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Abstract

:

In this paper, a double pendulum model is presented with unilateral rigid constraint under harmonic excitation, which leads to be an asymmetric and non-smooth system. By introducing impact recovery matrix, modal analysis, and matrix theory, the analytical expressions of the periodic solutions for unilateral double-collision will be discussed in high-dimensional non-smooth asymmetric system. Firstly, the impact laws are classified in order to detect the existence of periodic solutions of the system. The impact recovery matrix is introduced to transform the impact laws of high-dimensional system into matrix. Furthermore, by use of modal analysis and matrix theory, an invertible transformation is constructed to obtain the parameter conditions for the existence of the impact periodic solution, which simplifies the calculation and can be easily extended to high-dimensional non-smooth system. Hence, the range of physical parameters and the restitution coefficients is calculated theoretically and non-smooth analytic expression of the periodic solution is given, which provides ideas for the study of approximate analytical solutions of high-dimensional non-smooth system. Finally, numerical simulation is carried out to obtain the impact periodic solution of the system with small angle motion.
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1. Introduction


As the most important actuator among all robot mechanisms, the mechanical arm was an important research subject of robot technology [1,2,3]. The researches were focused on the drive system, sensing system, shape design of the mechanical arm, and inertial impact influence on the dynamic response at the link [3,4]. Many results showed that the impact double pendulum could be used to simulate the bionic manipulator [5,6,7]. In fact, with the motion refinement of the manipulator and the installation requirements of the external drive, the gap and damping at the link of the manipulator should be considered, as well as the type and installation mode of the external drive, which can be simplified as a collision double pendulum with external simple harmonic excitation. The collision double pendulum with external excitation can explore the dynamic characteristics of the joint of the external wearable manipulator. Specifically, the non-smooth periodic motion of the system is a hot issue. Through theoretical research, suitable physical and geometric parameters will be provided for the design of the manipulator to improve the application comfort, safety, and service life of the manipulator.



Impact pendulum system is a typical non-smooth dynamic system. In low-dimensional systems most studies focused on the periodic solution, bifurcation, chaos, and so on [8,9,10,11,12]. For non-smooth high-dimensional system, numerical simulation was applied to detect the dynamics [13,14,15,16,17,18]. The oblique impact vibration between the double pendulum and the unilateral rigid constraint surface was studied by numerical method [14]. The influence of excitation parameters and system physical parameters on the steady-state behavior of the system was given. Although the numerical solutions of unilateral constrained systems were discussed, the analytic form and existence conditions of periodic solutions still needed further detection. According to the periodic solution, there are many results of analytical methods. Furthermore, the existence conditions of periodic solutions of single-degree-of-freedom collision systems with unilateral single-impact and bilateral single-impact were obtained in [19,20], which provided a theoretical analytical method for studying periodic solutions of impact systems. However, its expression was so complex that it is difficult to generalize to practical application engineering. In terms of theoretical analysis, it is also difficult to extend the calculation method to multiple degrees of freedom. Hence, in this paper, by introducing impact recovery matrix and coupling the modal analysis and matrix theory, the analytical expressions of the periodic solutions for unilateral double-impact will be discussed in high-dimensional non-smooth system.



This paper is organized as follows. In the next section, a non-smooth double pendulum model with unilateral double-impact is constructed. In Section 3, the types of periodic solutions of two-degree-of-freedom multi-point collisions are studied due to the different boundary conditions. By using the matrix theory [21] and introducing the invertible transformation, the theoretical conditions for the existence of the periodic solutions of collisions and the analytic expressions of the periodic solutions of collisions are discussed in Section 4. Numerical simulations are also carried out to confirm these analytical predictions in Section 5.




2. System Modeling


Based on the double pendulum, we constructed a physical model of the non-smooth double pendulum with unilateral rigid constraint as shown in Figure 1. The model consists of a smooth hinged double pendulum with a rigid wall fixed to the base with a horizontal simple harmonic excitation Acos(Ωt). A,Ω are the amplitude and frequency of the horizontal simple harmonic excitation. Here, only consider the small angular motion of the two pendulums in the vertical plane, which means θ0−θ*≤θ1≤θ0 and θ0−θ*≤θ2≤θ0(θ* is a smaller positive number). Assume that the angular velocity is positive in the counter clockwise direction.



Where l1,l2;m1,m2;c1,c2 are the lengths of the two pendulums, the mass of two pendulums, and the damper of the hinge joint, respectively. Assuming the two pendulums can only swing at a small angle is considered and the elastic collision of the pendulum occurs at the rigid wall θi=θ0,i=1,2. That is to say, the deformation and time during the pulse excitation are ignored.



When the pendulum collides with the rigid wall, the vector field of the system will have a sudden change in momentum. The phase diagram and time history diagram will be asymmetrical discontinuity, as shown in Figure 2a,b.



In the system, the pendulum angles θ1 and θ2 of the double pendulum are taken as generalized coordinates. According to Lagrange function method, the equation of the system can be obtained


{(m1+m2)l12θ¨1+m2l1l2θ¨2cos(θ1−θ2)+m2l1l2θ˙22sin(θ1−θ2)+(m1+m2)gl1sinθ1−AΩ2(m1+m2)l1cos(Ωt)cosθ1=−c1θ˙1−c2(θ˙1−θ˙2)θ˙1+=−(1−γ)θ˙1−|θ=θ0−π2<θ1<θ0 m2l22θ¨2+m2l1l2θ¨1cos(θ1−θ2)−m2l1l2θ˙12sin(θ1−θ2)+m2gl1sinθ2−AΩ2m2l2cos(Ωt)cosθ2=c2(θ˙1−θ˙2)  θ˙2+=−(1−γ)θ˙2−|θ=θ0−π2<θ2<θ0  ,



(1)




where θ0∈[0,π2], θ˙− and θ˙+ represents the angular velocity before and after the impact, respectively. γ(0<γ<1) is a coefficient of restitution and (1−γ)∈(0,1).



Let




m=m2m1,ξ=m1+m,ω12=gl1,ω22=gl2,μ=l1l2,α=ξμ−1,a=Al1,ωτ=Ωt,p1=c1ω1(1+m)12(m1+m2)l12,p2=c2ω1(1+m)12(m1+m2)l12,p3=c2ω1(1+m)12m2l22



(2)





The non-dimensional Equation (1) is written as


{θ″1+αθ″2cos(θ1−θ2)+αθ′22sin(θ1−θ2)+11+msinθ1+p1θ′1+p2(θ′1−θ′2)−aω2cos(ωτ)cosθ1=0 θ′1+=−(1−γ)θ′1−|θ=θ0 −π2<θ1<θ0θ″2+μθ″1cos(θ1−θ2)−μθ′12sin(θ1−θ2)+μ1+msinθ2+p3(θ′2−θ′1)−μaω2cos(ωτ)cosθ2=0  θ′2+=−(1−γ)θ′2−|θ=θ0−π2<θ2<θ0,



(3)




where θ′i is a time derivation dθidτ,i=1,2.




3. Classification of Periodic Solution


Take t=0(θ1=θ2=θ0) as the initial time and T0=2nπω(θ1=θ2=θ0) as the instantaneous of the next collision. This periodic motion, i.e., [0,T0], is called a one-touch periodic motion.



s1: The top pendulum collides with the rigid constraint:


θ1(0)=θ1(T0)=θ10,θ′1(0)=θ′1(T0+),θ′1(T0+)=−(1−γ)θ′1(T0−).











s0: The top pendulum did not collide with the rigid constraint:


θ1(0)=θ1(T0)=θ10,θ′1(0)=θ′1(T0)=θ′10.











x1: The bottom pendulum collides with the rigid constraint:


θ2(0)=θ2(T0)=θ20,θ′2(0)=θ′2(T0+),θ′2(T0+)=−(1−γ)θ′2(T0−).











x0: The bottom pendulum did not collide with the rigid constraint:


θ2(0)=θ2(T0)=θ20,θ′2(0)=θ′2(T0)=θ′20.








Note that we consider periodic solutions, which implies θ10=θ20=θ0.



We consider the existence conditions of different types of periodic solutions. The classification of periodic solutions is shown as Table 1.



Because of the strong nonlinearity and non-smoothness of the system, it is difficult to find the periodic solution of the original system directly. It is especially difficult to find the periodic analytical solutions of different boundary conditions by selecting reasonable physical parameters and coefficient of restitution of the model. So, considering the small angle oscillation of the manipulator arm (leg) in engineering practice, we study the periodic solution of the small angle motion of the system. Because of non-smoothness, the system is still strongly nonlinear and non-smooth even though it is moving at a small angle. Hence, we will detect the conditions for the existence of parameters of periodic solutions of non-smooth systems and the reference parameters range for the existence of non-smooth periodic solutions can be given.




4. Periodic Solution


In order to facilitate the subsequent analysis, the following approximations


cos(θ1−θ2)≈1,sin(θ1−θ2)≈θ1−θ2,sinθi≈θi,cosθi≈1,i=1,2,θ′12≈0,θ′22≈0



(4)




are given based on the fact that the swings of top and bottom pendulum are enough small during the whole motion process. Substituting (4) into (3), (3) is rewritten as:


{θ″1+αθ″2+11+mθ1+p1θ′1+p2(θ′1−θ′2)−aω2cos(ωτ)=0θ′1+=−(1−γ)θ′1−|θ=θ0−π2<θ1<θ0θ″2+μθ″1+μ1+mθ2+p3(θ′2−θ′1)−μaω2cos(ωτ)=0θ′2+=−(1−γ)θ′2−|θ=θ0−π2<θ2<θ0,



(5)




i.e.,


{θ″1+θ1−ξθ2+k1θ′1−k2θ′2=aω2cos(ωτ)θ′1+=−(1−γ)θ′1−|θ=θ0−π2<θ1<θ0 θ″2−μθ1+μθ2−k3θ′1+k4θ′2=0θ′2+=−(1−γ)θ′2−|θ=θ0−π2<θ2<θ0,



(6)




where


k1=(1+m)(p1+p2+αp3),k2=(1+m)(p2+αp3),k3=(1+m)(μp1+μp2+p3),k4=(1+m)(μp2+p3).








Equation (6) can be rewritten as


(1001)(θ″1θ″2)+(k1−k2−k3k4)(θ′1θ′2)+(1−ξ−μμ)(θ1θ2)=(f10cos(ωτ)0),



(7)






−π2<θi<θ0,i=1,2,θ′i+=−(1−γ)θ′i−|θ=θ0i=1,2.



(8)




Clearly, Equation (8) represents collision constraint conditions and impact equation.



Consider the initial conditions


(θ1(0)θ′1(0)θ2(0)θ′2(0))=(θ0θ′10θ0θ′20)(θ0≠0,θ′10≥0,θ′20≥0),



(9)







Let ω1 and ω2 be the natural frequencies of system (7). Without collision, they can be written as




ω1=1+μ+(1+μ)2−4μ(1−ξ)2,ω2=1+μ−(1+μ)2−4μ(1−ξ)2.



(10)





Assume that


Φ=(φ11φ12φ21φ22)=(11+(1−ω12)211+(1−ω22)21−ω121+(1−ω12)21−ω221+(1−ω22)2)



(11)




is the regular mode matrix of system (7).



Take


X=Φy,



(12)




where X=(θ1,θ2)T,y=(y1,y2)T. Equation (7) can be decoupled to


Iy¨+Cy˙+Λy=Fcos(ωt),



(13)




where




I=(1001),C=(2ζω12002ζω22),Λ=(ω1200ω22),










F=(f1f2)T=ΦTP,P=(f100)T.









Using the modal superposition method and considering the transformation (12), the solutions of system (7) are obtained as follows


θi(t)=∑j=12φij(e−ηjt(ajcos(ωdjt)+bjsin(ωdjt))+Ajsinωt+Bjcosωt)



(14)






θ′i(t)=∑j=12φij(e−ηjt(bjωdj−ηjaj)cos(ωdjt)−(ajωdj+ηjbj)sin(ωdjt))+Ajωcos(ωt)−Bjωsin(ωt))



(15)




where ωdj=ωj2−ηj2,ηj=ζωj2,aj,bj is the integral constant determined by the initial condition of system (6), i=1,2.



Let C(t) and D are matrices defined as follows


C(t)=(φ11e1cd1φ12e2cd2φ11e1sd1φ12e2sd2−φ11e1gd1−φ12e2gd2φ11e1hd1φ12e2hd2φ21e1cd1φ22e2cd2φ21e1sd1φ22e2sd2−φ21e1gd1−φ22e2gd2φ21e1hd1φ22e2hd2),










D=(φ11φ120000−φ11−φ12φ21φ220000−φ21−φ22),








(14) and (15) can be rewritten as


(θ1(t)θ′1(t)θ2(t)θ′2(t))=C(t)(a1a2b1b2)+D(A1sinωt+B1cosωtA2sinωt+B2cosωtω(B1sinωt−A1cosωt)ω(B2sinωt−A2cosωt)),



(16)




where cd1=cosωd1t,cd2=cosωd2t,sd1=sinωd1t,sd2=sinωd2t,e1=e−η1t,e2=e−η2t,gd1=η1cd1+ωd1s1,gd2=η2c2+ωd2s2,hd1=ωd1c1−η1s1,hd2=ωd2c2−η2s2,




Aj=ωj2−ω2(ωj2−ω2)2+4ζ2ωj4ω2fj,j=1,2



(17)






Bj=−2ζωj2ω(ωj2−ω2)2+4ζ2ωj4ω2fj,j=1,2



(18)





According to Table 1, considering the first kind of collision periodic solutions, the impact periodic solution should satisfy conditions s1 and x1.



From (9), (16) and t=0, we have


(θ10θ′10θ10θ′20)=C(0)(a1a2b1b2)+D(B1B2−ωA1−ωA2)=(θ0θ′10θ0θ′20),



(19)




where


C(0)=(φ11φ1200−η1φ11−η2φ12φ11ωd1φ12ωd2φ21φ2200−η1φ21−η2φ22φ21ωd2φ22ωd2),D=(φ11φ120000−φ11−φ12φ21φ220000−φ21−φ22).








Moreover, θ0≠0,θ′10≥0,θ′20≥0 should be satisfied.



So, the integral constant aj,bj(j=1,2) should yield




{φ11a1+φ12a2+φ11B1+φ12B2≠0φ21a1+φ22a2+φ21B1+φ22B2≠0−η1φ11a1−η2φ12a2+φ11ωd1b1+φ12ωd2b2+ωφ11A1+ωφ12A2≥0−η1φ21a1−η2φ22a2+φ21ωd1b1+φ22ωd2b2+ωφ21A1+ωφ22A2≥0.



(20)





Note T0− and T0+ are the moments before and after the collision. Since the collision is instantaneous, there are T0=T0−=T0+. Collision condition can be expressed as


(θ1(T0+)θ′1(T0+)θ2(T0+)θ′2(T0+))=(θ1(0)θ′1(0)θ2(0)θ′2(0))=(θ0θ′10θ0θ′20)



(21)






(θ1(T0+)θ′1(T0+)θ2(T0+)θ′2(T0+))=R1(θ1(T0−)θ′1(T0−)θ2(T0−)θ′2(T0−))



(22)




where


R1=(10000−(1−γ)000010000−(1−γ)),R1−1=(10000−1(1−γ)000010000−1(1−γ)).



(23)




So, from (21) and (22), we can obtain


(θ1(T0−)θ′1(T0−)θ2(T0−)θ′2(T0−))=R1−1(θ1(T0+)θ′1(T0+)θ2(T0+)θ′2(T0+))=R1−1(θ0θ′10θ0θ′20).



(24)




Moreover, R1 is called the corresponding collision recovery matrix for the collision conditions s1 and x1.



According to Equation (16),


(θ1(T0−)θ′1(T0−)θ2(T0−)θ′2(T0−))=C(T0−)(a1a2b1b2)+D(A1sin(ωT0−)+B1cos(ωT0−)A2sin(ωT0−)+B2cos(ωT0−)ω(B1sin(ωT0−)−A1cos(ωT0−))ω(B2sin(ωT0−)−A2cos(ωT0−)))



(25)




where




C(T0−)=(φ11e1cd1φ12e2cd2φ11e1sd1φ12e2sd2−φ11e1g1−φ12e2g2φ11e1h1φ12e2h2φ21e1cd1φ22e2cd2φ21e1sd1φ22e2sd2−φ21e1g1−φ22e2g2φ21e1h1φ22e2h2),g1=η1c1+ωd1s1,g2=η2c2+ωd2s2,h1=ωd1c1−η1s1,h2=ωd2c2−η2s2,c1=cos(2nπωd1ω),










s1=sin(2nπωd1ω),c2=cos(2nπωd2ω),s2=sin(2nπωd2ω),D=(φ11φ120000−φ11−φ12φ21φ220000−φ21−φ22)









From (24) and (25),


R1−1(θ0θ′10θ0θ′20)=C(T0−)(a1a2b1b2)+D(B1B2−ωA1−ωA2)



(26)




can be known.



From (26),


(θ0θ′10θ0θ′20)=R1C(T0−)(a1a2b1b2)+R1D(B1B2−ωA1−ωA2)



(27)




can be obtained.



From (19) and (27), we can obtain


C(0)(a1a2b1b2)+D(B1B2−ωA1−ωA2)=R1C(T0−)(a1a2b1b2)+R1D(B1B2−ωA1−ωA2),



(28)




i.e.,


(C(0)−R1C(T0−))(a1a2b1b2)=(R1−E)D(B1B2−ωA1−ωA2),



(29)




where A1,A2,B1,B2 are the constants determined by the physical parameters of the system. The existence problem of non-smooth periodic solution of system (6) is transformed into the existence of solutions of (20) and (29). In summary, we can draw a conclusion as follows.



Theorem 1.

If the parameters of the collision system (6) satisfy the condition (20) and (29), system (6) has a one-impact periodic motion.





Let


k1=1−e1c1,k2=1−e2c2,m1=e1s1,m2=e2s2,n1=η1−(1−γ)e1g1,n2=η2−(1−γ)e2g2,p1=ωd1−(1−γ)e1h1,p2=ωd2−(1−γ)e2h2,u1=ω(γ−2)(φ11A1+φ12A2),u2=ω(γ−2)(φ21A1+φ22A2),



(30)




Equation (29) can be expressed as follows


(φ11k1φ12k2−φ11m1−φ12m2−φ11n1−φ12n2φ11p1φ12p2φ21k1φ22k2−φ21m1−φ22m2−φ21n1−φ22n2φ21p1φ22p2)(a1a2b1b2)=(0u10u2).



(31)




When


k1≠0,k2≠0,k1p1−m1n1≠0,k2p2−m2n2≠0,



(32)




by constructing an appropriate invertible transformation matrix


P=(φ22p1Ρ1φ22m1Ρ1−φ12p1Ρ1−φ12m1Ρ1−φ21p2Ρ2−φ21m2Ρ2φ11p2Ρ2φ11m2Ρ2φ22n1Ρ1φ22k1Ρ1−φ12n1Ρ1−φ12k1Ρ1−φ21n1Ρ1−φ21k2Ρ1φ11n2Ρ1φ11k2Ρ1),








Equation (31) can be taken as


(1000010000100001)(a1a2b1b2)=(m1(φ22u1−φ12u2)P1m2(φ11u2−φ12u1)P2k1(φ22u1−φ12u2)P1k1(φ11u2−φ12u1)P2),



(33)




where P1=(φ11φ22−φ12φ21)(k1p1−m1n1),P2=(φ11φ22−φ12φ21)(k2p2−m2n2).



If the physical parameters and the collision recovery coefficient of system (6) are given, the unique integral constant aj,bj(j=1,2) can be calculated from (32) as follows




a1=m1(φ22u1−φ12u2)(φ11φ22−φ12φ21)(k1p1−m1n1),a2=m2(φ11u2−φ12u1)(φ11φ22−φ12φ21)(k2p2−m2n2)



(34)






b1=k1(φ22u1−φ12u2)(φ11φ22−φ12φ21)(k1p1−m1n1),b2=k1(φ11u2−φ12u1)(φ11φ22−φ12φ21)(k2p2−m2n2)



(35)





Therefore, from (14), (20), (34), and (35), the first kind of collision periodic solution of system (6) is obtained




θi(t)=∑j=12φij(e−ηjt(ajcos(ωdjt)+bjsin(ωdjt))+Ajsinωt+Bjcosωt) (i=1,2)(t=0 mod 2nπ/ω)



(36)





Moreover, when k1≠0,k2≠0,k1p1−m1n1≠0,k2p2−m2n2≠0 are not held, (29) has an infinite number of solutions or no solutions, which leads to many periodic or no periodic solutions in the original system (6).



For example, if k1≠0,k2≠0,k1p1−m1n1≠0, k2p2−m2n2=0, (31) is equivalent to


(φ11k1φ12k2−φ11m1−φ12m200φ11(p1−m1k1n2)φ12(p2−m2k2n2)010−m2k2000p2−m2k2n2)(a1a2b1b2)=(0u10φ11u2−φ21u1φ11φ22−φ12φ21).



(37)




When φ11u2−φ21u1≠0 or u1≠0 is true, Equation (37) has no solution. Hence, system (6) has no collision periodic solution.



Note 1 Conditions (20) and (32) are sufficient and unnecessary conditions for system (6) with the first kind of collision periodic solution.



Note 2 The collision recovery matrices R2,R3,R4 of the second type, the third type, and the fourth type of periodic solutions can be shown as




R2=(10000−(1−γ)0000100001),R3=(100001000010000−(1−γ)),R4=(1000010000100001).









In order to get the second type, the third type and the fourth type of periodic solutions, R1 can be replaced by Ri,i=2,3,4 in Equation (28), we have


(C(0)−RiC(T0−))(a1a2b1b2)=(Ri−E)D(B1B2−ωA1−ωA2),i=2,3,4



(38)




Clearly, for specific matrices, invertible transformation matrices can be constructed. Similar methods can be used to obtain the existence conditions and analytical expressions of periodic solutions.




5. Numerical Simulation


In order to verify the results of theoretical analysis, the suitable physical parameters and coefficient of restitution are selected to solve the periodic solutions according to (20) and (32). From (17), (18), and (20), we know A2=0,B2=0 and




{φ11a1+φ12a2+φ11B1≠0φ21a1+φ22a2+φ21B1≠0−η1φ11a1−η2φ12a2+φ11ωd1b1+φ12ωd2b2+ωφ11A1≥0−η1φ21a1−η2φ22a2+φ21ωd1b1+φ22ωd2b2+ωφ21A1≥0.









Let m=3,μ=3.24,ξ=0.75,ω=1.5,f10=0.162,γ=0.1, from (20), (30), (31), and (32), the corresponding parameter values are calculated. The phase diagram and Poincare section of the periodic 3 motion of the upper (lower) pendulum of system (6) are shown in Figure 3 and Figure 4. The blue solid line on the right side of the phase diagram is the displacement of the collision point. The red phase point is the projection of the Poincare section on the phase diagram. As can be seen in Figure 3 and Figure 4, the phase diagram and the velocity at the collision point have a momentary jump, indicating that upper (lower) pendulum and the rigid wall collided.



When the parameter value is m=1,μ=3.24,ξ=0.5,ω=1.5,f10=0.22,γ=0.1, from (37) and R2, aj,bj(j=1,2) can be obtained. Hence, we get the second kind of collision periodic solution. The phase diagram and Poincare section of the periodic 2 motion of the upper pendulum are shown in Figure 5a and Figure 6a. As can be seen in Figure 5a,c, the phase diagram and the velocity at the collision point have a momentary jump, indicating that upper pendulum and the rigid wall collided. But in Figure 6a, there is a small gap between the phase diagram curve and the blue solid line, which indicates that the upper pendulum does not collide with the right wall. As can be seen from Figure 6c, the velocity diagram is continuous, which further confirms the fact that the lower pendulum does not collide.



When the parameter value is m=1,μ=3.2,ξ=0.5,ω=1.5,f10=0.1,γ=0.1, from (37) and R3, aj, bj(j = 1, 2) can be obtained. Hence, we can detect the third kind of collision periodic solution. The phase diagram and Poincare section of the periodic 2 motion are shown in Figure 7a and Figure 8a. As can be seen in Figure 7a, there is a big gap between the phase diagram curve and the blue solid line, indicating that the upper pendulum does not collide with the right wall and the velocity diagram further confirms the fact in Figure 7c. In Figure 8a,c, the phase diagram and the velocity at the collision point have a momentary jump, showing that lower pendulum and the rigid baffle collided with the right wall.



The simulation results show that the collision periodic solution of the system can be found based on the condition of the existence of the collision analytical periodic solution, which provides a theoretical method for studying the periodic solution of the non-smooth system. The case of collision with left wall can be discussed similarly. Due to the complex type of periodic solution, further analysis will be conducted for the case of bilateral constraint, which could be carried out in a separate paper.




6. Conclusions


A kind of asymmetry system has been constructed by use of the non-smooth unilateral rigid constrained double pendulum, which is subjected to harmonic excitation. Using the mode superposition method and matrix theory, the existence conditions of periodic solutions and the expressions of periodic analytical solutions were deduced for small angle vibration of the system. The numerical simulation showed that this method can predict the existence of periodic solutions of collisions. From the previous calculation, it can be seen that the integral constants and existence conditions of three kinds of periodic solutions of collisions can be calculated by introducing matrix tools. This method provided a matrix computing tool for solving the periodic solutions of high-dimensional non-smooth systems, aiming at multi-point collisions. As long as the appropriate collision recovery matrix was found, the calculation process was similar, which provided a mechanized calculation for simplifying the manipulator into several degrees of freedom problems in the research and design of the manipulator. Thus, a method for the fault research of the fine manipulator was provided to facilitate the engineers to use this method to find the periodic solution of the high-dimensional non-smooth system.
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Figure 1. Collision double pendulum model. 
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Figure 2. Phase diagram and time-velocity diagram. 
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Figure 3. The first kind of collision periodic solutions: (a) Phase diagram and Poincare section of periodic 3 motion of upper pendulum; (b) Time-displacement diagram of the upper pendulum; (c) Time-velocity diagram of upper pendulum. 
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Figure 4. The first kind of collision periodic solution: (a) Phase diagram and Poincare section of periodic 3 motion of lower pendulum; (b) The time-displacement diagram of the lower pendulum; (c) The time-velocity diagram of the lower pendulum. 
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Figure 5. The second kind of collision periodic solutions: (a) Phase diagram and Poincare section of periodic 2 motion of upper pendulum; (b) Time-displacement diagram of the upper pendulum; (c) Time-velocity diagram of upper pendulum. 
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Figure 6. The second kind of collision periodic solution: (a) phase diagram and Poincare section of periodic 2 motion of lower pendulum; (b) the time-displacement diagram of the lower pendulum; (c) the time-velocity diagram of the lower pendulum. 
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Figure 7. The third kind of collision periodic solutions: (a) Phase diagram and Poincare section of periodic 2 motion of upper pendulum; (b) Time-displacement diagram of the upper pendulum; (c) Time-velocity diagram of upper pendulum. 
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Figure 8. The third kind of collision periodic solution: (a) Phase diagram and Poincare section of periodic 2 motion of lower pendulum; (b) The time-displacement diagram of the lower pendulum; (c) The time-velocity diagram of the lower pendulum. 
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Table 1. This classification of periodic solutions.
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	Type of Solution
	Constraint Condition





	The first kind of periodic solution
	(s1,x1)



	The second kind of periodic solution
	(s1,x0)



	The third kind of periodic solution
	(s0,x1)



	The forth kind of periodic solution
	(s0,x0)
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