition gisγ

j
sk + gjsγi

sk = 0;

• The boundary conditions pk
ij|∂Ω = 0, which, by substituting p, lead to

γk
ij|∂Ω = Γk

ij|∂Ω;

• The adjoint equations:
∂pk

ij

∂xk = −Γk
isΓs

jk + Γk
is ps

jk + Γk
js ps

ik,

rewritten, after substituting p:
∂Γk

ij

∂xk −
∂γk

ij

∂xk = Γk
isΓs

jk − γk
isΓs

jk − γk
jsΓs

ik, or
∂Γk

ij

∂xk − Γk
isΓs

jk = (Div T)ij, or,

even better

Ricij +∇∂i

(
∂ ln
√

g
∂xj

)
= (Div T)ij.

In particular, by taking γ = 0, it follows that manifolds satisfying

Ric = −∇ d ln
√

g

are critical points for the functional

J[Γ(·)] = 1
2

∫
Ω

gijΓk
isΓs

jkdx.

4.2. Riemannian Control with Hypersurface Integral-Type Cost Functional

Problem 8. Optimize JΣ[R(·)] subject to Equations (5) and (6).

Let us consider Lagrange multipliers of type plk
ij = plk

ji = −pkl
ij and qlk ij

s = −qlk ji
s = −qkl ij

s , and
the control Hamiltonian vector field:

Hl(x, g, Γ, p) = Xl(x, g, Γ, R)− gisΓj
sk plk

ij + qlk ij
s

(
1
2

Rs
kij − Γp

kjΓ
s
pi

)
.

Corollary 7. Suppose the tensor field R∗(·) is an optimal solution for
(

max
R(·)

JΣ[R(·)], Equations(5)and(6)
)

and that g∗(·) and Γ∗(·) are the corresponding optimal Riemannian structure and the optimal linear connection,
respectively. Then there exist the dual objects p∗ = (p∗lkij = p∗lkji = −p∗kl

ij ) and q∗ = (q∗lk ij
s = −q∗lk ji

s =

−q∗kl ij
s ) satisfying:

• The state equations: 
∂g∗ij

∂xk =
∂Hl

∂plk
ij
+

∂Hl

∂plk
ji

, ∀l = 1, n,

∂Γs
kj

∂xi −
∂Γs

ki
∂xj =

∂Hl

∂qlk ij
s
− ∂Hl

∂qlk ji
s

;
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• The adjoint equations:

[
∂p∗lkij

∂xk +

(
∂Hl

∂gij +
∂Hl

∂gji

)]
∂

∂xl ∈ TxΣ,

[(
∂q∗li kj

s

∂xk +
∂q∗l j ki

s

∂xk

)
+

(
∂Hl

∂Γs
ij
+

∂Hl

∂Γs
ji

)]
∂

∂xl ∈ TxΣ;

• The optimality conditions: [
∂Hl

∂Rs
kij
− ∂Hl

∂Rs
kji

]
∂

∂xl ∈ TxΣ;

• The boundary conditions:
G

([
p∗lkij −

(
∂χlk

∂gij +
∂χlk

∂gji

)]
∂lk, η1 ∧ η2

)
= 0,

G

([(
q∗li kj

s + q∗l j ki
s

)
−
(

∂χlk

∂Γs
ij
+

∂χlk

∂Γs
ji

)]
∂lk, η1 ∧ η2

)
= 0,

where G denotes the induced inner product on the exterior algebra of vector fields and η1 ∧ η2 is the cross
product of the normal distribution {η1, η2} on ∂Σ.

Problem 9. Optimize JΣ[Γ(·)] subject to Equation (5).

The corresponding Hamiltonian is:

Hl(x, g, Γ, p) = Xl(x, g, Γ)− gisΓj
sk plk

ij

and the multivariate maximum principle is described in the following statement.

Corollary 8. Suppose the linear connection Γ∗(·) is an optimal solution for
(

max
Γ(·)

JΣ[Γ(·)], Equation (5)
)

and that g∗(·) is the corresponding optimal Riemannian structure. Then there exist a dual object p∗ = (p∗lkij =

p∗lkji = −p∗kl
ij ) satisfying:

• State equations:
∂g∗ij

∂xk =
∂Hl

∂plk
ij
+

∂Hl

∂plk
ji

(no sum on l);

• Adjoint equations: [
∂p∗lkij

∂xk +

(
∂Hl

∂gij +
∂Hl

∂gji

)]
∂

∂xl ∈ TxΣ;

• Optimality conditions: [
∂Hl

∂Γk
ij
+

∂Hl

∂Γk
ji

]
∂

∂xl ∈ TxΣ;

• Boundary conditions:

G

([
p∗lkij −

(
∂χlk

∂gij +
∂χlk

∂gji

)]
∂lk, η1 ∧ η2

)
= 0.
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4.3. Riemannian Control with Curvilinear Integral Cost Functional

The natural expression for dual mapping necessary to phrase the optimality conditions requires
curvature free Hamiltonians, therefore, if the cost functional is of a curvilinear type we can only
analyze optimal control problems depending on connection. More precisely, we analyze the problem
of optimizing JC[Γ(·)] subject to Equation (5). The corresponding Hamiltonian 1-form is:

Hl(x, g, Γ, p) = Xl(x, g, Γ)− gisΓj
sl pij

and the corresponding multivariate maximum principle is described by the following statement.

Corollary 9. Suppose the linear connection Γ∗(·) is an optimal control solution for(
max
Γ(·)

JC[Γ(·)], Equation (5)
)

and that g∗(·) is the corresponding optimal Riemannian structure. Then there

exist a dual tensor field p∗ = (p∗ij = p∗ji) to satisfy:

• The state equuations:
∂g∗ij

∂xl =
∂Hl
∂pij

+
∂Hl
∂pji

;

• the adjoint equations

gls

[
∂p∗ij
∂xl −

(
∂Hl

∂gij +
∂Hl

∂gji

)]
∂

∂xs ∈ T⊥x C;

• The optimality conditions:

gls

[
∂Hl

∂Γk
ij
+

∂Hl

∂Γk
ji

]
∂

∂xs ∈ T⊥x C;

• The terminal conditions:

p∗ij(x) =
[

∂χ

∂gij +
∂χ

∂gji

]
(x), ∀x ∈ {xi, x f }.

5. Conclusions

The idea of finding optimal Riemannian structures for geometric meaningful integrals has
classical roots. Nevertheless, the well-known Riemannian optimization approaches refer only to
particular problems (like Hilbert’s problem, or Plateau’s problem) and the results are generally obtained
via calculus of variations. This paper adapted multivariate optimal control techniques to general
Riemannian optimization problems in order to derive a Hamiltonian approach. The cost functionals
considered here were multiple, curvilinear, or hypersurface-type integrals. Descriptions for necessary
optimality conditions were given. Furthermore, Hilbert’s classical isoperimetric problem was solved
in a Hamiltonian manner, together with another fresh example.
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