
symmetryS S

Article

A System of Mining Semantic Trajectory Patterns
from GPS Data of Real Users

Wanlong Zhang 1,*, Xiang Wang 1 and Zhitao Huang 1,2

1 Department of Electronic and Science, National University of Defense Technology, Changsha 410000, China
2 Academic Research Office, National University of Defense Technology, Changsha 410000, China
* Correspondence: 18570108250@163.com

Received: 13 June 2019; Accepted: 1 July 2019; Published: 8 July 2019
����������
�������

Abstract: Positioning devices allow users’ movement to be recorded. The GPS (Global Positioning
System) trajectory data typically consists of spatiotemporal points, which make up the major part of
the big data concerning urban life. Existing knowledge extraction methods about the trajectory share
a general limitation—they only investigate data from a spatiotemporal aspect, but fail to take the
semantic information of trajectories into consideration. Therefore, extracting the semantic information
of trajectories with the context of big data is challenging pattern recognition task that has practical
application prospects. In this paper, a system is proposed to extract the semantic trajectory patterns
of positioning device users. Firstly, a spatiotemporal threshold and clustering based pre-processing
model is proposed to process the raw data. Then, we design a probabilistic generative model to
annotate the semantic information of each trajectory after the pre-processing procedure. Finally,
we apply the PrefixSpan algorithm to mine the semantic trajectory patterns. We verify our system on
a large dataset of users’ real trajectories over a period of 5 years in Beijing, China. The results of the
experiment indicate that our system produces meaningful patterns.

Keywords: spatiotemporal data application; semantic annotation; data mining; pattern recognition

1. Introduction

The increasing use of private vehicles with positioning services and the rapid advance in wireless
mobile communication technology (such as 4G and beyond) enable us to collect large-scale GPS
trajectories [1]. Mining trajectory patterns from the GPS data of users have incited wide interest in
both academia and industry since they are valuable for a variety of urban applications, i.e., solving
transportation problems and developing reasonable urban planning. For example, if a number of users
are found to pass from La to Lb at a certain time, relevant departments can consider opening a new
bus line connecting La to Lb. This would be useful to relieve traffic pressure and improve air quality.
Lee and Chen [2] proposed an efficient graph-based mining algorithm. Monreale and Pinelli [3] applied
the T-pattern Tree approach to mine the trajectory pattern in a certain area. Moreover, in Lee and Han’s
research [4], the temporal tightness of trajectory patterns was addressed.

However, a general limitation—the failure to take the semantics of a trajectory into
consideration—exists in the present research [5–10] on trajectory pattern mining. Thus, the mined
trajectory patterns are unable to reflect the semantic information hidden in the trajectory. A user’s
trajectory not only contains the physical movement track but also embodies the user’s purpose for
moving. For example, when working out after work is found as a frequent pattern, it is brilliant idea
for the employee to offer a gym service in the office building. So, analyzing semantic trajectory patterns
can be more valuable than analyzing the patterns without semantic information.

Research on mining semantic information has incited widespread interest. For example,
Rawassizadeh et al. [11] proposed a clustering-based algorithm to detect and classify spatiotemporal
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events in mobile data. Ghahramani et al. [12] presented an exploratory spatial data analysis to detect
hotspots. Furthermore, Tanusri et al. [13] utilized spatiotemporal density estimation and line count
inference to predict and rank users’ POI(s) (points of interest) and a system [14] was designed to
accomplish spatiotemporal online reasoning and management.

However, the application scenarios of the abovementioned methods are based on data collected
from users’ devices (user-centric) and not from service provider data. User-centric data such
as geo-tagged photos and social media footprints are generally associated with some obvious
semantic information. Therefore, our work is based on service provider data, the bottom layer
of the spatiotemporal data, which is continuous but without any obvious semantic information.
The contribution of this paper is as follows:

First, we put forward a spatiotemporal threshold and clustering-based method to extract stopover
points in the raw trajectories.

Then, based on the extracted stopover points and the map information, we propose a probabilistic
generative model to accomplish the semantic annotation.

Finally, we mine semantic trajectory patterns with the sequence mining algorithm to construct a
framework of mining semantic information from spatiotemporal data.

2. Problem Statement and Solution Process

2.1. Problem Statement

We first propose some key definitions and necessary explanations.
The semantic information of users’ trajectories is mainly hidden in the stopover points, while the

moving parts of trajectories contain little semantic information regarding users. So, it is important to
extract the stopover points efficiently and accurately.

Definition 1 (Raw trajectory) Locations generated chronologically by user i on the jth day consist of one raw
trajectory Ri

j = {l1, l2, . . . , ln}. Each location lk (k = 1, 2, . . . , n) is further expressed as spatiotemporal sequence
(lank, lonk, tk), where lat, lon, and t represent the latitude, the longitude, and the located time of the trajectory
location, respectively.

Definition 2 (Initial stopover trajectory) The location set ISi
j = {l1, l2, . . . , lm} (m ≤ n), wherein time

intervals are longer than the threshold t0 and the distance is shorter than the threshold d0, represents the stopover
points of the trajectory generated by user i on the jth day.

Definition 3 (Terminal stopover trajectory) A terminal stopover trajectory TSi
j = {lt1, lt2, . . . , lts} (s ≤ m)

is the sequence of fine-grained extracted initial stopover points.

Another problem is how to define and find the semantic information of trajectories after
extracting the stopover points. The semantic information of trajectories reveals the purpose of
visits when users pass by a particular place. However, this constitutes a latent variable, which is hard
present quantitatively.

In this research, different types of POIs have different functions, so they indirectly reflect the
different purposes of people. Taking this into consideration, we used the number of different types of
POIs around a location on the digital map to construct a feature vector and obtain the visit purpose.

Definition 4 (Visit purpose) Each location of a terminal stopover trajectory is attached to a visit purpose. So,
each terminal stopover trajectory TSi

j has its sequence of visit purpose Vi
j = {vt1, vt2, . . . , vts}.

Definition 5 (Feature vector) A feature vector of a location in a stopover trajectory is defined as f = {p1, p2,
. . . ,pN}, where N is the number of POI types on the map and pi is the ratio of the number of POIs of type i to the
total number of POIs in a circular area centered at the location.
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The process in which each location in a terminal stopover trajectory is attached to a visit purpose
is defined as map matching. The connection between the definitions is shown in Figure 1.
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Definition 6 (Semantic trajectory pattern mining) Given the raw trajectory set R and the visit purpose
set P, the concept of semantic trajectory pattern mining is to find the strongest pattern. A semantic trajectory
pattern is represented as a sequence of visit purposes arranged in chronological order.

2.2. Solution Process

We designed a system to mine the semantic trajectory patterns, whose framework is illustrated in
Figure 2. It includes three parts.
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2.2.1. Stopover Points Extraction

The raw trajectories consist of two parts: the moving paths and the stopover areas. Due to
the continuity of the trajectory, the moving part and the stopover areas are difficult to distinguish.
So, we designed a spatiotemporal threshold and clustering-based method to extracting the stopover
points accurately.

To extract the stopover points, first we set a time threshold t0 and a distance threshold d0 and
scanned the database of raw trajectories to pick up the points satisfying the standard wherein the time
interval is no less than t0 and the distance is no more than d0 to complete the a rough extraction and
obtain the initial stopover points.

Then we applied the DBSCAN on the following fine-grained extracting to merge spatially adjacent
points and collect the center of each cluster to identify the terminal stopover points. In the algorithm,
the radius of the circular area Eps and the minimum number of points in the area MinPts have an effect
on the result. So, we set MinPts to 4 by experience. Then, we drew the four-distance graph and used
the first valley as the value of Eps.
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2.2.2. Map Matching

To match the terminal stopover points with the POIs on the map, we proposed a probabilistic
generative model to decide the visit purpose of each stopover point. We assume that feature vectors
f follow a Gaussian mixture distribution, as described in Equation (1), and the probability that the
feature vector f belongs to the visit purpose k is described in Equation (3):

p( f ) =
N∑

m=1

p(m)p( f
∣∣∣m) =

N∑
m=1

πmN( f
∣∣∣µm, Σm) (1)

N( f
∣∣∣µ, Σ) =

1
√

2πp|Σ|
exp

(
−

1
2
( f − µ)TΣ−1( f − µ)

)
(2)

γ
(

f i
j , k

)
=

πkN
(

f i
j

∣∣∣µ k, Σk

)
∑N

m=1 πmN
(

f i
j

∣∣∣µm, Σm

) (3)

where µk and Σk denote the mean and the covariance matrix of the visit purpose k, respectively.
Then we can calculate the log likelihood described in Equation (4) of a terminal stopover trajectory

based on the probabilistic generative model, where f(n) indicates the feature vector of the nth point in
the terminal stopover trajectory and vm denotes the mth type of visit purpose.

L(TSi
j) =

∑ts
n=1 log

{∑N
m=1 πmN

(
f i
j(n)

∣∣∣∣µm, Σm

)}
=

∑ts
n=1 log

{∑N
m=1 P

(
f i
j(n)

∣∣∣∣vm,µm, Σm

)} (4)

To estimate the model parameters, we apply the EM algorithm with all trajectories. The EM
algorithm iteratively estimates the maximum likelihood parameters of a statistical model. To simplify
the computation, we utilize the Jensen’s inequality to obtain a lower bound F of the log likelihood
function, as shown in Equation (5).

L
(
TSi

j

)
≥ F =

ts∑
n=1

∑
m

Q(vm) log

 P( f i
j(n), vm

∣∣∣∣µm, Σm)

Q(vm)

. (5)

Then we maximize F by deriving the following update formula of EM steps for all parameters:

µk =

∑ts
n=1 γ

(
f i
j(n)

∣∣∣∣k) f i
j(n)∑ts

n=1 γ
(

f i
j(n)

∣∣∣∣k) (6)

Σk =

∑ts
n=1 γ

(
f i
j(n)

∣∣∣∣k)( f i
j(n) − µk

)(
f i
j(n) − µk

)T

∑ts
n=1 γ

(
f i
j(n)

∣∣∣∣k) (7)

πk =

∑ts
n=1 γ

(
f i
j(n)

∣∣∣∣k)
ts

(8)

The parameters can be estimated by substituting the update formula iteratively. Finally, we put
the parameters into Equation (3) and select the POI type corresponding to the maximum probability as
the visit purpose of the location in the stopover trajectory.
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2.2.3. Semantic Trajectory Patterns Mining

After realizing the probabilistic generative model, we can add the certain type of POI to the
terminal stopover points, which means annotating terminal stopover trajectories with the visit purpose.
Thus, we can achieve the annotated trajectories.

Next, we can find the strong patterns based on the annotated trajectories. To define a strong
pattern, a few related definitions are proposed:

Definition 7 (Annotated trajectory) An annotated trajectory ATi
j is the sequence where each point has been

annotated with a visit purpose and its corresponding time.

Definition 8 (Support) Given a terminal stopover trajectory TS and its annotated trajectory AT, a semantic
trajectory pattern ((v1,t1), (v2,t2), . . . , (vl,tl)) is supported by TS if and only if the pattern is a subsequence of
AT. A semantic trajectory pattern is a strong pattern if its support is larger than the support threshold.

Definition 9 (Prefix sequence and suffix sequence) Given two sequences t = {t1, t2, . . . ,tm} and s = {s1, s2,
. . . , sn} (n ≤ m), if there exists 1 ≤ j1 < j2 < . . . < jm ≤ n that make t1 ∈ sj1, t2 ∈ sj2, . . . , tm ∈ sjm, then t is the
prefix sequence of s, and (sjm+1, . . . , sn) is the corresponding suffix sequence.

The PrefixSpan algorithm turns suffix sequences into prefix sequences to mine strong patterns.
First it finds a 1-length prefix sequence and finds the corresponding suffix sequence by scanning the
sequences database. Then, based on those prefix sequences and suffix sequences, it begins to process
2-length prefix sequences. Finally, the algorithm utilizes the depth-first search strategy to traverse all
the prefix sequences and mine frequent patterns.

3. Experimental Evaluation

3.1. Research Datasets

The POIs were collected from Amap and consisted of 459,751 POIs with 369 fine-grained categories.
In our experiment, based on the POI information we collected, we set the number of dimensions of the
feature vector to seven, which will be described in detail later in the article.

Our experiments were based on service provider data, so ground-truth was required to validate
our results. However, publicly available GPS datasets generally do not contain ground-truth due
to privacy considerations. Hence, we recruited 20 volunteers in Beijing with different ages and
occupations to collect their daily trajectories with ground-truth for 3 months from the BDS (BeiDou
Navigation Satellite System). Thus, our sample dataset contained 1957 trajectories with a total distance
of 151,553 kilometers.

The raw test data [15] of our experiments was collected from real users. It contained 17,621
trajectories with a total distance of 1,292,951 kilometers and a total duration of 50,176 hours of 182 users
in Beijing over a period of 5 years. Figure 3 plots the distribution (heat map) of the dataset in Beijing.
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3.2. Compared Methods and Performance Metrics

Compared methods. To the best of our knowledge, there are few generative models being
purposed to determine the semantic visit of a position with a multi-dimensional feature based on the
POIs of map information. Therefore, we compared our approach with some representative algorithms
that have been used in most existing works on mining trajectory data. Two competing techniques are
described as follows.

First, we compared our approach with the K-Means algorithm. This method analyzes all the
positions of trajectories separately, and utilizes the standard K-Means algorithm [16] to cluster the
corresponding feature vectors into T visit purposes. After that, we applied the PrefixSpan algorithm to
find the strong patterns.

Then, we compared our approach with the DBSCAN algorithm. A variation of the DBSCAN
algorithm [17] has been proposed for the purposes of extracting the interesting places in trajectories.
In this approach we also utilized the PrefixSpan algorithm to mine the strong patterns.

Performance Metrics. In order to evaluate each method, the coherence and anti-diversity [18]
were utilized to evaluate the quality of clustering. Furthermore, the coverage was used to measure the
quality of the mined patterns.

Anti-diversity is the similarity between the different visit purposes of trajectory stopover points,
as described in Equation (9):

1
T(T − 1)

∑
m,n

Sim(µm,µn) (9)

where µi is the Gaussian distribution’s mean of λi, and Sim(a,b) indicates the cosine of the angle
between two vectors:

Sim(
→
a ,
→

b ) =
→
a ·
→

b∣∣∣∣→a ∣∣∣∣∣∣∣∣∣→b ∣∣∣∣∣ (10)

Coherence is the average similarity between each terminal stopover trajectory that supports the
same strong pattern, when a pattern and its corresponding supporting terminal stopover trajectory
TSi

j is given.

1
TS

2
M(M− 1)

TS∑
k=1

∑
1≤i≤ j≤M

Sim( f i
k, f j

k) (11)

Coverage is described as the percentage of the trajectories supported by patterns in the trajectory
collection C.
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3.3. Case Study

We here demonstrate the illustrative cases of our approach. Based on the scale and distribution
of our dataset, the number of visit purposes T was set to seven and the support threshold τ0 was
set to 200. We defined λ1 as housing areas including apartments, dormitories, etc., λ2 as working
areas including companies, offices, etc., λ3 as shopping areas including malls, markets, etc., λ4 as
transportation landmarks including bus stations, subway stations, etc., λ5 as entertainment areas
including gyms, parks, etc., λ6 as studying areas including schools, libraries, etc., and λ7 as food areas.

There existed a great difference in quantity between the trajectories of each user. We report the
strong semantic trajectory patterns in Table 1. It is obvious that there is a tendency for a trajectory to
start with or end with a position of purpose λ1. This complies with our expectations.

Table 1. Semantic trajectory patterns and support.

Users (Source) Semantic Trajectory Patterns Support

1(GPS) Apartment→ O f f ice 1241
2(BDS) O f f ice→ Gym→ Apartment 774
3(GPS) O f f ice→ Food→ O f f ice 658
4(GPS) Apartment→ Subway Station→ Office→Mall 519
5(BDS) Apartment→ Science Place→ Food→ Gym→ Library 443

These cases demonstrate that our approach can discover interesting semantic mobility patterns.
When we obtained the strong patterns of one user, some interesting message could be found next.
Take the last record as an example. The semantic trajectory is shown in Figure 4. Some timestamps of
each switch in this record are listed in Table 2 (to make the user semantics more intuitive, we replaced
part of the seven main classes with the subclass after manual comparison with the location on the map).
Thus, we could get some useful knowledge of the user’s lifestyle:

1. It usually takes the user 20 min to have dinner at the New Dining Hall at around 17:30.
2. After dinner, the user is fond of going to the gymnasium for about half an hour.
3. At around 20:00, the user likes going to the library for about an hour and a half.
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Table 2. Some examples of the last records.

Apartment→Science Place
(No.2 Graduate Students’
Apartment to Laboratory)

Science Place→Food
(Laboratory to New

Dining Hall)

Food→Gym
(New Dining Hall to

Gymnasium)

Gym→Library
(Gymnasium to

Library)

14:06→14:30 17:21→17:40 18:30→19:03 20:03→21:30
13:57→14:25 17:35→17:50 18:50→19:17 19:53→21:25
13:56→14:40 17:30→17:47 18:45→19:13 20:01→21:32
14:10→14:32 17:41→17:57 19:01→19:28 20:10→21:29

Note. These timestamps represent the time when the user showed up at the location.

We can also infer some latent information of the user from the semantic trajectory patterns:

1. The user is probably a graduate student of the university.
2. The user may have the habit of breaking for lunch for around 25 min at their apartment.

3.4. Comparative Study

We now compare our approach with K-Means and DBSCAN against the three metrics, i.e.,
anti-diversity, coherence, and coverage. First, we tested the impact of the number of visit purposes T
on the performance of the three approaches. As described in Figures 5 and 6, the anti-diversity and the
coherence of the three methods rise with T. Thus, it is indicated that when T increases, the feature
vectors are divided into more clusters, which enhances the similarity within the cluster. Our method
outperforms the other two methods with reference to the anti-diversity and coherence.
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4. Further Work

There still remain several problems to be addressed in further study:
1. The patterns that occurred with special events, such as the Spring Festival, should be taken into

consideration even if their supports are less than the threshold.
2. Some other factors such as the weather or the traffic can be added to enrich the semantic

information hidden in the trajectories.
3. With the accumulation of data, effective search and information retrieval mechanisms have

become an urgent need in order to filter data, considering the memory limits of small mobile devices.
Therefore, analyzing data on a remote host such as the cloud or cloudlet will be a trend in future
research. However, the network response time will increase and privacy-related issues should also be
taken into account [19]. In recent years, cloud-dew architecture was proposed to solve the problem of
all resources existing far from users’ premises and far from users’ control [20]. The dew servers are
analyzed from architectural and organizational aspects as devices that collect, process, and offload
streaming data from devices, in addition to facilitating communication with higher-level servers in the
cloud [21]. With the support of hardware including NPU and other artificial intelligence (AI) hardware
that have excellent packet processing capabilities [22], real-time processing for semantic trajectory
patterns mining is a promising possibility.
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