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Abstract: We define a family of observables for abelian Yang-Mills fields associated to compact
regions U ⊆ M with smooth boundary in Riemannian manifolds. Each observable is parametrized
by a first variation of solutions and arises as the integration of gauge invariant conserved current
along admissible hypersurfaces contained in the region. The Poisson bracket uses the integration of a
canonical multisymplectic current.
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1. Introduction

In Classical Covariant Field Theory two desirable conditions are required for a family of
observables: In one side we require this function to separate solutions of the Euler-Lagrange equations.
On the other hand, we need the Jacobi identity in order to have a Lie (Poisson) bracket. It is a known
problem to characterize those theories accomplishing these two requirements, as pointed out in [1,2]
and others. There are two main difficulties. On one hand, under locality assumptions, Jacobi identity
is well established but generically there are few observables associated with conservation laws given
by Noether’s First Theorem, see for instance [3]. On the other hand, extending to non-locality of
variations of solutions, we may provide enough observables, see for instance [4,5], nevertheless the
Jacobi identity does not necessarily hold, see [6].

For linear theories there are no such difficulties, and vector fields in the space of solutions can
be modeled as in Theorem 2, see also [7]. For instance, in Lorentzian globally hyperbolic spacetimes,
Maxwell equations [8] exhibit a family of observables, related to the Aharomov-Bohm effect, and a
Poisson bracket constructed with Peierls method for local variables. We provide a similar set of
observables for the abelian Yang-Mills (YM) fields on Riemannian manifolds. This could be mentioned
as the novelty introduced in this work, although our aim is to prepare the scenario for non-abelian
(non-linear) YM fields. We adopt the Lagrangian approach of the variational bicomplex formalism,
see [9–11] rather than the Hamiltonian multysimplectic formalism approach to describe non abelian
YM fields, see [12,13].

We consider regions U with smooth boundary ∂U both contained in a n-dimensional Riemannian
manifold, usually n = 4. Here we avoid the complications of corners in ∂U which will be treated
elsewhere. For a principal bundle we take solutions of the Yang-Mills (YM) equations for the abelian
U(1) structure group. We are interested in defining a family of observables for YM solutions in U,
η ∈ AU , of the integral form

fΣ(η) =
∫

Σ
jη∗F
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defined for a 3-dimensional compact Riemannian admissible smooth hypersurface iΣ : Σ �
� // U with

volume form νΣ, where admissibility means ∂Σ ⊆ ∂U, see [14]. Observable currents, are horizontal
(n− 1)-forms, F ∈ Ωn−1,0(JY|U), in the ∞− jet bundle JY associated to sections of the affine bundle
Y → M of connections. The local invariance condition is then assumed by imposing dhF|U = 0, when
restricted to the locus of the YM equations EL. dh is the horizontal differential, see the notation of
the variational bicomplex formalism in Appendix A. We adapt helicity for hypersurfaces embedded
properly in general compact regions U, rather than considering cylinder regions with space-like
slices, Σ× [t1, t2], this is related to the General Boundary Formalism for field theories, see [15] and
references therein.

The idea is to define the relative helicity from hydrodynamics properly adapted to YM fields
as a local observable. In order to motivate this definition we recall the notion of helicity from
magneto-hydrodynamics. For a divergence (non-autonomous) free vector field, ξ = ξ(t) ∈ X∂Σ(Σ) in
a three-dimensional Riemannian manifold Σ tangent to the boundary ∂Σ, helicity is defined as∫

Σ
g(v, ξ)νΣ (1)

where one considers the vector field v = v(t), as a potential in Σ. Helicity of ξ measures globally the
degree of self-linking of its flow. Helicity remains an invariant for every νΣ-preserving diffeomorphism
of Σ that carries the boundary ∂Σ into itself, where νΣ is given by the volume form on Σ. The situation
can be dually described in terms of 1-forms. If α = g(v, ·) where g is the Riemannian metric on Σ, then
under the additional topological condition, H2

dR(Σ) = 0, there exists a potential α ∈ Ω1(Σ) such that
dα = ιξνΣ. Here helicity reads as ∫

Σ
α ∧ dα (2)

It does depend just on the vorticity dα although for its definition the potential 1-form α or the
vector field v, respectively, may intervene.

If we adopt v ∈ X∂Σ(Σ) divergence-free or d?Σ(α) = 0, respectively, then the property of
isovorticity holds for v(t) for the magnetic potential, as well as for any solution of the Euler equation of
hydrodynamics. This means that ξ(t2) can be constructed as the image of ξ(t1) under a diffeomorphism
and if we consider a space-time domain Σ× [t1, t2], then helicity does not depend on the parameter t
of the non-autonomous flow. To review this concepts see for instance [16,17].

Under the assumption of simple connectednes of Σ, then the Lie algebra of divergence-free vector
fields, have a bilinear form, relative helicity, defined as

[α, β]Σ =
∫

Σ
dα ∧ β

Notice that helicity is [α, α]Σ and also that [·, ·]Σ is a symmetric bilinear form under the assumption
of closedness for Σ.

Considering YM solutions η = η0 + ϕ ∈ AU , where η0 ∈ AU is a fixed connection and
ϕ = η − η0 is a 1-form in M, we would like to define the field strength helicity as in (2). Choose
a tubular neighborhood Σε ⊆ U of Σ0 := iΣ(Σ, τ) with exponential coordinates XΣ : Σ× [−ε, ε]→ Σε,
with embedding iΣ = XΣ(·, 0). We take ϕ̃ = ϕ + d f |Σε an axial gauge fixing, that is a 1-form such that in
Σ0 has no normal component. In addition, we may suppose that ψΣ0

η = i∗Σ ϕ̃, as well as d
dτ |τ=0ψΣτ

η are
divergence-free. See Appendix on the geometry of abelian YM fields in [15].

Then the helicity for abelian YM fields could be defined as

[ϕ̃, ϕ̃]Σ =
∫

Σ
ψΣ0

η ∧ ?Σ
dψΣτ

η

dτ

∣∣∣∣∣
τ=0

,
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where ?Σ is the Hodge operator associated to the induced Riemannian metric g on Σ. Hence we could

define helicity as in (1) for the vector fields v, ξ defined as g(v, ·) = ψΣ0
η , g(ξ, ·) = dψΣτ

η

dτ

∣∣∣∣
τ=0

.

Nevertheless, this notion of helicity would depend on the gauge fixing choice, therefore cannot be
generalized as a gauge invariant observable. Moreover, we do not get a local dh-closedness condition
for an observable current: if U′ ⊆ U is an open region such that ∂U′ = Σ− Σ′, then

[ϕ̃, ϕ̃]Σ = [ϕ̃, ϕ̃]Σ′ +
∫

U′
L(jη)

where L is the Lagrangian density. We will rather try to define the relative helicity of YM fields. Take
η′ = η0 + ϕ′ ∈ AU any other solution. Take a first variation of solutions ϕ, let us define

[ϕ, ϕ′]Σ =
∫

Σ
i∗Σ(ϕ′ ∧ ?dϕ).

Then for gauge translations η′ + d f we would have [ϕ, ϕ′]Σ = [ϕ, ϕ′ + d f ]Σ. Moreover, if U′ ⊆ U
is an open region such that ∂U′ = Σ− Σ′, then [ϕ, ϕ′]Σ = [ϕ, ϕ′]Σ′ . Thus for every couple η, ϕ where
η ∈ AU and ϕ is a first variations of solutions, we consider the antisymmetric component of the relative
helicity or simply ϕ-helicity,

hϕ
Σ(η
′) :=

1
2
(
[ϕ, ϕ′]Σ − [ϕ′, ϕ]Σ

)
. (3)

In Section 4 we formalize this construction in the language of the variational bicomplex, see
Appendix A.

2. Variational Bicomplex Formalism for Abelian YM Fields

Along this section we adopt the terminology and notation of the variational bicomplex formalism,
for the readers convenience we give a brief presentation and references for this in Appendix A. Let
P → M be a principal bundle on a Riemannian manifold (M, g) with structure group G = U(1) and
U ⊆ M a region with smooth boundary. Let π : Y → M with Y = J1P/G be the affine bundle whose
sections Γ(Y) are the G-covariant connections on P .

For abelian YM, the Lagrangian density L = L ν ∈ Ωn,0(JY) is defined by the Lagrangian

L =
1
4

n

∑
i,j=1

vij
(

Aj
i − Ai

j

)2

where this expresion corresponds to local coordinates (x1, . . . , xn; A1, . . . , An; Ai
j) in J1Y, ν = dx1 ∧

· · · ∧ dxn is a fixed volume form in the base and vij =
√
|det g| giigjj, with gij the Riemannian metric

in U.
Then E(L) = ∑n

i=1 Ei(L)ϑi ∧ ν denote the Euler-Lagrange equations, where ϑi = dvAi stands for
the basis for the vertical 1−forms in J1Y. Thus YM equations have locus which is the prolongation
EL ⊆ JY of {E(L) = 0} ⊆ J2Y. In the local coordinate chart,

Ei(L) =
n

∑
j=1

d

dxj

(
vij
(

Aj
i − Ai

j

))
= 0, ∀i = 1, . . . , n.

The space of solutions over U is

AU = {η ∈ Γ(Y|U) : jη(x) ∈ EL} (4)

Thus solutions η satisfy jη∗E(L) = 0.
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The linearized equations for any (local) evolutionary vector field, V ∈ Ev(JY), are

I(dvιjV E(L))|EL = 0 (5)

where I : Ωn,k(JY) → Ωn,k(JY) is the integration by parts operator, see its definition in [18]. In local
coordinates this linearized equation reads as

n

∑
j=1

d

dxj

(
vij
(

d

dxi V j − d

dxj Vi
))∣∣∣∣∣

EL

= 0, ∀i = 1, . . . , n, V =
n

∑
i=1

Vi ∂

∂Ai .

Let FU ⊆ Ev(JY) be the Lie subalgebra of those evolutionary vector fields satisfying the linearized
Euler-Lagrange equations. The Lie algebra FU will turn out to be our model for variations of YM solutions.
For example, the radial evolutionary vector field R = ∑a Aa ∂

∂Aa whose prolongation is

jR = ∑
a

Aa ∂

∂Aa + ∑
i

Aa
i

∂

∂Aa
i
+ . . . (6)

is a symmetry of the YM PDE, i.e. R ∈ FU . This is a general constructions of symmetries for linear
PDEs, see [5].

The presymplectic current

ΩL =
n

∑
i,j=1

vij(ϑi
j − ϑ

j
i ) ∧ ϑj ∧ νi

with dxi ∧ νi = ν, has the property stated in the following general Lemma.

Lemma 1 (Multysimplectic formula). For every V, W ∈ FU we have

dh
(
ιjW ιjVΩL

)
|EL = 0.

Definition 1 (Gauge).

1. Those first variations of solutions V ∈ FU satisfying

ιjWLjVΩL|EL = ιjWdv(ιjVΩL)|EL = ιjWdhσV , ∀W ∈ FU , (7)

define the Lie subalgebra of locally Hamiltonian first variations as F̂LH
U ⊆ FU .

2. We define the Lie algebra ĜU of gauge first variations as those X ∈ FU satisfying locally the presymplectic
degeneracy condition, i.e.,

ιjW
(
ιjXΩL

)∣∣
EL

= ιjWdhρX , ∀W ∈ FU . (8)

For instance, the radial vector R ∈ FU defined in (6) is not locally hamiltonian, since it satisfies
the Liouville condition ιjRdvΩL = ΩL, rather than condition (7).

In the second part of Definition 1 we may also have adopted X ∈ Ev(JY) instead of X ∈ FU and

ιjW
(
ιjXΩL

)∣∣
EL

= ιjWdhρX , ∀W ∈ Ev(JY|U)

as is stated in the following assertion.

Proposition 1. Suppose that V ∈ Ev(JY|U) satisfies

ιjWdh(ιjVΩL)|EL = 0
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for every variation of solutions W ∈ FU . Then V ∈ FU .

Notice that the locally Hamiltonian condition is stronger than the property exhibited in
Proposition 1 for every variation of solutions. Thus ĜU ⊆ F̂LH

U .

Lemma 2. ĜU ⊆ F̂LH
U is a Lie ideal.

Proof. If X, X′ ∈ ĜU then

ιj[X,X′ ]ΩL = dvιjX ιjX′ΩL ± ιjXdvιjX′ΩL ± ιjX′dvιjXΩL (9)

which by hypothesis and by anticommutativity of dvdh = −dhdv is dh-exact, hence [X, X′] ∈ ĜU and
therefore ĜU ⊆ FU is a Lie subalgebra. To see that ĜU ⊆ F̂LH

U , apply vertical derivation to (8).
Take V ∈ F̂LH

U , then [V, X] apply vertical derivation to Equation (9) with V = X′ and the condition
of dh-exactness for ιjXdvιjVΩL implies the dh-exactness of ιj[X,V]ΩL holds. Therefore [V, X] ∈ ĜU .

Form Proposition 1 it follows also the following assertion.

Lemma 3. ĜU ⊆ Ev(JY|U) is a Lie ideal, hence F̂LH
U /ĜU ⊆ Ev(JY|U)/ĜU .

Lemma 4. If for every W ∈ FU

ιjW(ιjXΩL)|EL = ιjWdhρX |EL , ρX =
n

∑
i,j=1

ρijϑ
j
i ∧ νji.

holds, then in local coordinates vijX j = d
dxj ρij holds in EL for each i, j = 1, . . . , n, where dxj ∧ νji = νi.

Definition 2 (Gauge with boundary condition).

1. The Lie subalgebra
FLH

U ⊆ F̂LH
U

of locally Hamiltonian first variations with null boundary conditions, consists of those V ∈ F̂LH
U

satisfying (7) and
σV |∂U = dhλ|∂U .

when evaluated in EL,FU . In particular LjVΩL
∣∣
∂U = 0.

2. The Lie ideal of gauge variations with null boundary conditions

GU ⊆ FLH
U

consists of those X ∈ ĜU such that (8) holds together with

jX|∂U = 0.

Which means that there is no gauge action in the boundary.

The following assertions are used in the definition.

Lemma 5. The following inclusions are Lie ideal inclusions into Lie algebras:

GU ⊆ FLH
U , GU ⊆ F̂LH

U , GU ⊆ ĜU , FLH
U ∩ ĜU ⊆ FLH

U .

Proof. X, X′ ∈ GU imply that j[X, X′]|∂U = 0 hence GU is indeed a Lie algebra. To see that it is an
ideal in F̂LH

U we just consider the fact that j[X, V]|∂U = 0 for every V ∈ FLH
U .
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To see that GU is an ideal in FLH
U , derive vertically (8) and notice that σX = −dvρX is null along

∂U thanks to Lemma 4, in particular σX |∂U is dh-exact.
We claim that GU is an ideal of ĜU . For if X ∈ GU , X′ ∈ GU then j[X, X′] = [jX, jX′]|∂U vanishes.
Finally, to see that FLH

U ∩ ĜU ⊆ FLH
U is an ideal, dvιj[X,V]ΩL is dh-exact by (9).

3. Linear Theory

Recall that each fiber of π : Y → M is an affine bundle modeled over a linear bundle πL : YL → M
with YL ⊆ Ω1(M).

Since the space of YM solutions AU is an affine space, take a fixed connection η0 ∈ AU , then
ϕ = η − η0 ∈ Γ(YL|U) is such that d ? dϕ = 0. Here ? denotes the Hodge star operator. In addition,
there exists Vϕ ∈ FU , such that

jVϕ = j

(
n

∑
i=1

ϕi(x)
∂

∂Ai

)
(10)

Even though Equation (5) imposes a condition on-shell, i.e., on EL for V ∈ FU , the linearized
equations, d ? dϕ = 0, induce Vϕ ∈ FU that satisfies (5) off-shell, that is in JY.

As a complementary definition to (10) we may define for every solution, η ∈ AU , and every first
variation of solutions, V ∈ FU the section

ηV = jη∗V ∈ Γ
(

YL|U
)
⊆ Ω1(U). (11)

Here we use the isomorphism, depending on a fixed connection, η0 ∈ AU , between the pullback
jη∗0 (Y

v) of the vertical bundle πv : Yv → JY|U , and the linear bundle πL|U : YL → U.
For the previous definitions the following properties hold

jη∗VηV = jη∗V, η(Vϕ) = ϕ.

The following assertion holds as an observation that will follow from Lemma 9.

Lemma 6. We have that Vϕ ∈ FLH
U for every ϕ ∈ Ω1(U), solution of the linearized equation d ? dϕ = 0.

Hence, VηV ∈ FLH
U for every V ∈ FU .

The following assertion holds for linear theories.

Lemma 7. For every solution, η ∈ AU , and every first variation of solutions, V ∈ FU , in a linear theory, there
exists ϕ ∈ Γ(YL|U) such that V|jη(U) = Vϕ|jη(U) or equivalently ηV = ϕ.

If we want to consider the gauge classes on AU we can consider the gauge representatives
consisting of Lorentz gauge fixing conditions, i.e., for every η = η0 + ϕ ∈ AU there exists a gauge related

η̃ = η0 + ϕ̃ ∈ AU , d ? ϕ̃ = 0 (12)

where η̃ − η = ϕ̃− ϕ ∈ GU being a gauge translation by exact 1-forms in AU .
Recall the Hodge-Morrey-Friedrichs L2-ortogonal decomposition, see [19]. For null normal

components we have,

Ω1(U) = dΩ0
D(U)⊕H1

N(U)⊕
(
H1(U) ∩ dΩ0(U)

)
⊕ d?Ω2

N(U) (13)

where
Ω1

N(U) :=
{

β : β ∈ Ω1(U) : i∗∂U (?β) = 0
}

,
H1

N(U) := H1(U) ∩Ωk
N(U).
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Given a fixed point, η0 ∈ AU , the linear space of Lorentz gauge fixing, d ? ϕ = 0, defines a
linear subspace

LU ⊆ H1
N(U)⊕ d?Ω2

N(U)

of linearized solutions, d?dϕ = 0, such that there is a covering, eη0(ϕ) = [η0 + ϕ],

eη0 : LU → AU/GU (14)

of the [η0]-componentspace of solutions modulo gauge, AU/GU .
The following results of this section recover the usual characterizations of gauge symmetries in

GU as translations by exact forms.

Lemma 8. For every X ∈ ĜU and η ∈ AU , dηX = 0.

Proof. If we calculate the square of the L2-norm, ‖dηX‖2
2 =

∫
U dηX ∧ ?dηX , of dηX where ? stands for

the Hodge star operator for the Riemannian metric g, then we get∫
U

ηX ∧ ?d?dηX −
∫

∂U
ηX ∧ ?dηX

If X ∈ FU , d?dηX = 0 then due to Lemma 4, the norm ‖dηX‖2
2 can be calculated as

−
∫

∂U
ηX ∧ ?dηX = −

∫
∂U

jη∗(ρX) ∧ dηX =
∫

∂U
d
(

jη∗(ρX)
)
∧ ηX .

Recall (8) and that jη∗(dhρX) = jη∗(ιjXΩL). Hence

d
(

jη∗(ρX)
)
∧ ηX = jη∗(ιjX ιjXΩL) = 0

Therefore dηX = 0.

Proposition 2. For every solution, η ∈ AU , and every gauge first variation with null boundary condition,
X ∈ GU , the induced 1-form in the base, ηX , defined as in (11), is exact. Therefore, ηX ∈ GU .

Proof. We solve the Poisson BVP for ψ : U → R with Dirichlet boundary conditions{
∆ψ = d?ηX , in U,

ψ|∂U = 0, in ∂U.

Notice that the necessary integral condition for the Poisson equation
∫

U d ? ηXdν = 0 follows
from the boundary condition ηX |∂U = 0.

Thus η̃X = ηX − dψ is a solution of d?dη̃X = 0 with Lorentz gauge fixing condition d?η̃X = 0 and
Dirichlet boundary condition.

Recall (13). Since ηX ∈ ĜU , according to Lemma 8, dηX = 0 and dη̃X = 0.
There are two cases:
Case 1. The normal component ∂ψ/∂xn|∂U does not vanish. Here in local coordinates, ∂U =

{xn = 0}. Then η̃X is harmonic (dη̃X = 0 and d?η̃X = 0). Therefore, it belongs to H1(U) ∩ dΩ0(U),
i.e., it is exact.

Case 2. ∂ψ/∂xn|∂U = 0, that is, η̃X ∈ Ω1
N(U). Then η̃X ∈ H1

N(U) ∩H1
D(U), i.e., η̃X = 0, where

Ω1
D(U) :=

{
β : β ∈ Ω1(U) : β(ξ) = 0, ξ ∈ X(∂U)

}
,

H1
D(U) := H1(U) ∩Ωk

D(U).

In any case η̃X is exact and so is ηX .
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Proposition 3. Take any solution η, and any gauge symmetry, X ∈ FLH
U ∩ ĜU . Then there exists X′ ∈ ĜU

such that X− X′ ∈ GU . Hence ηX−X′ ∈ GU is exact.

Proof. Take X ∈ FLH
U ∩ ĜU . According to the argument given in Proposition 2 we just need to show

that the pullback i∗∂UηX ∈ Ω1(∂M) is null for the inclusion i∂U : ∂U → U. Then ηX − dψ would have
null Dirichlet condition and would be exact for suitable ψ.

Notice that the following boundary conditions are in general different objects:

i∗∂UηX , ηX |∂U , (jX)|∂U , j|∂U(X|∂U). (15)

Since X ∈ FLH
U , then we are assuming a boundary condition on X, namely dvρ|∂U = λ, with dhλ =

0, when evaluating in EL,FU . Due to Lemma 4 we have that X|∂U does not depend on vertical
coordinates, uj when evaluating in EL.

We claim that indeed i∗∂UηX = 0. Recall that, according to Lemma 4, for every W ∈ FU we have

∫
∂U

jη∗
(

n−1

∑
j=1

vnjX j
(

dW j

dxn −
dWn

dxj

)
νn

)
=

∫
∂U

jη∗
(
ιjW ιjXΩL

)
=
∫

∂U
jη∗(ιjWdhρ) =

∫
∂U

d
(
jη∗(ιjWρ)

)
= 0.

Therefore, X j(jη)|∂U = 0 for j = 1, . . . , n− 1, hence null Dirichlet boundary conditions hold for
ηX . There exists a smooth function f : U → R such that i∗∂Ud f = i∗∂UηX = 0, and ∂ f

∂xn |∂U = Xn(jη). If

jXd f = j

(
n

∑
i=1

∂ f
∂xi

∂

∂ui

)
,

then X′η := jη∗(X− Xd f ) = ηX − d f has null both Neumann and Dirichlet conditions on ∂U. We just
need to refine the choice of f , so that jX′|∂U = 0. Hence X′ ∈ GU .

Theorem 1. There is an inclusion of the gauge quotients of Lie algebras,

FLH
U /GU

� � ·̂ // F̂LH
U /ĜU .

Proof. By the Second Isomorphism Theorem for Lie algebras

F̂LH
U /ĜU '

(
F̂LH

U /GU

)
/
(
ĜU/GU

)
.

Notice that
GU ⊆ FLH

U ∩ ĜU ⊆ ker Ψ

where Ψ is the Lie algebra morphism defined as the composition in the diagram below.

FLH
U /GU F̂LH

U /ĜU oo //
(
F̂LH

U /GU
)

/
(
ĜU/GU

)

FLH
U

Ψ

99OOOO

� � // F̂LH
U

// // F̂LH
U /GU

OOOO

ker Ψ
, �

::

GU_?
oo ?�

OO
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By the first isomorphism theorem, there exists an induced monomorphism Ψ̃ and a
commutative diagram

FLH
U /GU� _

��

FLH
U / ker Ψ

� _

Ψ̃
��

oooo

F̂LH
U /GU F̂LH

U /ĜU .oooo

There is an inclusion FLH
U ∩ ĜU ⊆ FLH

U . Hence ker Ψ = FLH
U ∩ ĜU . By Proposition 3, the inclusion

GU ⊆ FLH
U ∩ ĜU , is a section of the projection FLH

U ∩ ĜU // // GU , given by X 7→ X− X′.
Therefore, we have the required inclusion

FLH
U /GU� _

��

� � //
� s

&&

FLH
U / ker Ψ

� _

Ψ̃
��

F̂LH
U /GU F̂LH

U /ĜU .oooo

Recall that H1
dR(U, ∂U) ' H1

D(U) in the exact sequence,

H1
dR(U, ∂U) // H1

dR(U)
i∗∂U // H1

dR(∂U). (16)

Hence, the demand in the proof of Proposition 3 for i∗∂UηX to be null is equivalent to demanding
ηX to lie into Ω1

D(U). Thus, ηX defines a relative cohomology class [ηX ] ∈ H1
dR(U, ∂U). Further

considerations actually explain that [ηX ] = 0.

Proposition 4. If H1
dR(U, ∂U) = 0, then FLH

U /GU ' F̂LH
U /ĜU .

Proof. For every V ∈ FLH
U we have that dvιjVΩL|∂U = dhσV , with σV |∂U = dhλ|∂U . Take η ∈ AU any

YM solution. For ηV |∂U = jη∗V|∂U , we solve the Poisson BVP{
∆ψ = d?ηV , in U,
∂ψ/∂xn|∂U = −Vn(x), in ∂U = {xn = 0},

then ηV may be gauge translated by an exact form dψ so that η̃V = ηV + dψ has no normal components
along ∂U and satisfies d ? η̃V = 0 as well as the linearized YM equation, d?dη̃V = 0.

Notice that the induced linearized solution Xdψ ∈ FU in fact belongs to ĜU ∩ FLH
U .

By (13) η̃V ∈ H1
N(U)⊕ (H1(U)∩ dΩ0(U))⊕ d?Ω2

N(U). For the coclosed projection η′V ∈ H1
N(U)⊕

d?Ω2
N(U) of η̃V , we have the orthogonal decomposition, η′V = η′′V ⊕ d?χ.
Consider the boundary conditions linear map, dr∂U [η] : FLH

U /GU → L∂U , such that

(dr∂U)[η](V) = (η′V)
D ⊕ (η′V)

N := [ι∗∂Uη′V ]⊕ ?∂U i∗∂U(?dη′V),

where the codomain is the linear space of Dirichlet-Neumann boundary conditions modulo gauge,

L∂U :=
(

ker d?∂U /(dΩ0(U) ∩ ker d?∂U )
)
⊕ ker d?∂U . (17)

See [15] for further considerations of this space. Recall the isomorphisms

H1
N(U) ' H1

dR(U), H1
D(U) ' H1

dR(U, ∂U).
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Since H1
D(U) ' H1

dR(U, ∂U) = 0, then by (16) we have H1
N(U) ⊆ H1

dR(∂U). Hence, the closed
projection of i∗∂U(η

′
V) ∈ Ω1(∂U) would have cohomology class i∗∂U [η

′′
V ] in H1

dR(∂U) induced by [η′′V ] ∈
H1

dR(U). Therefore, (dr∂U)[η] is injective.
If we proceed as in the previous argument with [V] ∈ F̂LH/ĜU , we can define an injective map

d̂r∂U such that the following diagram commutes

FLH
U /GU

� �dr∂U [η] //
� _

η̌

��

L∂U

F̂LH
U /ĜU .

d̂r∂U [η]

::

Notice that d̂r∂U [η] and dr∂U [η] have the same image.

Remark that we have the commutative diagram

AU/GU LU
rU,∂U //

eη

oo LŨ .

FLH
U /GU

dr∂U [η]

;;
pη

OO

expη

ee (18)

where
LŨ := rU,∂U(LU) ⊆ L∂U

with rU,∂U the map of boundary conditions of solutions modulo gauge, see [15] for further properties
of this map. Here we use axial gauge fixing in a tubular neighborhood of ∂U as well as the linear
map rU,∂U(ϕ) = ϕD ⊕ ϕN is defined in (17). The linear map p is induced by pη(V) = η + ϕ where
ϕ ∈ Ω1(U) is a coclosed linearized solution, d ? dϕ = 0 such that ηV = ϕ, see notation (11).

By composing the projection pη with the map eη we get the map expη : FLH
U /GU → AU/GU .

Diagram (18) suggests that Hamiltonian first variation modulo gauge, FLH
U /GU is a Lie algebra isomorphic

as linear space to the tangent space of the moduli space AU/GU at η.
The following assertion related to Proposition 4 explains how the relative cohomology codifies

the description of AU/GU with respect to the boundary conditions, see also [15].

Proposition 5. H1
dR(U, ∂U) = 0 if and only if r∂U : LU → L∂U is injective and r∂U : LU → LŨ is a

linear isomorphism.

4. Poisson-Lie Algebra of Hamiltonian Observables

Definition 3 (Hamiltonian observable currents). We say that an observable current F ∈ Ωn−1,0(JY|U) is a
Hamiltonian observable current if there exist V ∈ FU and a residual form σF such that the following relation
holds when restricted to EL and evaluated on W ∈ FU ,

dvF|EL = −ιjVΩL + dhσF (19)

We denote the space of Hamiltonian observable currents over U as ĤOCU . The evolutionary vector
field V, is actually a locally Hamiltonian first variation, i.e., V ∈ F̂LH

U . If in addition in (19) we have the
boundary condition

dvσF|∂U = dhλF (20)

then we call F a Hamiltonian observable current with boundary condition. Here V ∈ FLH
U . We denote the

space of these kind of observable currents as HOCU .
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Definition 4 (Helicity current). Suppose that ϕ ∈ Ω1(U) is a solution of the linearized YM equation,
d ? dϕ = 0. Define the ϕ-helicity current as

Fϕ = ιjVϕ
ιjRΩL ∈ Ωn−1,0(JY|U),

where R ∈ FU was defined in (6). More explicitly

Fϕ =
n

∑
i=1

[
n

∑
j=1

vij
(

ϕj(x) · (Aj
i − Ai

j)− Aj ·
(

∂ϕj(x)
∂xi − ∂ϕi(x)

∂xj

))]
νi.

Form the very definition and the multysimplectic formula it can be seen that dhFϕ|EL = 0.
Remark that we could have defined observable currents, Fϕ, for any divergence-free ϕ in U,

d ? ϕ = 0, with evolutionary Hamiltonian vector field, Vϕ ∈ Ev(JY|U), rather than in restricting
ourselves to Hamiltonians first variations in FU , just as the observables considered in [8]. Nevertheless,
if we had adopted this definition, then we would have to restrict the domain of Fϕ and evaluate
only ob solutions η′ = η0 + ϕ′ ∈ AU with Lorentz gauge fixing (12), ϕ′ ∈ LU in order to have local
invariance dhFϕ|EL = 0.

From the following assertion it follows that helicity currents are Hamiltonian observable currents
restricted to U, that is Fϕ ∈ HOCU .

Lemma 9. The ϕ-helicity current, Fϕ ∈ Ωn−1,0(JY|U , defines a locally Hamiltonian observable current with
Hamiltonian Vϕ ∈ FLH

U whenever d ? dϕ = 0.

Proof. Recall the notation in (10). Notice that the relation dvFϕ + ιjVϕ
ΩL = 0 is valid off-shell. Therefore

we have
dvFϕ|EL = −ιjVϕ

ΩL

in particular when evaluated on W ∈ FU .

Lemma 10. If ϕ, ϕ′ ∈ Ω1(U) are solutions of d ? dϕ′ = 0 = d ? dϕ, then the Lie derivative, LjVϕ′
Fϕ, lies

in HOCU with Hamiltonian [Vϕ, Vϕ′ ] ∈ FU . Under integration over Σ, it yields the symplectic product
observable, associated to ιjVϕ

ιjVϕ′
ΩL ∈ HOCU ,

f
VϕVϕ′
Σ (η) :=

∫
Σ

jη∗ιjVϕ
ιjVϕ′

ΩL, ∀η ∈ AU , φ ∈ LU .

Proof. Notice that
LjVϕ′

Fϕ = ιjVϕ′
dvFϕ = −ιjVϕ′

ιjVϕ
ΩL

evaluated on W ∈ FU on Shell. On the other hand a general formula (9) states that

dv
(

ιjVϕ
ιjVϕ′

ΩL

)
= −ι[jVϕ ,jVϕ′ ]

ΩL + ιjVϕ′
LjVϕ

ΩL − ιjVϕ
LjVϕ′

ΩL.

Therefore dv
(

ιjVϕ
ιjVϕ′

ΩL

)
= −ι[jVϕ ,jVϕ′ ]

ΩL. Recall that [jVϕ, jVϕ′ ] = j[Vϕ, Vϕ′ ], see for instance [20]

por the explicit form of the Lie bracket of evolutionary vector fields. Hence [Vϕ, Vϕ′ ] is Hamiltonian
first variation for ιjVϕ

ιjVϕ′
ΩL ∈ HOCU .

Define the family of ϕ-helicity observables as

f ϕ
Σ (η) =

∫
Σ
(jη)∗Fϕ, ∀η ∈ AU .
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We see that f ϕ
Σ is related to the anti-symmetric component of the helicity as bilinear form, see

Section 1, in the sense of (3). Notice also that [·, ·]Σ is not necessarily symmetric, unless ∂Σ = 0. Hence
f ϕ
Σ not necessarily equals 0.

We say that f ϕ
Σ is a Hamiltonian observable with Hamiltonian first variation vϕ so that the following

formal identity holds:

Lw f ϕ
Σ (η) = −ωΣL[η](vϕ, w), ∀w = δη, ∀η ∈ AU . (21)

Let us explain the formal notation of (21). Any first variation of solutions, W ∈ FU , encodes a
variation of any fixed solution η ∈ AU , which we denote as w = δη,

w =
dφε

dε

∣∣∣∣
ε=0

, φ0 = η (22)

for a one-parameter family of smooth solutions φε ∈ AU . This means that d(jηε)
dε

∣∣∣
ε=0

= jW(jη).
In the r.h.s. we have an evaluation of a symplectic form,

ωΣL[η](v, w) :=
∫

Σ
(jη)∗ΩL(jV, jW). (23)

While in the l.h.s. we have

Lw f ϕ
Σ (η) =

d
dε

∣∣∣∣
ε=0

f ϕ
Σ (φ

ε), (24)

With this notation we suggest that we are modeling a Lie derivative Lw(·) in the tangent space of
the moduli space AU/GU , while w = δη corresponds to local vector fields near [η] ∈ AU/GU .

If X ∈ GU corresponds to a first variation of a one-parametric family of gauge equivalent
solutions, φε, then Lx f ϕ

Σ = 0, which follows from jX|∂U = 0. Thus f ϕ
Σ is well defined for the gauge

class [Vϕ] ∈ FLH
U /GU .

Lemma 11. Consider the linear space

fΣU :=
{

f ϕ
Σ : d ? dϕ = 0, [Vϕ] ∈ FLH

U /GU

}
/R

where f ϕ1
Σ − f ϕ2

Σ is a constant function iff represent the same R-class. Then fΣU is a Lie algebra with bracket

{[
f ϕ
Σ

]
,
[

f ϕ′

Σ

]}
Σ
=

[
f

VϕVϕ′
Σ

]
,

which means {
f ϕ
Σ , f ϕ′

Σ

}
Σ
= f

VϕVϕ′
Σ + const.

Proof. Let ϕ, ϕ′ be 1-forms as in the hypothesis. As in the proof of Lemma 10, recall that

dv
(

ιjVϕ
ιjVϕ′

ΩL

)
= −ιj[Vϕ ,Vϕ′ ]

ΩL.

There are gauge translations X = Xψ, X′ = Xψ′ ∈ GU , ψ, ψ′ : U → R such that the gauge
translations V, V′ are divergence-free, see for instance the Appendix [15]. Recall that V, V′ are defined
by ϕ− dψ, ϕ′ − dψ′, respectively. Hence V = Vϕ − X and V′ = Vϕ′ − X′. By (9)

−ιj[Vϕ ,Vϕ′ ]
ΩL = −ιj[V,V′ ]ΩL − ιj[V,X′ ]ΩL − ιj[X,V′ ]ΩL − ιj[X,X′ ]ΩL
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Hence
dv
(

ιjVϕ
ιjVϕ′

ΩL

)
= −ιj[V,V′ ]ΩL + dhσVV′

with
σVV′ = −ρ[V,X′ ] − ρ[X,V′ ] − ρ[X,X′ ].

Denote ϕ̃ ∈ Ω1(U) as the a 1-form such that [V, V′] = Vϕ̃. In local coordinates:

ϕ̃j =
n

∑
i=1

ϕi
1(x)

dϕ
j
2(x)

dxi − ϕi
2(x)

dϕ
j
1(x)

dxi , ϕ1 = ϕ− dψ, ϕ2 = ϕ′ − dψ′, .

Recall that divergence-free vector fields form a Lie algebra, that is d ? ϕ̃ = 0. Then

dv
(

F ϕ̃ + ιjVϕ
ιjVϕ′

Ω
)
= dhσVV′ .

Therefore,

Lw

(
f

VϕVϕ′
Σ − f ϕ̃

Σ

)
= 0,

for every variation of solutions w associated to every W ∈ FU . See the explanation of the notation in

(21). Hence f
VϕVϕ′
Σ = f ϕ̃

Σ + const.

We claim that fΣU yields a family of local observables sufficiently rich to separate solutions, see
also [7]. Suppose that we consider a non-gauge variation v = δη of a solution η ∈ AU . More precisely,
take a one-parametric family of solutions ηε = η + εϕ encoded by the symmetry V ∈ FU , that is

d
dε

∣∣∣
ε=0

j(ηε) = jV(jη). Without loss of generality we can also suppose that V = Vϕ with d ? dϕ = 0.

Hence, for any 0 6= [V] ∈ FLH
U /GU , there exists [W] ∈ FLH

U /GU , [W] 6= 0, such that jη∗
(
ιjV ιjWΩL

)
in a suitable open n-dimensional ball U′ ⊆ U. We choose an embedded (n− 1)-dimensional ball,
Σ′ ⊆ U′, ∂Σ′ ⊆ ∂U′ such that ∫

Σ′
jη∗
(

ιjWϕ′
ιjVϕ

ΩL

)
6= 0

for W = Wϕ′ associated to ϕ′ ∈ Ω1(U), d ? dϕ′ = 0, a non trivial solution to linearized equations in U′

that also vanishes in the exterior of U′.
We then extend Σ′ to Σ ⊆ U, ∂Σ ⊆ ∂U, such that f VW

Σ (η) 6= 0. The variation of f ϕ
Σ along w in the

space of YM solutions is
Lw f ϕ

Σ (η) = f VW
Σ (η) 6= 0.

Remark that for every YM solution η ∈ AU and for every variation V ∈ FU , if ϕ = jη∗V, then
and jVϕ

∣∣
jη = jV|jη . Thus we could change notation and index the family { f ϕ

Σ } as { f V
Σ } where we take

V in FLH
U .

We summarize the results exposed in this section in the following result and regard the family of
observables { f V

Σ } as a “Darboux local coordinate system” for our gauge field theory.

Theorem 2 (Darboux’s Theorem). Given η ∈ AU a fixed YM solution. For each Σ ⊆ U an admissible
hypersurface, ∂Σ ⊆ ∂U, with relative homology class [Σ] ∈ Hn−1(U, ∂U), there exists an infinite dimensional
gauge invariant Lie algebra (modulo constant functions)

fΣU =
{

f V
Σ : [V] ∈ FLH

U /GU

}
/R

such that the following assertions hold:

1. fΣU is gauge invariant: If X is a variation of one-parametric family of gauge equivalent solutions then
Lx f V

Σ = 0. Moreover, [ f V
Σ ] ∈ fΣU depends just on the gauge GU-class, [V] ∈ FLH

U /GU .
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2. Each variation V is in fact locally Hamiltonian, V ∈ FLH
U hence f V

Σ is an observable that satisfies the
Hamilton’s equation (recall notation in (21)):

Lw f V
Σ (η) = −ωΣL[η](v, w), ∀w = δη

3. fΣU , locally separates solutions near η: For every non-gauge variation v = δη modeled by V ∈ FU , there
exists a locally Hamiltonian variation w modeled by W ∈ FLH

U and Σ ⊆ U with

Lv f W
Σ (η) 6= 0.

The following commutative diagram of Lie algebra morphisms and vertical exact sequences
summarizes our results

fΣU FLH
U /GUoooo � � // F̂LH

U /ĜU

{Fϕ}

∫
Σ ·
OOOO

� � // HOCU

OO

� � // ĤOCU

OO

R

OO

Coooo

OO

� � // ĈU

OO

(25)

where CU denote subset of the the constant observable currents

ĈU :=
{

F ∈ ĤOCU : (dvF− dhσF)|FU ,EL = 0
}

with the additional boundary condition (dvσF − λF)|FU ,EL = 0, dhλF|FU ,EL = 0.

Definition 5 (Poisson algebra). Let Σ be any admissible hypersurface Σ ⊆ U. The (polynomial) Poisson
algebra of helicity Hamiltonian observables,

(P (fΣU) , {·, ·}Σ)

is generated by the Lie algebra fΣU = {[ f ϕ
Σ ] : AU/GU → R}.

The proof of the following assertion follows from the fact that the space of boundary conditions
of solutions, LŨ ⊆ L∂U , is a Lagrangian subspace with respect to the symplectic form ω∂U,L, see [21].

Proposition 6. For a hypersurface Σ ⊆ ∂U (such that [Σ] = 0 ∈ Hn−1(U, ∂U)) and for its complement,
Σ′ = U − Σ ⊆ ∂U, the corresponding observables uniquely define an observable

f ϕ
∂Σ := f ϕ

Σ = − f ϕ
Σ′ ∈ fΣU

associated to the oriented and closed (n− 2)-dimensional boundary ∂Σ ⊆ ∂U.

The Lie algebra
f∂U := { f ϕ

∂Σ : Σ ⊆ ∂U}/R

will suffice to separate boundary conditions of solutions, while the Lie algebras fΣU corresponding to
0 6= [Σ] ∈ Hn−1(U, ∂U) will be necessary if we want to separate solutions yielding the same boundary
conditions, hence in the fibers of rU,∂U : LU → LŨ ⊆ L∂U . This happens when H1

dR(U, ∂U) 6= 0
according to Proposition 5. This also allows us to consider the fibers of rU,∂U : LU → LŨ as the
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symplectic leafs the coisotropic linear space LU . This image has been described in detail for the moduli
space AU/GU of non-abelian YM solutions in the two dimensional case, see for instance [22].

5. Gluing Observable Currents

Suppose that a region U is obtained by gluing U1, U2 along the closed hypersurfaces Σ1 ⊆
∂U1, Σ2 ⊆ ∂U2, to avoid corners case we suppose ∂Σ1 = ∅ = ∂Σ2. This includes an isometry of
Σ1 with Σ2 together with the compatibility of normal derivatives of the metric. We also suppose
that the principal bundle P over U is induced by the corresponding principal bundle P1,P2 over
U1, U2. From the projection map p : U1 ×U2 → U we fix base points η ∈ AU obtained by gluing
p∗ηi ∈ AUi , i = 1, 2.

Suppose that Vi ∈ FUi , i = 1, 2 satisfy the continuity gluing condition along Σi

jΣ
(
V1|Σ1

)
= jΣ

(
V2|Σ2

)
(26)

and denote those couples (V1, V2) satisfying (26) as FU1#ΣFU2 , where Σ = p(Σi) ⊆ U. It is a Lie
subalgebra of FU1 ⊕ FU2 . The continuity gluing condition (26) is trivially satisfied for the gauge Lie
algebras so that GU1 #ΣGU2 = GU1 ⊕GU2 , hence there is a well defined Lie algebra

FU1#ΣFU2 /GU1#ΣGU2 ⊆ FU1 ⊕ FU2 /GU1#ΣGU2

Let ĜΣ
U1
⊆ ĜU1 denote those gauge variations whose jet vanish along the boundary components

of ∂U1 except for Σ1. Similarly define ĜΣ
U2

. If we define

GΣ = ĜΣ
U1

#ΣĜ
Σ
U2

/
(
GU1#ΣGU2

)
then by an Isomorphism Theorem for Lie algebras,

FU1#ΣFU2 /ĜΣ
U1

#ΣĜ
Σ
U2
'
(
FU1#ΣFU2 /GU1#ΣGU2

)
/GΣ.

There is a commutative diagram of linear maps as follows. Recall the gluing procedure for abelian
YM, see [15]. The doted arrow is a Lie algebra morphism.(

FU1#ΣFU2 /GU1#ΣGU2

)
/GΣ

��

FU/GU

eη

��

//

ii

FU1#ΣFU2 /GU1#ΣGU2

eη1⊕eη2
��

ll

LU //

rU,∂U
uu

LU1 ⊕LU2

rU1,∂U1
⊕rU2,∂U2

��
LŨ LŨ1

⊕LŨ2
oo

From the Lagrangian embedding of LŨ with respect to the symplectic structure, ω∂U,L, it follows
that the Dirichlet conditions along Σ1 and Σ2 completely determine the Neumann conditions in U1 and
U2, respectively. Here we consider an axial gauge fixing for solutions in ∂U satisfying also the Lorentz
gauge fixing condition in ∂U, see Appendix in [15]. This means that the continuous gluing condition
(26) will suffice to reconstruct modulo gauge the first variation Vϕ = Vϕ1#Vϕ2 for Vϕi ∈ FUi , i = 1, 2
disregarding the normal derivatives along Σ. This proves the following assertion
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Theorem 3 (Gluing of symmetries modulo gauge). There is an isomorpmhism of Lie algebras(
FU1#ΣFU2 /GU1#ΣGU2

)
/GΣ ' FU/GU .

6. Outlook: Further Problems

We just remark that in further directions of research. In the first place, it is highly desirable to
see whether or not f VV′

Σ observables can be defined for non abelian (non-linear) YM equations and
if it will suffice to separate solutions just as in Theorem 2. Extension of the variationa bicomplex
ttreatment need to be extended to non-local first variations to get enough observables to separate
solutions. The existence of a Jacobi bracket needs also to be verified in this case. Gluing properties
for observables need also to be developed and explained in detail. Namely the continuous gluing
of currents HOCU1#ΣHOCU2 in relation to HOCU , as well as the gluing f V1

Σ′ #Σ f V2
Σ′′ for hypersurfaces

Σ′ ⊆ U1, Σ′ ⊆ U′′ intersecting transversally the gluing boundary component Σi, i = 1, 2. Finally,
considerations of Riemannian manifolds with corners may introduce further difficulties in the results
we have established for the smooth boundary case.
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PDE PArtial differential equation
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Appendix A. Variational Bicomplex Formalism

For the convenience of the reader, in this section we fix notation by recalling basic definitions of
the variational formalism for variational PDEs taken from [3,11,18,20,24,25].

Let M be an n-dimensional manifold, and let π : Y → M be a fiber bundle with m-dimensional
fiber F . Denote its sections or histories as Γ(Y |U) where U ⊆ M is a compact domain with piecewise
smooth boundary.

The k-jet bundle πk,0 : JkY → Y, k = 1, 2, . . . . On π−1(U) ⊂ Y take the local coordinates(
x; u(k)

)
:= (x1, . . . , xi, . . . , xn; u1, . . . , ua, . . . , um; . . . , ua

I , . . . ) ∈ Jkπ−1(U)

where i = 1, . . . , n; a = 1, . . . , m; and I = (i1, . . . , in) denotes a multiindex of degree |I| := i1 + · · ·+ in =

0, 1, . . . , k, ij ≥ 0, ij ∈ Z. For I = ∅, we define ua
∅ = ua. We denote the projection of the (k + 1)-jet onto

the k-jet as πk+1,k : Jk+1Y→ JkY. For a section φ : M→ Y, we denote its k-jet as jkφ : M→ JkY, where

jkφ(x) =

(
φ1(x), . . . , φm(x); . . . ,

∂|I|φa

∂xi1
1 . . . ∂xin

n
, . . .

)

Denote the space of p-forms on JkY as Ωp(JkY). For the decomposition p = r + s, denote
the space of r-horizontal and s-vertical forms on JkY as Ωr,s(JkY), have as basis the (r + s)-forms
ϑa1

I1
∧ · · · ∧ ϑas

Is
∧ dxj1 ∧ · · · ∧ dxjr , where
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The Cartan distribution on JkY is generated by the basis of contact 1-forms (A1)

ϑa
I := dua

I −
n

∑
j=1

ua
(I,j)dxj ∈ Ω1

(
J|I|+1Y

)
, |I| ≤ k− 1, a = 1, . . . , m. (A1)

The vertical differential dv for F ∈ Ω0(JkY) defined as

dv : Ωr,s
(

JkY
)
→ Ωr,s+1

(
JkY

)
, dvF := ∑

0≤|I|≤k

m

∑
a=1

∂F
∂ua

I
ϑa

I ,

then we are forced to consider the horizontal differential with range in the (p + 1)-forms in Jk+1Y

dh : Ωr,s
(

JkY
)
→ Ωr+1,s

(
Jk+1Y

)
, dhF :=

n

∑
i=1

d

dxi

(k+1)
(F) dxi.

where (
d

dxi

)(k)
:=

∂

∂xi
+ ∑

0≤|J|≤k−1

m

∑
a=1

ua
(J,i)

∂

∂ua
J
.

The injective limit Ωr,s(JY) := lim−→π∗k+1,k
Ωr,s(JkY), models the p forms in the infinite jet space

JY = lim←−πk+1,k
JkY. We have the identities

dv
2 = 0, dh

2 = 0, dvdh + dhdv = 0.

Hence, the following diagram commutes

...
...

...

Ωn−2,2(JY)
dh //

dv

OO

Ωn−1,2(JY)
dh //

dv

OO

Ωn,2(JY)

dv

OO

Ωn−2,1(JY)
dh //

dv

OO

Ωn−1,1(JY)
dh //

dv

OO

Ωn,1(JY)

dv

OO

Ωn−2,0(JY)
dh //

dv

OO

Ωn−1,0(JY)
dh //

dv

OO

Ωn,0(JY)

dv

OO

Ωn−2(M)
ddR //

?�
π∗

OO

Ωn−1(M)
?�

π∗

OO

Hn−1
dR (M)
?�

π∗

OO

Derivations in the algebra of smooth functions on Ω0(JY),

V =
n

∑
i=1

ai (x; u)
∂

∂xi
+

m

∑
a=1

Va (x; u)
∂

∂ua
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are in correspondence with sections V ∈ Γ(π∗∞,0(π
v)), where π∗∞,0(π

v) is the pullback under π∞,0 :
JY → Y of the vertical (vector) bundle, πv : Yv → Y, whose fiber at each (x, u) ∈ Y is consists of the
vertical fibers Yv

(x,u) = T(x,u)π
−1(x). In fact, its prolongations

jkV =
n

∑
i=1

ai (x; u)
(

d

dxi

)(k)
+ ∑

0≤|I|≤k−1

m

∑
a=1

ba
I

(
x; u(k)

) ∂

∂ua
I

(A2)

where ba
I := D(k)

I Va + ∑n
j=1 ua

jI aj, |I| ≤ k− 1, act as infinitesimal symmetries of the Cartan distribution
in JY in the sense that

LjVϑa
I = 0. (A3)

Here the horizontal derivative operator D(k)
I equals D(k)

i1
◦ D(k)

i2
◦ · · · ◦ D(k)

in , with

D(k)
is =

(
d

dxs

)(k)
◦ · · · ◦

(
d

dxs

)(k)
=

((
d

dxs

)(k)
)◦is

,

We will assume that V ∈ Γ(π∗∞,0(π
v)) has no horizontal component. Hence ai = 0 and

jV =
m

∑
a=1

Va ∂

∂ua +
n

∑
i=1

(
d

dxi

)(k)
(Va)

∂

∂ua
i
+ ∑

2≤|I|≤k
D(k)

I (Va)
∂

∂ua
I

 . (A4)

We call this space the space of evolutionary vector fields,

Ev(JY) =

{
V ∈ Γ

(
π∗∞,0(π

v)
)

:
∂Va

∂ua
i
=

∂Vb

∂ub
i

,
∂Vb

∂ua
i
= 0, a 6= b

}
(A5)

where the functions Va are local in the sense that they depend on a finite number of derivatives of u.
For a first-order Lagrangian variational problem in a region U ⊆ M, the space of first variations of

histories, v = δφ, for a fixed φ ∈ Γ(Y|U), can be modeled as

V ∈
{

V ∈ Γ
(
π∗1,0(π)|U

)
: V ∈ Ev (U ⊆ JY)

}
where U ⊆ JY, is a neighborhood of the graph jφ(U).

Let ν = dx1 ∧ · · · ∧ dxn ∈ Ωn(M) be a fixed volume n-form on M, and consider the Lagrangian
density, L = L · ν ∈ Ωn,0(J1Y), with Lagrangian

L = L(xi, ua, ua
i ) ∈ Ω0(J1Y).

Consider the action functional on U ⊂ M,

SU(φ) =
∫

U
(j1φ)∗L

if we take the vertical derivative
π∗2,1(dvL) = dhΘL + E(L) (A6)

ΘL = −
n

∑
i=1

m

∑
a=1

∂L
∂ua

i
ϑa ∧ νi ∈ Ωn−1,1

(
J1Y

)
, dxi ∧ νi = ν
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and E(L)
(

x; u(2)
)
= ∑m

a=1 Ea(L) · ϑa ∧ ν ∈ Ωn,1(J2Y), then the Euler-Lagrange equations are

Ea(L) =
∂L
∂ua −

n

∑
i=1

d

dxi

(2) ( ∂L
∂ua

i

)
= 0, a = 1, . . . , m.

Recall that (d/dxi)
(2) = ∂/∂xi + ∑b

(
ub

i ∂/∂ub + ∑j ub
ij∂/∂ub

j

)
. Another way of obtaining the

Euler-Lagrange equations is by E(L) = I(dvL) where we use the integration by parts operator I :
Ωn,s(J1Y)→ Ωn,s(J2Y) for s > 0, satisfying I ◦ dh = 0, I ◦ I = I and that α− Iα is dh-exact. In coordinates
I it is given by

I(α) =
1
s

ϑa ∧
m

∑
a=1

[
ι ∂

∂ua
α−

n

∑
j=1

d

dxj

(
ι ∂

∂ua
j

α

)]
.

Meanwhile, the locus of the Euler-Lagrange PDEs

EL := j
{(

x; u(2)
)
∈ J2Y : E(L)

(
x; u(2)

)
= 0

}
⊆ JY.

The space of solutions of the Euler-Lagrange equations

AU := {φ ∈ Γ(Y) : jφ(M) ⊆ EL} .

On the other hand, if we define the form ΩL = −dvΘL ∈ Ωn−1,2 (J1Y
)
, or

ΩL =
n

∑
i=1

(
m

∑
b,a=1

(
∂2L

∂ub∂ua ϑb ∧ ϑa +
n

∑
j=1

∂2L
∂ub

j ∂ua
i

ϑb
j ∧ ϑa

))
∧ νi.

For a first variation δφ modeled by V ∈ Ev(JY|U), let us consider the Cartan formula for
vertical derivation

LVb = dv
(
ιjVb

)
+ ιjVdvb (A7)

see [18] Proposition 1.16. Then

π∗2,1
(
LjVb

)
= d

(
π∗2,1

(
ιj1Vb

))
+ ιj1V(d(π

∗
2,1b)) (A8)

Therefore,
dh

(
ιj1Vb

)
= (d ◦ π∗2,1 − π∗2,1 ◦ dv)

(
ιj1Vb

)
=

−
(

ιj2V(d ◦ π∗2,1 − π∗2,1 ◦ dv)
)

b = −ιj2V (dhb)

or
dh

(
ιj1V(·)

)
= −ιj2V (dh(·)) . (A9)

In particular dh

(
ιj1VΘL

)
= −ιj2V (dhΘL). Hence the variation for the action is

d
dε

∣∣∣∣
ε=0

SU(φε) =
d
dε

∣∣∣∣
ε=0

∫
U
(j1φε)

∗L =

∫
U

j1φ∗
(
Lj1V L

)
=
∫

U
j1φ∗

(
ιj1VdvL

)
=∫

U
j2φ∗

(
ιj2Vπ∗2,1(dvL)

)
=∫

U
j2φ∗

(
ιj2XdhΘL + ιj2V E(L)

)
=
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−
∫

U
j2φ∗(dh + π∗2,1 ◦ dv)

(
ιj1VΘL

)
+
∫

U
j1φ∗

(
ιj2V E(L)

)
+
∫

U
j1φ∗

(
dv(ιj1VΘL)

)
= −

∫
U

j2φ∗d
(

ιj1VΘL

)
+
∫

U
j2φ∗

(
ιj2V E(L)

)
= −

∫
∂U

j1φ∗
(

ιj1VΘL

)
+
∫

U
j2φ∗

(
ιj2V E(L)

)
.

Proposition A1. Let Θ̂L = −ΘL + L be for the Poincarè-Cartan form, which is also the principal Lepage
equivalent of ΘL, and let φ be a section. The following assertions are equivalent

1. φ ∈ AU .
2. For every vertical vector field, V ∈ Ev(JY|U), the n-form (jφ)∗ιjVΩ̂L in U ⊆ M, vanishes.
3. The Euler-Lagrange equations hold for every x ∈ U

∂L
∂ua (jφ(x))−

n

∑
i=1

∂2L
∂xi∂ua

i
(jφ(x)) = 0, ∀a = 1, . . . , m.

Notice that in the Euler-Lagrange equations Ea(L) = 0 arising from j2φ∗E(L) = 0, the total
horizontal derivations d/dxi are involved. Meanwhile, the Euler-Lagrange equations mentioned in
Proposition A1 deal with partial horizontal derivations, ∂/∂xi, see [1,14].

In general for an (n− 1)-dimensional manifold Σ ⊆ U, we can define the 1-form

(θLΣ)φ(v) :=
∫

Σ
jφ∗
(
ιjVΘL

)
, ∀φ, v = δφ,

where the variation v = δφ corresponds to V ∈ Ev(JY|U). For φ ∈ AU ,(
dSU |AU

)
φ
(v) = −

(
θL,∂U

∣∣
AU

)
φ
(v)

Define the presymplectic structure ωLΣ := −dθLΣ, ∀φ, so that ∀v = δφ, v′ = (δφ)′ we have

(ωLΣ)φ(v, v′) =
∫

Σ
jφ∗
(
ιjV′ ιjVΩL

)
.

From dvΩL = 0 it follows that dωLΣ = 0.
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