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Abstract: In this paper, a double pendulum model is presented with unilateral rigid constraint under
harmonic excitation, which leads to be an asymmetric and non-smooth system. By introducing impact
recovery matrix, modal analysis, and matrix theory, the analytical expressions of the periodic solutions
for unilateral double-collision will be discussed in high-dimensional non-smooth asymmetric system.
Firstly, the impact laws are classified in order to detect the existence of periodic solutions of the system.
The impact recovery matrix is introduced to transform the impact laws of high-dimensional system
into matrix. Furthermore, by use of modal analysis and matrix theory, an invertible transformation
is constructed to obtain the parameter conditions for the existence of the impact periodic solution,
which simplifies the calculation and can be easily extended to high-dimensional non-smooth system.
Hence, the range of physical parameters and the restitution coefficients is calculated theoretically and
non-smooth analytic expression of the periodic solution is given, which provides ideas for the study
of approximate analytical solutions of high-dimensional non-smooth system. Finally, numerical
simulation is carried out to obtain the impact periodic solution of the system with small angle motion.

Keywords: non-smooth high-dimensional system; asymmetric system; impact periodic solution;
impact recovery matrix; non-smooth analytic solution

1. Introduction

As the most important actuator among all robot mechanisms, the mechanical arm was an important
research subject of robot technology [1–3]. The researches were focused on the drive system, sensing
system, shape design of the mechanical arm, and inertial impact influence on the dynamic response at
the link [3,4]. Many results showed that the impact double pendulum could be used to simulate the
bionic manipulator [5–7]. In fact, with the motion refinement of the manipulator and the installation
requirements of the external drive, the gap and damping at the link of the manipulator should be
considered, as well as the type and installation mode of the external drive, which can be simplified as a
collision double pendulum with external simple harmonic excitation. The collision double pendulum
with external excitation can explore the dynamic characteristics of the joint of the external wearable
manipulator. Specifically, the non-smooth periodic motion of the system is a hot issue. Through
theoretical research, suitable physical and geometric parameters will be provided for the design of the
manipulator to improve the application comfort, safety, and service life of the manipulator.

Impact pendulum system is a typical non-smooth dynamic system. In low-dimensional systems
most studies focused on the periodic solution, bifurcation, chaos, and so on [8–12]. For non-smooth
high-dimensional system, numerical simulation was applied to detect the dynamics [13–18]. The oblique
impact vibration between the double pendulum and the unilateral rigid constraint surface was studied
by numerical method [14]. The influence of excitation parameters and system physical parameters
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on the steady-state behavior of the system was given. Although the numerical solutions of unilateral
constrained systems were discussed, the analytic form and existence conditions of periodic solutions
still needed further detection. According to the periodic solution, there are many results of analytical
methods. Furthermore, the existence conditions of periodic solutions of single-degree-of-freedom
collision systems with unilateral single-impact and bilateral single-impact were obtained in [19,20],
which provided a theoretical analytical method for studying periodic solutions of impact systems.
However, its expression was so complex that it is difficult to generalize to practical application
engineering. In terms of theoretical analysis, it is also difficult to extend the calculation method to
multiple degrees of freedom. Hence, in this paper, by introducing impact recovery matrix and coupling
the modal analysis and matrix theory, the analytical expressions of the periodic solutions for unilateral
double-impact will be discussed in high-dimensional non-smooth system.

This paper is organized as follows. In the next section, a non-smooth double pendulum
model with unilateral double-impact is constructed. In Section 3, the types of periodic solutions of
two-degree-of-freedom multi-point collisions are studied due to the different boundary conditions.
By using the matrix theory [21] and introducing the invertible transformation, the theoretical conditions
for the existence of the periodic solutions of collisions and the analytic expressions of the periodic
solutions of collisions are discussed in Section 4. Numerical simulations are also carried out to confirm
these analytical predictions in Section 5.

2. System Modeling

Based on the double pendulum, we constructed a physical model of the non-smooth double
pendulum with unilateral rigid constraint as shown in Figure 1. The model consists of a smooth hinged
double pendulum with a rigid wall fixed to the base with a horizontal simple harmonic excitation
A cos(Ωt). A, Ω are the amplitude and frequency of the horizontal simple harmonic excitation. Here,
only consider the small angular motion of the two pendulums in the vertical plane, which means
θ0 − θ∗ ≤ θ1 ≤ θ0 and θ0 − θ∗ ≤ θ2 ≤ θ0(θ∗ is a smaller positive number). Assume that the angular
velocity is positive in the counter clockwise direction.
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Figure 1. Collision double pendulum model. Figure 1. Collision double pendulum model.

Where l1, l2; m1, m2; c1, c2 are the lengths of the two pendulums, the mass of two pendulums,
and the damper of the hinge joint, respectively. Assuming the two pendulums can only swing at a small
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angle is considered and the elastic collision of the pendulum occurs at the rigid wall θi = θ0, i = 1, 2.
That is to say, the deformation and time during the pulse excitation are ignored.

When the pendulum collides with the rigid wall, the vector field of the system will have a sudden
change in momentum. The phase diagram and time history diagram will be asymmetrical discontinuity,
as shown in Figure 2a,b.
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In the system, the pendulum angles θ1 and θ2 of the double pendulum are taken as generalized
coordinates. According to Lagrange function method, the equation of the system can be obtained

(m1 + m2)l12
..
θ1 + m2l1l2

..
θ2 cos(θ1 − θ2) + m2l1l2

.
θ2

2 sin(θ1 − θ2)

+(m1 + m2)gl1 sinθ1 −AΩ2(m1 + m2)l1 cos(Ωt) cosθ1 = −c1
.
θ1 − c2(

.
θ1 −

.
θ2)

.
θ1+ = −(1− γ)

.
θ1−

∣∣∣∣θ=θ0 −
π
2 < θ1 < θ0

m2l22
..
θ2 + m2l1l2

..
θ1 cos(θ1 − θ2) −m2l1l2

.
θ1

2 sin(θ1 − θ2)

+m2gl1 sinθ2 −AΩ2m2l2 cos(Ωt) cosθ2 = c2(
.
θ1 −

.
θ2)

.
θ2+ = −(1− γ)

.
θ2−

∣∣∣∣θ=θ0 −
π
2 < θ2 < θ0

, (1)

where θ0 ∈ [0, π2 ],
.
θ− and

.
θ+ represents the angular velocity before and after the impact, respectively.

γ(0 < γ < 1) is a coefficient of restitution and (1− γ) ∈ (0, 1).
Let

m = m2
m1

, ξ = m
1+m ,ω2

1 =
g
l1

,ω2
2 =

g
l2

,µ = l1
l2

,α = ξµ−1, a = A
l1

,ωτ = Ωt,
p1 = c1

ω1(1+m)
1
2 (m1+m2)l21

, p2 = c2

ω1(1+m)
1
2 (m1+m2)l21

, p3 = c2

ω1(1+m)
1
2 m2l22

(2)

The non-dimensional Equation (1) is written as

θ′′ 1 + αθ′′ 2 cos(θ1 − θ2) + αθ′22 sin(θ1 − θ2) +
1

1+m sinθ1

+p1θ′1 + p2(θ′1 − θ′2) − aω2 cos(ωτ) cosθ1 = 0
θ′1+ = −(1− γ)θ′1−

∣∣∣θ=θ0 −
π
2 < θ1 < θ0

θ′′ 2 + µθ′′ 1 cos(θ1 − θ2) − µθ′12 sin(θ1 − θ2) +
µ

1+m sinθ2

+p3(θ′2 − θ′1) − µaω2 cos(ωτ) cosθ2 = 0
θ′2+ = −(1− γ)θ′2−

∣∣∣θ=θ0 −
π
2 < θ2 < θ0

, (3)

where θ′i is a time derivation dθi
dτ , i = 1, 2.

3. Classification of Periodic Solution

Take t = 0(θ1 = θ2 = θ0) as the initial time and T0 = 2nπ
ω (θ1 = θ2 = θ0) as the instantaneous of

the next collision. This periodic motion, i.e., [0, T0], is called a one-touch periodic motion.
s1: The top pendulum collides with the rigid constraint:

θ1(0) = θ1(T0) = θ10,θ′1(0) = θ′1(T+
0 ),θ′1(T+

0 ) = −(1− γ)θ′1(T−0 ).
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s0: The top pendulum did not collide with the rigid constraint:

θ1(0) = θ1(T0) = θ10,θ′1(0) = θ′1(T0) = θ′10.

x1: The bottom pendulum collides with the rigid constraint:

θ2(0) = θ2(T0) = θ20,θ′2(0) = θ′2(T+
0 ),θ′2(T+

0 ) = −(1− γ)θ′2(T−0 ).

x0: The bottom pendulum did not collide with the rigid constraint:

θ2(0) = θ2(T0) = θ20,θ′2(0) = θ′2(T0) = θ′20.

Note that we consider periodic solutions, which implies θ10 = θ20 = θ0.
We consider the existence conditions of different types of periodic solutions. The classification of

periodic solutions is shown as Table 1.

Table 1. This classification of periodic solutions.

Type of Solution Constraint Condition

The first kind of periodic solution (s1, x1)
The second kind of periodic solution (s1, x0)
The third kind of periodic solution (s0, x1)
The forth kind of periodic solution (s0, x0)

Because of the strong nonlinearity and non-smoothness of the system, it is difficult to find the
periodic solution of the original system directly. It is especially difficult to find the periodic analytical
solutions of different boundary conditions by selecting reasonable physical parameters and coefficient
of restitution of the model. So, considering the small angle oscillation of the manipulator arm (leg) in
engineering practice, we study the periodic solution of the small angle motion of the system. Because
of non-smoothness, the system is still strongly nonlinear and non-smooth even though it is moving at a
small angle. Hence, we will detect the conditions for the existence of parameters of periodic solutions
of non-smooth systems and the reference parameters range for the existence of non-smooth periodic
solutions can be given.

4. Periodic Solution

In order to facilitate the subsequent analysis, the following approximations

cos(θ1 − θ2) ≈ 1, sin(θ1 − θ2) ≈ θ1 − θ2, sinθi ≈ θi, cosθi ≈ 1, i = 1, 2,θ′12
≈ 0,θ′22

≈ 0 (4)

are given based on the fact that the swings of top and bottom pendulum are enough small during the
whole motion process. Substituting (4) into (3), (3) is rewritten as:

θ′′ 1 + αθ′′ 2 +
1

1+mθ1 + p1θ′1 + p2(θ′1 − θ′2) − aω2 cos(ωτ) = 0
θ′1+ = −(1− γ)θ′1−

∣∣∣θ=θ0 −
π
2 < θ1 < θ0

θ′′ 2 + µθ′′ 1 +
µ

1+mθ2 + p3(θ′2 − θ′1) − µaω2 cos(ωτ) = 0
θ′2+ = −(1− γ)θ′2−

∣∣∣θ=θ0 −
π
2 < θ2 < θ0

, (5)

i.e., 
θ′′ 1 + θ1 − ξθ2 + k1θ′1 − k2θ′2 = aω2 cos(ωτ)
θ′1+ = −(1− γ)θ′1−

∣∣∣θ=θ0 −
π
2 < θ1 < θ0

θ′′ 2 − µθ1 + µθ2 − k3θ′1 + k4θ′2 = 0
θ′2+ = −(1− γ)θ′2−

∣∣∣θ=θ0 −
π
2 < θ2 < θ0

, (6)
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where
k1 = (1 + m)(p1 + p2 + αp3), k2 = (1 + m)(p2 + αp3),

k3 = (1 + m)(µp1 + µp2 + p3), k4 = (1 + m)(µp2 + p3).

Equation (6) can be rewritten as(
1 0
0 1

)(
θ′′ 1
θ′′ 2

)
+

(
k1 −k2

−k3 k4

)(
θ′1
θ′2

)
+

(
1 −ξ
−µ µ

)(
θ1

θ2

)
=

(
f10 cos(ωτ)

0

)
, (7)

−
π
2
< θi < θ0, i = 1, 2,θ′i+ = −(1− γ)θ′i−

∣∣∣∣θ=θ0 i = 1, 2. (8)

Clearly, Equation (8) represents collision constraint conditions and impact equation.
Consider the initial conditions

θ1(0)
θ′1(0)
θ2(0)
θ′2(0)

 =

θ0

θ′10

θ0

θ′20

(θ0 , 0,θ′10 ≥ 0,θ′20 ≥ 0), (9)

Let ω1 and ω2 be the natural frequencies of system (7). Without collision, they can be written as

ω1 =

√√
1 + µ+

√
(1 + µ)2

− 4µ(1− ξ)

2
, ω2 =

√√
1 + µ−

√
(1 + µ)2

− 4µ(1− ξ)

2
. (10)

Assume that

Φ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
=


1√

1+(1−ω2
1)

2
1√

1+(1−ω2
2)

2

1−ω2
1√

1+(1−ω2
1)

2

1−ω2
2√

1+(1−ω2
2)

2

 (11)

is the regular mode matrix of system (7).
Take

X = Φy, (12)

where X = (θ1,θ2)
T, y = (y1, y2)

T. Equation (7) can be decoupled to

I
..
y + C

.
y + Λy = F cos(ωt), (13)

where

I =
(

1 0
0 1

)
, C =

(
2ζω2

1 0
0 2ζω2

2

)
, Λ =

(
ω2

1 0
0 ω2

2

)
,

F =
(

f1 f2
)T

= ΦTP, P =
(

f10 0
)T

.

Using the modal superposition method and considering the transformation (12), the solutions of
system (7) are obtained as follows

θi(t) =
2∑

j=1

ϕi j(e−η jt(a j cos(ωdjt) + b j sin(ωdjt)) + A j sinωt + B j cosωt) (14)

θ′i(t) =
2∑

j=1
ϕi j(e−η jt(b jωdj − η ja j) cos(ωdjt) − (a jωdj + η jb j) sin(ωdjt))

+A jω cos(ωt) − B jω sin(ωt))
(15)
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where ωdj =
√
ω2

j − η
2
j , η j = ζω2

j ,a j, b j is the integral constant determined by the initial condition of

system (6), i = 1, 2.
Let C(t) and D are matrices defined as follows

C(t) =


ϕ11e1cd1 ϕ12e2cd2 ϕ11e1sd1 ϕ12e2sd2
−ϕ11e1gd1 −ϕ12e2gd2 ϕ11e1hd1 ϕ12e2hd2

ϕ21e1cd1 ϕ22e2cd2 ϕ21e1sd1 ϕ22e2sd2
−ϕ21e1gd1 −ϕ22e2gd2 ϕ21e1hd1 ϕ22e2hd2

,

D =


ϕ11 ϕ12 0 0
0 0 −ϕ11 −ϕ12

ϕ21 ϕ22 0 0
0 0 −ϕ21 −ϕ22

,

(14) and (15) can be rewritten as
θ1(t)
θ′1(t)
θ2(t)
θ′2(t)

 = C(t)


a1

a2

b1

b2

+ D


A1 sinωt + B1 cosωt
A2 sinωt + B2 cosωt

ω(B1 sinωt−A1 cosωt)
ω(B2 sinωt−A2 cosωt)

, (16)

where cd1 = cosωd1t, cd2 = cosωd2t, sd1 = sinωd1t, sd2 = sinωd2t, e1 = e−η1t, e2 = e−η2t, gd1 = η1cd1 +

ωd1s1, gd2 = η2c2 +ωd2s2, hd1 = ωd1c1 − η1s1, hd2 = ωd2c2 − η2s2,

A j =
ω2

j −ω
2(

ω2
j −ω

2
)2
+ 4ζ2ω4

jω
2

f j, j = 1, 2 (17)

B j =
−2ζω2

jω(
ω2

j −ω
2
)2
+ 4ζ2ω4

jω
2

f j, j = 1, 2 (18)

According to Table 1, considering the first kind of collision periodic solutions, the impact periodic
solution should satisfy conditions s1 and x1.

From (9), (16) and t = 0, we have
θ10

θ′10

θ10

θ′20

 = C(0)


a1

a2

b1

b2

+ D


B1

B2

−ωA1

−ωA2

 =

θ0

θ′10

θ0

θ′20

, (19)

where

C(0) =


ϕ11 ϕ12 0 0
−η1ϕ11 −η2ϕ12 ϕ11ωd1 ϕ12ωd2
ϕ21 ϕ22 0 0
−η1ϕ21 −η2ϕ22 ϕ21ωd2 ϕ22ωd2

, D =


ϕ11 ϕ12 0 0
0 0 −ϕ11 −ϕ12

ϕ21 ϕ22 0 0
0 0 −ϕ21 −ϕ22

.

Moreover, θ0 , 0,θ′10 ≥ 0,θ′20 ≥ 0 should be satisfied.
So, the integral constant a j, b j( j = 1, 2) should yield
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ϕ11a1 + ϕ12a2 + ϕ11B1 + ϕ12B2 , 0
ϕ21a1 + ϕ22a2 + ϕ21B1 + ϕ22B2 , 0
−η1ϕ11a1 − η2ϕ12a2 + ϕ11ωd1b1 + ϕ12ωd2b2 +ωϕ11A1 +ωϕ12A2 ≥ 0
−η1ϕ21a1 − η2ϕ22a2 + ϕ21ωd1b1 + ϕ22ωd2b2 +ωϕ21A1 +ωϕ22A2 ≥ 0

. (20)

Note T−0 and T+
0 are the moments before and after the collision. Since the collision is instantaneous,

there are T0 = T−0 = T+
0 . Collision condition can be expressed as

θ1(T+
0 )

θ′1(T+
0 )

θ2(T+
0 )

θ′2(T+
0 )

 =

θ1(0)
θ′1(0)
θ2(0)
θ′2(0)

 =

θ0

θ′10

θ0

θ′20

 (21)


θ1(T+

0 )

θ′1(T+
0 )

θ2(T+
0 )

θ′2(T+
0 )

 = R1


θ1(T−0 )
θ′1(T−0 )
θ2(T−0 )
θ′2(T−0 )

 (22)

where

R1 =


1 0 0 0
0 −(1− γ) 0 0
0 0 1 0
0 0 0 −(1− γ)

, R1
−1 =


1 0 0 0
0 −

1
(1−γ) 0 0

0 0 1 0
0 0 0 −

1
(1−γ)

. (23)

So, from (21) and (22), we can obtain
θ1(T−0 )
θ′1(T−0 )
θ2(T−0 )
θ′2(T−0 )

 = R1
−1


θ1(T+

0 )

θ′1(T+
0 )

θ2(T+
0 )

θ′2(T+
0 )

 = R1
−1


θ0

θ′10

θ0

θ′20

. (24)

Moreover, R1 is called the corresponding collision recovery matrix for the collision conditions s1 and x1.
According to Equation (16),

θ1(T−0 )
θ′1(T−0 )
θ2(T−0 )
θ′2(T−0 )

 = C(T−0 )


a1

a2

b1

b2

+ D


A1 sin(ωT−0 ) + B1 cos(ωT−0 )
A2 sin(ωT−0 ) + B2 cos(ωT−0 )

ω(B1 sin(ωT−0 ) −A1 cos(ωT−0 ))
ω(B2 sin(ωT−0 ) −A2 cos(ωT−0 ))

 (25)

where

C(T−0 ) =


ϕ11e1cd1 ϕ12e2cd2 ϕ11e1sd1 ϕ12e2sd2
−ϕ11e1g1 −ϕ12e2g2 ϕ11e1h1 ϕ12e2h2

ϕ21e1cd1 ϕ22e2cd2 ϕ21e1sd1 ϕ22e2sd2
−ϕ21e1g1 −ϕ22e2g2 ϕ21e1h1 ϕ22e2h2

,

g1 = η1c1 +ωd1s1, g2 = η2c2 +ωd2s2, h1 = ωd1c1 − η1s1, h2 = ωd2c2 − η2s2,
c1 = cos( 2nπωd1

ω ),

s1 = sin(
2nπωd1

ω
), c2 = cos(

2nπωd2

ω
), s2 = sin(

2nπωd2

ω
), D =


ϕ11 ϕ12 0 0
0 0 −ϕ11 −ϕ12

ϕ21 ϕ22 0 0
0 0 −ϕ21 −ϕ22
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From (24) and (25),

R1
−1


θ0

θ′10

θ0

θ′20

 = C(T−0 )


a1

a2

b1

b2

+ D


B1

B2

−ωA1

−ωA2

 (26)

can be known.
From (26), 

θ0

θ′10

θ0

θ′20

 = R1C(T−0 )


a1

a2

b1

b2

+ R1D


B1

B2

−ωA1

−ωA2

 (27)

can be obtained.
From (19) and (27), we can obtain

C(0)


a1

a2

b1

b2

+ D


B1

B2

−ωA1

−ωA2

 = R1C(T−0 )


a1

a2

b1

b2

+ R1D


B1

B2

−ωA1

−ωA2

, (28)

i.e.,

(C(0) −R1C(T−0 ))


a1

a2

b1

b2

= (R1 − E)D


B1

B2

−ωA1

−ωA2

, (29)

where A1, A2, B1, B2 are the constants determined by the physical parameters of the system. The existence
problem of non-smooth periodic solution of system (6) is transformed into the existence of solutions
of (20) and (29). In summary, we can draw a conclusion as follows.

Theorem 1. If the parameters of the collision system (6) satisfy the condition (20) and (29), system (6) has a
one-impact periodic motion.

Let
k1 = 1− e1c1, k2 = 1− e2c2, m1 = e1s1, m2 = e2s2,
n1 = η1 − (1− γ)e1g1, n2 = η2 − (1− γ)e2g2,
p1 = ωd1 − (1− γ)e1h1, p2 = ωd2 − (1− γ)e2h2,
u1 = ω(γ− 2)(ϕ11A1 + ϕ12A2), u2 = ω(γ− 2)(ϕ21A1 + ϕ22A2),

(30)

Equation (29) can be expressed as follows
ϕ11k1 ϕ12k2 −ϕ11m1 −ϕ12m2

−ϕ11n1 −ϕ12n2 ϕ11p1 ϕ12p2

ϕ21k1 ϕ22k2 −ϕ21m1 −ϕ22m2

−ϕ21n1 −ϕ22n2 ϕ21p1 ϕ22p2




a1

a2

b1

b2

 =


0
u1

0
u2

. (31)

When
k1 , 0, k2 , 0, k1p1 −m1n1 , 0, k2p2 −m2n2 , 0, (32)
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by constructing an appropriate invertible transformation matrix

P =


ϕ22p1

P1

ϕ22m1
P1

−ϕ12p1
P1

−ϕ12m1
P1

−ϕ21p2
P2

−ϕ21m2
P2

ϕ11p2
P2

ϕ11m2
P2

ϕ22n1
P1

ϕ22k1
P1

−ϕ12n1
P1

−ϕ12k1
P1

−ϕ21n1
P1

−ϕ21k2
P1

ϕ11n2
P1

ϕ11k2
P1

,

Equation (31) can be taken as


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




a1

a2

b1

b2

 =


m1(ϕ22u1−ϕ12u2)
P1

m2(ϕ11u2−ϕ12u1)
P2

k1(ϕ22u1−ϕ12u2)
P1

k1(ϕ11u2−ϕ12u1)
P2


, (33)

where P1 = (ϕ11ϕ22 −ϕ12ϕ21)(k1p1 −m1n1), P2 = (ϕ11ϕ22 −ϕ12ϕ21)(k2p2 −m2n2).
If the physical parameters and the collision recovery coefficient of system (6) are given, the unique

integral constant a j, b j( j = 1, 2) can be calculated from (32) as follows

a1 =
m1(ϕ22u1 −ϕ12u2)

(ϕ11ϕ22 −ϕ12ϕ21)(k1p1 −m1n1)
, a2 =

m2(ϕ11u2 −ϕ12u1)

(ϕ11ϕ22 −ϕ12ϕ21)(k2p2 −m2n2)
(34)

b1 =
k1(ϕ22u1 −ϕ12u2)

(ϕ11ϕ22 −ϕ12ϕ21)(k1p1 −m1n1)
, b2 =

k1(ϕ11u2 −ϕ12u1)

(ϕ11ϕ22 −ϕ12ϕ21)(k2p2 −m2n2)
(35)

Therefore, from (14), (20), (34), and (35), the first kind of collision periodic solution of system (6)
is obtained

θi(t) =
2∑

j=1
ϕi j(e−η jt(a j cos(ωdjt) + b j sin(ωdjt)) + A j sinωt + B j cosωt)

(i = 1, 2)(t = 0 mod 2nπ/ω)
(36)

Moreover, when k1 , 0, k2 , 0, k1p1 −m1n1 , 0, k2p2 −m2n2 , 0 are not held, (29) has an infinite number
of solutions or no solutions, which leads to many periodic or no periodic solutions in the original
system (6).

For example, if k1 , 0, k2 , 0, k1p1 −m1n1 , 0, k2p2 −m2n2 = 0, (31) is equivalent to
ϕ11k1 ϕ12k2 −ϕ11m1 −ϕ12m2

0 0 ϕ11(p1 −
m1
k1

n2) ϕ12(p2 −
m2
k2

n2)

0 1 0 −m2
k2

0 0 0 p2 −
m2
k2

n2




a1

a2

b1

b2

 =


0
u1

0
ϕ11u2−ϕ21u1
ϕ11ϕ22−ϕ12ϕ21

. (37)

When ϕ11u2 − ϕ21u1 , 0 or u1 , 0 is true, Equation (37) has no solution. Hence, system (6) has no
collision periodic solution.

Note 1 Conditions (20) and (32) are sufficient and unnecessary conditions for system (6) with the
first kind of collision periodic solution.

Note 2 The collision recovery matrices R2, R3, R4 of the second type, the third type, and the fourth
type of periodic solutions can be shown as

R2 =


1 0 0 0
0 −(1− γ) 0 0
0 0 1 0
0 0 0 1

, R3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −(1− γ)

, R4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
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In order to get the second type, the third type and the fourth type of periodic solutions, R1 can be
replaced by Ri, i = 2, 3, 4 in Equation (28), we have

(C(0) −RiC(T−0 ))


a1

a2

b1

b2

= (Ri − E)D


B1

B2

−ωA1

−ωA2

, i = 2, 3, 4 (38)

Clearly, for specific matrices, invertible transformation matrices can be constructed. Similar methods
can be used to obtain the existence conditions and analytical expressions of periodic solutions.

5. Numerical Simulation

In order to verify the results of theoretical analysis, the suitable physical parameters and coefficient
of restitution are selected to solve the periodic solutions according to (20) and (32). From (17), (18),
and (20), we know A2 = 0, B2 = 0 and

ϕ11a1 + ϕ12a2 + ϕ11B1 , 0
ϕ21a1 + ϕ22a2 + ϕ21B1 , 0
−η1ϕ11a1 − η2ϕ12a2 + ϕ11ωd1b1 + ϕ12ωd2b2 +ωϕ11A1 ≥ 0
−η1ϕ21a1 − η2ϕ22a2 + ϕ21ωd1b1 + ϕ22ωd2b2 +ωϕ21A1 ≥ 0

.

Let m = 3,µ = 3.24, ξ = 0.75,ω = 1.5, f10 = 0.162,γ = 0.1, from (20), (30), (31), and (32),
the corresponding parameter values are calculated. The phase diagram and Poincare section of
the periodic 3 motion of the upper (lower) pendulum of system (6) are shown in Figures 3 and 4.
The blue solid line on the right side of the phase diagram is the displacement of the collision point.
The red phase point is the projection of the Poincare section on the phase diagram. As can be seen in
Figures 3 and 4, the phase diagram and the velocity at the collision point have a momentary jump,
indicating that upper (lower) pendulum and the rigid wall collided.
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When the parameter value is m = 1,µ = 3.24, ξ = 0.5,ω = 1.5, f10 = 0.22,γ = 0.1, from (37)
and R2, a j, b j( j = 1, 2) can be obtained. Hence, we get the second kind of collision periodic solution.
The phase diagram and Poincare section of the periodic 2 motion of the upper pendulum are shown in
Figures 5a and 6a. As can be seen in Figure 5a,c, the phase diagram and the velocity at the collision point
have a momentary jump, indicating that upper pendulum and the rigid wall collided. But in Figure 6a,
there is a small gap between the phase diagram curve and the blue solid line, which indicates that
the upper pendulum does not collide with the right wall. As can be seen from Figure 6c, the velocity
diagram is continuous, which further confirms the fact that the lower pendulum does not collide.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 17 
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When the parameter value is m = 1,µ = 3.2, ξ = 0.5,ω = 1.5, f10 = 0.1,γ = 0.1, from (37) and
R3, aj, bj(j = 1, 2) can be obtained. Hence, we can detect the third kind of collision periodic solution.
The phase diagram and Poincare section of the periodic 2 motion are shown in Figures 7a and 8a.
As can be seen in Figure 7a, there is a big gap between the phase diagram curve and the blue solid
line, indicating that the upper pendulum does not collide with the right wall and the velocity diagram
further confirms the fact in Figure 7c. In Figure 8a,c, the phase diagram and the velocity at the collision
point have a momentary jump, showing that lower pendulum and the rigid baffle collided with the
right wall.Symmetry 2019, 11, x FOR PEER REVIEW 15 of 17 
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Figure 8. The third kind of collision periodic solution: (a) Phase diagram and Poincare section of
periodic 2 motion of lower pendulum; (b) The time-displacement diagram of the lower pendulum;
(c) The time-velocity diagram of the lower pendulum.

The simulation results show that the collision periodic solution of the system can be found
based on the condition of the existence of the collision analytical periodic solution, which provides a
theoretical method for studying the periodic solution of the non-smooth system. The case of collision
with left wall can be discussed similarly. Due to the complex type of periodic solution, further analysis
will be conducted for the case of bilateral constraint, which could be carried out in a separate paper.

6. Conclusions

A kind of asymmetry system has been constructed by use of the non-smooth unilateral rigid
constrained double pendulum, which is subjected to harmonic excitation. Using the mode superposition
method and matrix theory, the existence conditions of periodic solutions and the expressions of periodic
analytical solutions were deduced for small angle vibration of the system. The numerical simulation
showed that this method can predict the existence of periodic solutions of collisions. From the previous
calculation, it can be seen that the integral constants and existence conditions of three kinds of periodic
solutions of collisions can be calculated by introducing matrix tools. This method provided a matrix
computing tool for solving the periodic solutions of high-dimensional non-smooth systems, aiming at
multi-point collisions. As long as the appropriate collision recovery matrix was found, the calculation
process was similar, which provided a mechanized calculation for simplifying the manipulator into
several degrees of freedom problems in the research and design of the manipulator. Thus, a method for
the fault research of the fine manipulator was provided to facilitate the engineers to use this method to
find the periodic solution of the high-dimensional non-smooth system.
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