

Symmetry 2019, 11, 859; doi:10.3390/sym11070859 www.mdpi.com/journal/symmetry

Article

Accelerating Density Peak Clustering Algorithm
Jun-Lin Lin 1,2

1 Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan;
jun@saturn.yzu.edu.tw; Tel.: +886-3-463-8800 (Ext. 2611)

2 Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 32003, Taiwan

Received: 28 May 2019; Accepted: 26 June 2019; Published: 2 July 2019

Abstract: The Density Peak Clustering (DPC) algorithm is a new density-based clustering method.
It spends most of its execution time on calculating the local density and the separation distance for
each data point in a dataset. The purpose of this study is to accelerate its computation. On average,
the DPC algorithm scans half of the dataset to calculate the separation distance of each data point.
We propose an approach to calculate the separation distance of a data point by scanning only the
neighbors of the data point. Additionally, the purpose of the separation distance is to assist in
choosing the density peaks, which are the data points with both high local density and high
separation distance. We propose an approach to identify non-peak data points at an early stage to
avoid calculating their separation distances. Our experimental results show that most of the data
points in a dataset can benefit from the proposed approaches to accelerate the DPC algorithm.

Keywords: clustering; density-based clustering; density peak

1. Introduction

Clustering is the process of categorizing objects into groups (called clusters) of similar objects
and is a widely-used data mining technique both in academic and applied research [1,2]. Many
clustering methods appear in the literature, but they differ in the notion of similarity. For example,
the k-means algorithm [3] represents each cluster by a centroid, and those objects near the same
centroid are deemed similar; the DBSCAN algorithm [4] defines the notion of density and deems the
objects in a continuous region with a density exceeding a specified threshold as similar; some studies
measure the similarity using the concept of symmetry.

The k-means algorithm is an example of the partitioning-based clustering methods, and most of
the partitioning-based clustering methods can find only spherical shaped clusters [5]. In contrast, the
DBSCAN algorithm is an example of the density-based clustering methods, which can not only find
clusters of arbitrary shapes but also detect outliers [5]. Although a density-based clustering method
usually requires more execution time than a partitioning-based clustering method does, it can often
discover meaningful clustering results that a partitioning-based clustering method cannot reveal.
Several applications of clustering to real-world problems use both of these approaches to extract
different clustering results of the same dataset, to highlight different aspects of the data.

The Density Peak Clustering (DPC) algorithm, proposed by Rodriguez and Laio [6], is a new
density-based clustering method that has received much attention for the past few years [7–17]. It
accelerates the clustering process by first searching for the density peaks in a dataset, and then
constructing clusters from the density peaks. To search density peaks, DPC must calculate two
quantities for each data point: local density and separation distance (see Section 2 for details) [9].
Then, data points with relatively high local density and separation distance are selected as the density
peaks. Many works refer to the density peak of a cluster as the “center” of the cluster. Since density-
based clustering methods yield clusters of arbitrary shapes, the notion of “center” is somewhat
misleading. This work uses “density peak” instead of “center” to avoid confusion.

Symmetry 2019, 11, 859 2 of 18

The contribution of this work is to propose two methods (called ADPC1 and ADPC2) that
accelerate the DPC algorithm. The first method ADPC1 accelerates the calculation of separation
distances and yields the same clustering results as that of the DPC algorithm. The second method
ADPC2 accelerates the DPC algorithm by identifying a significant portion of the non-peak data points
and avoiding calculating their separation distances. Since calculating the separation distances for all
data points is a time-consuming step with O(𝑁𝟐) time complexity where 𝑁 is the number of data
points, our proposed methods can significantly speed up the DPC algorithm.

The rest of this work is organized as follows: Section 2 reviews related work, with a focus on the
DPC algorithm. Sections 3 and 4 propose our methods. Section 5 presents the experimental results.
Finally, Section 6 concludes this study.

2. Related Works

2.1. Clustering Methods

In the literature, clustering methods have been classified into several categories [18]:
partitioning-based methods, hierarchical methods, density-based methods, grid-based methods, and
model-based methods. Partitioning-based methods (e.g., k-means and possibilistic c-means) focus on
discovering compact and hyperellipsoidally shaped clusters. With k-means, the clustering results are
sensitive to outliers. The possibilistic c-means (PCM) method is resilient to outliers, but it requires
additional parameters γ, one for each cluster. Adaptive PCM algorithm [19] allows the parameters γ
to change as the algorithm evolves.

Hierarchical methods work by iteratively (or recursively) dividing a large cluster into small
clusters (or by combining small clusters as a large cluster). As a result, their clustering results can be
represented by a dendrogram. Bianchi, et. [20] proposed a clustering method that forms clusters by
iterative partitioning of an undirected graph.

Density-based methods discover clusters that are continuous regions with a high local density
within the regions. Unlike the partitioning-based methods, density-based methods yield clusters of
arbitrary shapes. Grid-based methods use a grid data structure to quantize the data space into a finite
number of cells and perform the clustering operations directly on the cells. Model-based methods try
to fit the data to some mathematical model.

Some clustering methods do not fit nicely into the above categorization. For example, subspace
clustering [21] methods identify clusters based on their association with subspaces in high-
dimensional spaces.

2.2. Density Peak Clustering Algorithm

As described in Section 1, the DPC algorithm [6] must calculate the local density and the
separation distance for each data point. Given a dataset X, the local density ρ(𝑥௜) of a data point 𝑥௜ ∈X is the number of data points in the neighborhood of 𝑥௜. That is: ρ(𝑥௜) = |B(𝑥௜)| (1)

where B(𝑥௜) denotes the neighborhood of 𝑥௜ and is defined as the set of data points in X whose
distance to 𝑥௜ is less than a user-specified parameter 𝑑௖. That is: B(𝑥௜) = {𝑥௝ ∈ X|d൫𝑥௜, 𝑥௝൯ < 𝑑௖} (2)

where d൫𝑥௜, 𝑥௝൯ represents the distance between 𝑥௜ and 𝑥௝. Notably, Equations (2) and (1) use the
parameter 𝑑௖ as a hard threshold to derive the neighborhood and the local density of a data point,
respectively.

The value of 𝑑௖ can be chosen so that the average number of neighbors of a data point is around
p% of the number of the data points in X, and the suggested value [6] for p is between 1 and 2. For
small datasets, Rodriguez and Laio [6] suggested using an exponential kernel to calculate the local
density, as shown in Equation (3):

Symmetry 2019, 11, 859 3 of 18

ρ(𝑥௜) = ෍ 𝑒𝑥𝑝 ൭− d൫𝑥௜, 𝑥௝൯ଶ𝑑௖ଶ ൱௫ೕ∈ଡ଼ (3)

The separation distance δ(𝑥௜) of 𝑥௜ is the minimum distance from 𝑥௜ to any other data point
with a local density > ρ(𝑥௜), or the maximum distance from 𝑥௜ to any other data point in X if there
exists no data point with a local density > ρ(𝑥௜), as shown in Equation (4):

δ(𝑥௜) = ቐ min௝:஡(𝒙ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) < max௫ೕ∈ଡ଼ ρ൫𝑥௝൯max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , otherwise. (4)

For ease of exposition, we use σ(𝑥௜) to denote the index j of the data point 𝑥௝ that is the nearest
to 𝑥௜ and ρ(𝑥௝) > ρ(𝑥௜), and if no such data point exists, σ(𝑥௜) is set to i, as shown in Equation (5):

σ(𝑥௜) = ൝ argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) < max௫ೕ∈ଡ଼ ρ൫𝑥௝൯𝑖, otherwise. (5)

Notably, there may be more than one data point that is the nearest to 𝑥௜ and has a local density > ρ(𝑥௜). According to Laio’s Matlab implementation of the DPC algorithm [22], if this situation
happens, then σ(𝑥௜) is randomly chosen from the indexes of those data points with the highest local
density among all the data points that are the nearest to 𝑥௜ and have a local density > ρ(𝑥௜).

Once ρ(𝑥௜) and δ(𝑥௜) of each data point have been determined, the DPC algorithm uses the
following assumption to select density peaks: if a data point 𝑥௜ ∈ X is a density peak, then 𝑥௜ must
be surrounded by many data points (i.e., ρ(𝑥௜) is large) and must be at a relatively high distance
from other data points with a local density greater than ρ(𝑥௜) (i.e., δ(𝑥௜) is large). To assist choosing
the density peaks, the DPC algorithm plots each data point in a decision graph, which is a two-
dimensional graph with the local density and the separation distance as the horizontal and vertical
axes, respectively. Data points with both high local density and high separation distance are
manually selected as the density peaks. Alternatively, one can set a threshold on γ(𝑥௜) = ρ(𝑥௜)δ(𝑥௜)
and select data points with γ(𝑥௜) greater than the threshold as density peaks [6].

After all density peaks have been determined, each density peak acts as the starting point of a
cluster, and thus the number of density peaks equals the number of clusters. Each non-peak data
point is assigned to the same cluster as its nearest data point of higher density, i.e., data points 𝑥௜ is
assigned to the cluster that contains 𝑥஢(௫೔). Let 𝑦௜ denote the cluster label of data point 𝑥௜, then 𝑦௜ =𝑦஢(௫೔).

Algorithm 1 shows the DPC algorithm. Notably, it is important to sort the data points by their
local density descendingly in Step 2 so that calculating δ(𝑥௜) and σ(𝑥௜) in Step 3 and the cluster
assignment in Step 6 can be done efficiently. Without Step 2, for each data point 𝑥௜, Step 3 would
require scanning all data points in X to find the data points with a local density > ρ(𝑥௜). With Step 2,
Step 3 only needs to scan the data points located before 𝑥௜ in X, and, thus, reduces the running time
of Step 3 by half on average. Additionally, with Step 2, data points with higher local density are
processed earlier in Step 6. Since ρ൫𝑥஢(௫೔)൯ > ρ(𝑥௜), 𝑦஢(௫೔) will be determined before 𝑦௜ in Step 6, and,
thus, Step 6 can complete cluster assignment in O(𝑁) time.

Algorithm 1. DPC algorithm.

Input: the set of data points X ∈ ℝே×ெ and the parameters 𝑑௖ for defining
the neighborhood, and 𝑑௥ for selecting density peaks
Output: the label vector of cluster index y ∈ ℝே×ଵ
Algorithm:
1. Calculate ρ(𝑥௜) for each 𝑥௜ ∈ X using either (1) or (3).
2. Sort all data points in X by their local densities descendingly.

Symmetry 2019, 11, 859 4 of 18

3. Calculate δ(𝑥௜) and σ(𝑥௜) for each 𝑥௜ ∈ X using (4) and (5),
respectively.

4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks.
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖. // starting point of each cluster
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔). // cluster assignment
7. Return y.

Appendix A describes Laio’s implementation details for Step 3 of the DPC algorithm.
Specifically, we discuss how it handles two ambiguous situations when calculating the separation
distance using Equation (4).

3. Accelerating APC by Scanning Neighbors Only

As described earlier, for each data point 𝑥௜ ∈ X, Step 3 of the DPC algorithm in Algorithm 1
requires to scan half of X on average to find 𝑥஢(௫೔), i.e., the data point nearest to 𝑥௜ and with a local
density > ρ(𝑥௜). Observation 1 shows that we can find 𝑥஢(௫೔) by scanning only the neighbors of 𝑥௜, if
the local density of 𝑥௜ is less than the maximal local density of its neighbors. Most data points satisfy
this condition, and the size of a data point’s neighborhood is much smaller than the size of X, so the
time complexity of Step 3 can be reduced from O(𝑁𝟐) to O(𝑁𝑏) where 𝑁 denotes the number of
data points in X, and 𝑏 denotes the average neighborhood size.
Observation 1. If 𝜌(𝑥௜) < 𝑚𝑎𝑥௫ೕ∈஻(௫೔) 𝜌൫𝑥௝൯ for some data point 𝑥௜ ∈ X, then the data point nearest to 𝑥௜ and

with a local density > 𝜌(𝑥௜) is in 𝐵(𝑥௜), i.e., 𝑥ఙ(௫೔) ∈ 𝐵(𝑥௜).
Based on Observation 1, we rewrite Equations (4) and (5) to Equations (6) and (7) below. In

Algorithm 2, we propose an accelerated version of DPC (called ADPC1), which produces the same
clustering results as DPC does, but in less time:

δ(𝑥௜) = ⎩⎪⎨
⎪⎧ min௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ min௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ . (6)

σ(𝑥௜) =
⎩⎪⎨
⎪⎧ argmin௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ argmin௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰𝑖, if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ . (7)

Algorithm 2. ADPC1 algorithm.

Input: the set of data points X ∈ ℝே×ெ and the parameters 𝑑௖ for defining the
neighborhood, and 𝑑௥ for selecting density peaks
Output: the label vector of cluster index y ∈ ℝே×ଵ
Algorithm:
1. Calculate ρ(𝑥௜) and B(𝑥௜) for each 𝑥௜ ∈ X using either (1) and (2) or (3) and (2).
2. Sort all data points in X by their local density descendingly.
3. Calculate δ(𝑥௜) and σ(𝑥௜) for each 𝑥௜ ∈ X using (6) and (7).
4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks.
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖. // starting point of each cluster
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔). // cluster assignment

7. Return y.

Symmetry 2019, 11, 859 5 of 18

*The parts different from the DPC in Algorithm 1 are highlighted in red.

Notably, in Step 1 of Algorithm 1, the DPC algorithm uses B(𝑥௜) to calculate local density ρ(𝑥௜),
but, afterwards, B(𝑥௜) is no longer needed. However, in Algorithm 2, the ADPC1 algorithm needs to
keep B(𝑥௜) for calculating δ(𝑥௜) and σ(𝑥௜) in Step 3. If ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯, then we only need to

scan B(𝑥௜) to calculate σ(𝑥௜) and δ(𝑥௜). If ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ does not hold, then σ(𝑥௜) and δ(𝑥௜)

are calculated the same way as in the DPC algorithm, i.e., scanning half of the dataset X on average.
Since it is often that the local density of a data point is less than the maximal local density of its
neighbors, ADPC1 can greatly reduce the execution time. Appendix B describes the implementation
details for Step 3 of the ADPC1 algorithm.

4. Accelerating APC by Skipping Non-Peaks

Both DPC and ADPC1 need to calculate the separation distance δ(𝑥௜) for each data point 𝑥௜.
Recall that the purpose of calculating δ(𝑥௜) is to assist determining whether 𝑥௜ is a density peak.
Therefore, if we can determine 𝑥௜ as a non-peak data point at an early stage, then there is no need to
calculate δ(𝑥௜). Observation 2 shows the necessary condition of a density peak, which can be applied
to detect most non-peak data points in a dataset.
Observation 2. If 𝜌(𝑥௜) < 𝑚𝑎𝑥௫ೕ∈஻(௫೔) 𝜌൫𝑥௝൯ for some data point 𝑥௜ ∈ X, then 𝑥௜ cannot be a density peak.

If 𝑥௜ is not a density peak, then we can omit to calculate δ(𝑥௜) by simply assigning δ(𝑥௜) to a
small value, say 0. However, without calculating δ(𝑥௜), we do not know σ(𝑥௜), i.e., the index of the
data point nearest to 𝑥௜ and with a local density > ρ(𝑥௜) . Notably, σ(𝑥௜) is needed for cluster
assignment in Step 6 of the DPC and ADPC1 algorithms. To resolve this problem, we use the index
of the data point with the highest local density in the neighborhood of 𝑥௜ as a surrogate for σ(𝑥௜)
and redefine Equations (6) and (7) as Equations (8) and (9) below: δ(𝑥௜)

= ⎩⎪⎨
⎪⎧ 0, if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ min௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) ≧ max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ . (8)

σ(𝑥௜)
=

⎩⎪⎨
⎪⎧ argmax௝:௫ೕ∈୆(௫೔) ρ(𝑥௝) , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ argmin௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) ≧ max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰𝑖, if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ . (9)

Notably, Equations (8) and (9) only modify the first case of Equations (6) and (7), i.e., when the
local density of 𝑥௜ is less than the maximal local density of its neighbors. Based on Equations (8) and
(9), we propose another accelerated version of DPC (called ADPC2), which is the same as ADPC1 in
Algorithm 2 except that Step 3 of ADPC2 uses Equations (8) and (9) instead of Equations (6) and (7)
to calculate δ(𝑥௜) and σ(𝑥௜) , as shown in Algorithm 3. Notably, because ADPC1 and ADPC2
calculate σ(𝑥௜) differently, their clustering results can be slightly different from each other.
Appendix C describes the implementation details for Step 3 of the ADPC2 algorithm.

Algorithm 3. ADPC2 algorithm.

Input: the set of data points X ∈ ℝே×ெ and the parameters 𝑑௖ for defining the
neighborhood, and 𝑑௥ for selecting density peaks
Output: the label vector of cluster index y ∈ ℝே×ଵ
Algorithm:
1. Calculate ρ(𝑥௜) and B(𝑥௜) for each 𝑥௜ ∈ X using either (1) and (2) or (3) and (2).

Symmetry 2019, 11, 859 6 of 18

2. Sort all data points in X by their local density descendingly.
3. Calculate δ(𝑥௜) and σ(𝑥௜) for each 𝑥௜ ∈ X using (8) and (9).
4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks.
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖. // starting point of each cluster
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔). // cluster assignment

7. Return y.
*The parts different from the DPC in Algorithm 1 are highlighted in red.

5. Performance Study

5.1. Test Datasets

In this study, we use 12 well-known two-dimensional synthetic datasets to demonstrate the
performance of the proposed algorithms. Dataset Spiral [23] consists of three spiral-shaped clusters.
Dataset Flame [24] consists of two non-Gaussian clusters of points, where both clusters are of
different sizes and shapes. Dataset Aggregation [25] consists of seven perceptually distinct (non-
Gaussian) clusters of points. Dataset R15 [26] consists of 15 similar Gaussian clusters that are
positioned on concentric circles. Dataset D31 [26] consists of 31 similar Gaussian clusters that are
positioned along random curves. Datasets A1, A2, and A3 [27] contain 20, 35, and 50 circular clusters,
respectively, where each cluster has 150 points. Datasets S1, S2, S3, and S4 [28] each contain 15
Gaussian clusters, where the degree of cluster overlapping is S1 < S2 < S3 < S4. Appendix D gives a
detailed characterization of these datasets.

5.2. Experiment Setup

The experiment was divided into two tests. Test 1 used a hard threshold to calculate the local
density, as defined in Equations (1) and (2); Test 2 used an exponential kernel to calculate the local
density, as defined in Equation (3). In both tests, the value of 𝑑௖ for defining the neighborhood is
determined by the parameter p, as suggested in [6] and described in Section 2. We varied the value
of p from 0.5 to 4 with a step size of 0.5. A large p implied a large 𝑑௖ and consequently a large
neighborhood.

In this experimental study, we compared the performance of the proposed ADPC1 and ADPC2
against DPC. Recall that both ADPC1 and ADPC2 accelerated the way to derive the separation
distances of those data points with a local density less than the maximal local density of their
neighbors. Thus, we calculated the proportion (denoted by 𝑅෰) of such data points in a dataset for
various p values, i.e., 𝑅෰ = ே෱ே where 𝑁෱ is the number of such data points in the dataset, and 𝑁 is the
total number of data points in the dataset. Usually, both 𝑁෱ and 𝑅෰ grow with a large neighborhood
(i.e., a large 𝑑௖ or p). Thus, the proposed ADPC1 and ADPC2 should perform better with a larger p.

Since these three algorithms only differ on how to calculate the separation distance, we collected
and compared their execution time for calculating the local density and the separation distance, i.e.,
from Step 1 to Step 3 of these algorithms in Algorithms 1 and 2. Then, for ease of comparison, we
calculated the percentage of execution time improvement of ADPC1 (or ADPC2) over DPC by the
difference of the execution times of DPC and ADPC1 (or ADPC2), divided by the execution time of
DPC.

5.3. Experiment Results

5.3.1. Test 1: Use a Fixed Threshold for Local Density

In Test 1, a fixed threshold is used to determine the neighborhood for calculating the local
density of each data point. Table 1 shows the value of 𝑅෰, i.e., the proportion of data points with a
local density less than the maximal local density of their neighbors. According to Table 1, except for
some small datasets (e.g., Spiral, Flame, Aggregation, and R15 datasets) and small p combinations,

Symmetry 2019, 11, 859 7 of 18

the value of 𝑅෰ is usually greater than 80% in most cases, indicating that a large proportion of the
data points in a dataset can be benefited from ADPC1 and ADPC2 to accelerate the calculation of
their separation distances. Please refer to Table A9 in Appendix E for the value of 𝑁෱, i.e., the number
of data points with a local density less than the maximal local density of their neighbors.

A larger p implies a larger 𝑑௖ , and thus a larger neighborhood range and probably more
neighbors in the neighborhood. Intuitively, for a data point with a larger number of neighbors, it
becomes less likely that the local density of the data point is greater than the maximal local density
of its neighbors. Therefore, as the value of p increases, the value of 𝑅෰ tend to increase (with some
exceptions).

Table 1. The value of 𝑅෭ for various dataset and p combinations. (Using a fixed threshold)

Dataset p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4
Spiral 19.87% 28.85% 35.26% 44.55% 51.60% 59.94% 66.67% 74.36%
Flame 31.25% 59.58% 73.75% 86.67% 88.75% 92.08% 94.17% 96.25%

Aggregation 77.28% 89.34% 94.42% 96.45% 96.83% 96.57% 96.57% 97.46%
R15 58.00% 81.67% 89.50% 93.00% 93.83% 95.00% 94.00% 94.50%
D31 95.23% 97.68% 97.87% 97.97% 97.19% 87.94% 65.61% 80.06%
A1 95.13% 98.50% 98.90% 98.93% 99.03% 99.10% 98.80% 98.73%
A2 97.90% 99.07% 98.90% 98.76% 99.09% 99.31% 99.73% 99.75%
A3 98.64% 98.91% 98.84% 99.41% 99.69% 99.77% 99.81% 99.87%
S1 86.10% 96.12% 98.24% 98.72% 98.90% 99.12% 99.48% 99.46%
S2 87.02% 96.68% 98.68% 99.06% 99.00% 99.08% 99.36% 99.22%
S3 89.48% 97.64% 98.84% 99.18% 99.54% 99.40% 99.54% 99.64%
S4 87.10% 96.36% 98.60% 99.10% 99.28% 99.36% 99.44% 99.52%

Table 2 shows the percentage of execution time improvement of ADPC1 and ADPC2 over DPC.
Except for the two small datasets Spiral and Flame at p = 0.5, both ADPC1 and ADPC2 substantially
reduced the execution time of DPC. ADPC2 took less time than ADPC1 did for most dataset and p
value combinations. For the execution time of the three algorithms, please see Table A11 in Appendix
E.

For most cases in Table 1, the values of 𝑅෰ were large and did not change much as the value of p
increased. As a result, the impact of p‘s value on the execution time improvement was not obvious in
Table 2. To show that the impact of 𝑅෰ on the percentage of execution time improvement, consider
the case of dataset D31 at p = 3 and 3.5. In Table 1, the value of 𝑅෰ dropped from 87.94% at p = 3 to
65.61% at p = 3.5. The corresponding case in Table 2 showed that at p = 3, ADPC1 (or ADPC2) incurred
the execution time improvement over DPC by 77.86% (or 80.44%). However, at p = 3.5, ADPC1 (or
ADPC2) incurred the execution time improvement over DPC by only 47.06% (or 48.53%). This
example shows that a large 𝑅෰ helps ADPC1 and ADPC2 to reduce the percentage of execution time
improvement. However, if a small p is applied on a small dataset, then the resulting 𝑅෰ value is too
small, causing ADPC2 to perform slower than DPC does (e.g., datasets Flame and Spiral at p = 0.5).

Table 2. Percentage of execution time improvements over DPC (using a fixed threshold).

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4

Spiral
ADPC1 7.89% 12.31% 54.43% 38.46% 0.00% 33.33% 33.33% 0.00%
ADPC2 –18.42% 29.42% 43.04% 10.09% 33.34% 0.07% 0.04% 66.62%

Flame
ADPC1 50.00% 0.01% 50.03% 100.00% 50.09% 49.99% 100.00% 50.00%
ADPC2 -0.01% 50.01% 50.10% 50.00% 50.00% 100.00% 50.08% 50.07%

Aggregation
ADPC1 67.86% 70.59% 77.78% 78.95% 78.95% 73.69% 80.00% 72.23%
ADPC2 69.09% 76.47% 83.33% 84.21% 84.21% 78.95% 75.00% 77.78%

R15
ADPC1 20.00% 54.55% 54.55% 72.73% 72.73% 75.00% 72.73% 72.73%
ADPC2 40.00% 54.55% 72.73% 72.73% 72.73% 83.33% 81.82% 81.82%

D31
ADPC1 79.36% 82.37% 83.02% 82.14% 81.43% 77.86% 47.06% 53.88%
ADPC2 79.56% 83.56% 84.29% 83.93% 83.21% 80.44% 48.53% 56.47%

A1 ADPC1 79.77% 83.14% 83.33% 82.26% 81.15% 80.84% 80.44% 78.73%

Symmetry 2019, 11, 859 8 of 18

ADPC2 80.16% 83.91% 84.47% 83.77% 83.41% 83.47% 83.03% 81.79%

A2
ADPC1 83.35% 84.11% 83.38% 82.51% 81.51% 80.42% 79.92% 79.12%
ADPC2 83.98% 84.61% 82.13% 84.12% 83.37% 82.76% 82.50% 82.05%

A3
ADPC1 84.56% 83.59% 82.57% 82.33% 81.67% 80.11% 79.22% 79.09%
ADPC2 84.91% 85.11% 84.61% 83.90% 83.54% 83.07% 82.73% 81.99%

S1
ADPC1 65.66% 79.50% 81.64% 81.86% 81.78% 81.06% 80.13% 79.39%
ADPC2 66.22% 80.29% 82.98% 83.46% 83.64% 83.44% 82.75% 82.03%

S2
ADPC1 67.13% 79.81% 82.37% 82.14% 81.55% 80.94% 79.89% 78.85%
ADPC2 67.55% 80.76% 83.45% 83.63% 83.56% 82.95% 82.44% 81.96%

S3
ADPC1 71.51% 81.36% 82.43% 82.43% 81.86% 80.73% 79.89% 78.85%
ADPC2 71.78% 82.45% 83.65% 83.89% 83.60% 82.99% 82.57% 81.93%

S4
ADPC1 68.75% 79.65% 82.05% 81.99% 80.95% 80.54% 79.87% 79.17%
ADPC2 69.03% 80.46% 83.27% 83.60% 82.97% 82.95% 82.40% 82.06%

5.3.2. Test 2: Use an Exponential Kernel for Local Density

In Test 2, an exponential kernel (see Equation (3)) is used to calculate the local density of each
data point. Table 3 shows the value of 𝑅෰ for various dataset and p combinations. Please refer to Table
A10 in Appendix E for the value of 𝑁෱. Similar to Table 1 in Test 1, a large proportion of the data
points can be benefited from ADPC1 and ADPC2. Furthermore, each value of 𝑅෰ in Table 3 is greater
than its corresponding value in Table 1. That is, for the same dataset and the same p value, an even
larger proportion of data points can be benefited from ADPC1 and ADPC2 using the exponential
kernel than using a fixed threshold to calculate the local density. In Test 2, a larger p value always
incurs a larger 𝑅෰ values in Table 3. The results are consistent with that of Test 1.

Table 3. The value of 𝑅෭ for various dataset and p combinations. (Using an exponential kernel)

Dataset p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4
Spiral 47.44% 80.45% 91.67% 96.47% 98.72% 99.04% 99.04% 99.04%
Flame 49.17% 78.33% 91.25% 96.25% 96.67% 97.50% 97.50% 97.92%

Aggregation 92.01% 97.59% 98.35% 98.73% 98.86% 98.98% 99.11% 99.11%
R15 73.17% 87.83% 92.67% 95.33% 96.00% 96.83% 97.33% 97.33%
D31 96.23% 98.19% 98.74% 98.94% 99.00% 99.03% 99.19% 99.52%
A1 97.13% 98.90% 99.23% 99.27% 99.33% 99.33% 99.37% 99.43%
A2 98.57% 99.28% 99.31% 99.35% 99.56% 99.73% 99.79% 99.87%
A3 98.99% 99.29% 99.37% 99.67% 99.77% 99.88% 99.91% 99.91%
S1 91.84% 97.60% 98.88% 99.26% 99.56% 99.66% 99.66% 99.68%
S2 92.10% 98.20% 99.36% 99.60% 99.64% 99.68% 99.70% 99.70%
S3 94.54% 98.64% 99.32% 99.58% 99.66% 99.70% 99.74% 99.76%
S4 93.04% 98.20% 99.06% 99.42% 99.48% 99.60% 99.70% 99.74%

Table 4 shows the percentage of execution time improvement of ADPC1 and ADPC2 over DPC.
ADPC1 always took less time than DPC did, except at p = 0.5 for Spiral dataset; ADPC2 always took
less time than DPC did, except at p = 0.5 for Flame dataset. In general, both ADPC1 and ADPC2
required substantially less execution time than DPC did. ADPC2 usually achieved higher
improvement than ADPC1 did; however, the difference is small. For the execution time of the three
algorithms, please see Table A12 in Appendix E.

Table 4. Percentage of execution time improvements over DPC (using an exponential kernel).

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4

Spiral
ADPC1 –11.97% 7.48% 17.07% 23.06% 21.44% 6.68% 21.43% 14.30%
ADPC2 7.40% 21.15% 26.25% 6.52% 21.43% 20.00% 21.44% 21.44%

Flame
ADPC1 12.50% 12.50% 12.50% 11.11% 25.00% 22.21% 12.50% 22.22%
ADPC2 0.00% 12.50% 0.001% 22.22% 12.51% 22.22% 12.50% 22.22%

Aggregation
ADPC1 16.98% 15.00% 15.00% 17.07% 17.07% 15.00% 13.75% 13.75%
ADPC2 14.52% 15.00% 16.25% 18.29% 18.29% 16.25% 16.25% 16.25%

R15 ADPC1 9.80% 10.42% 12.49% 14.58% 12.50% 16.33% 14.89% 14.89%

Symmetry 2019, 11, 859 9 of 18

ADPC2 9.80% 10.42% 12.49% 16.67% 14.58% 16.33% 14.89% 17.02%

D31
ADPC1 15.82% 15.49% 16.55% 16.08% 15.74% 16.01% 15.81% 15.51%
ADPC2 15.90% 16.01% 17.80% 16.80% 17.15% 16.21% 15.43% 16.63%

A1
ADPC1 16.15% 15.56% 15.40% 15.73% 15.38% 15.32% 15.54% 14.99%
ADPC2 16.99% 16.16% 16.19% 16.51% 16.61% 16.19% 16.88% 16.78%

A2
ADPC1 15.40% 16.05% 16.21% 16.81% 14.43% 16.21% 16.73% 15.75%
ADPC2 15.90% 16.94% 16.49% 16.70% 16.52% 17.31% 17.38% 17.04%

A3
ADPC1 17.25% 16.59% 15.09% 16.76% 15.00% 16.18% 14.56% 14.76%
ADPC2 16.84% 15.38% 16.08% 18.30% 15.68% 17.06% 15.70% 16.15%

S1
ADPC1 14.59% 15.16% 16.13% 15.32% 16.08% 17.20% 15.87% 17.60%
ADPC2 13.83% 15.53% 15.58% 17.18% 16.07% 17.57% 16.69% 18.72%

S2
ADPC1 13.74% 16.19% 17.47% 16.00% 16.17% 11.36% 15.92% 15.73%
ADPC2 14.07% 16.65% 17.76% 16.28% 16.88% 16.63% 17.40% 17.43%

S3
ADPC1 16.26% 16.52% 16.77% 16.25% 16.77% 17.31% 15.77% 16.29%
ADPC2 14.75% 16.55% 15.87% 16.29% 15.52% 17.74% 16.46% 16.27%

S4
ADPC1 14.48% 16.03% 17.01% 15.91% 16.51% 16.08% 15.46% 15.83%
ADPC2 13.56% 16.53% 16.55% 16.87% 16.26% 16.77% 16.28% 16.70%

Comparing Tables 2 and 4 show that the execution time improvement is greater in Test 1 than
in Test 2. In Test 1, calculating the local density of a data point requires simply counting the number
of data points in its neighborhood (see Equations (1) and (2)). However, in Test 2, calculating the local
density of a data point is much time consuming because it requires calculating an exponential
function 𝑁-1 times, where 𝑁 is the number of data points in the dataset (see Equation (3)). The
execution time collected in this study is the execution time for calculating the local density and the
separation distance. All three algorithms use the same method to calculate the local density, and they
are only differed on how to calculate the separation distance. That is, the execution time improvement
of ADPC1 and ADPC2 over DPC is due to the improvement on how to calculate the separation
distance. Since much more time was spent on calculating the local density in Test 2 than in Test 1, the
percentage of execution time improvement is smaller in Test 2 than in Test 1.

6. Conclusions

As discussed in Section 3, if the local density of a data point 𝑥௜ is less than the largest local
density of its neighbors, then ADPC1 and ADPC2 can reduce the time complexity for calculating the
separation distance of 𝑥௜ from O(𝑁) to O(|B(𝑥௜)|) where 𝑁 denotes the number of data points in
the dataset, and |B(𝑥௜)| denotes the number of neighbors of 𝑥௜ . Thus, the effectiveness of both
ADPC1 and ADPC2 depends on the proportion of the data points satisfying this condition. The
experimental results in Tables 1 and 3 show that most data points in a dataset satisfy this condition,
except for some small datasets using a small neighborhood setting. Consequently, both ADPC1 and
ADPC2 improve the execution time of DPC, as shown in Tables 2 and 4. Furthermore, in most cases,
ADPC2 requires less execution time than ADPC1 does.

Consider the case that all data points in a continuous region have the same local density. Then,
there exists no data point in the region with a local density less than the largest local density of its
neighbors, and consequently, both ADPC1 and ADPC2 cannot accelerate the computation of the
separation distance for the data points in this region. If the entire dataset contains many such regions,
then the advantage of ADPC1 and ADPC2 diminishes. However, according to Tables 1 and 3, except
for small datasets with a small neighborhood range (i.e., small 𝑑௖), both ADPC1 and ADPC2 are
advantageous.

The proposed methods focus on accelerating the calculation of the separation distance. However,
it is also possible to improve the DPC algorithm by accelerating the calculation of the local density
[9]. Besides, the DPC algorithm has several shortcomings that have received much attention in the
literature. First, choosing proper values for DPC’s parameters is not straightforward, but it can highly
affect the quality of the clustering results. To resolve this problem, [7] applied the concept of heat
diffusion and [8] employed the potential entropy of the data field to determine the value of 𝑑௖ .
Additionally, [12] proposed a comparative technique to choose the density peaks. Thus, how to make

Symmetry 2019, 11, 859 10 of 18

the DPC algorithm more adaptive to the datasets with less human intervention is worthy of further
investigation.

The local density of a data point 𝑥௜ can be defined from two different perspectives. One is to
specify a fixed distance and count the number of data points within the fixed distance from 𝑥௜. The
DPC algorithm adopted this perspective. Another perspective is to specify a fixed number of
neighbors and measure the distances of these neighbors to 𝑥௜. [13,14] adopted this perspective and
defined new methods to calculate the local density based on the k-nearest neighbors of 𝑥௜. Since the
definition of the local density significantly affects the clustering results, how to choose a proper
method to define the local density is an important issue worthy of further investigation for density-
based clustering algorithms.

Our future work intends to extend the DPC algorithm as a hierarchical clustering algorithm.
Conceptually, the DPC algorithm builds a directed acyclic graph of all data points with an out-degree
≤ 1. Then, it selects several data points from the graph as the density peaks. Finally, it removes the
outgoing links of the density peaks and breaks the graph into several subgraphs, each of which
represents a cluster. By adding an ordering on the density peaks and incrementally removing the
outgoing links of the density peaks according to this ordering, it is possible to yield the clustering
results as a dendrogram. Furthermore, integrating the notion of central symmetry [29] or point
symmetry [30] with the DPC algorithm for the detection of symmetry objects is also worthy of further
investigation.

Funding: This research is supported by the Ministry of Science and Technology, Taiwan, under grant MOST
106-2221-E-155-038.

Acknowledgments: The author acknowledges the Innovation Center for Big Data and Digital Convergence at
Yuan Ze University for supporting this study.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Implementation Details for Calculating Separation Distance in DPC

Consider the case of more than one data points with a local density = the maximal local density
in X. According to Equation (4), the separation distance of any data point 𝑥௜ with the maximal local
density will be set to the maximal distance from 𝑥௜ to any point in X , i.e., max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ .

Consequently, all data points with the maximal local density have high separation distances and,
thus, will be chosen as the density peaks to form individual clusters, regardless that some of these
data points may be near to each other. Notably, many data points with an equal local density are less
likely to occur when Equation (3) is used for calculating local density because the Gaussian kernel in
Equation (3) yields a floating-point value. However, the local density calculated using Equation (1)
is an integer, and data points with an equal local density become common.

Laio’s Matlab implementation of the DPC algorithm [22] resolved the above problem as follows.
Recall that in Step 2 of the DPC algorithm in Algorithm 1, all data points in X are sorted by their
local densities descendingly, i.e., ρ(𝑥௜) ≥ ρ(𝑥௝) for 𝑖 < 𝑗. After Step 2, Laio used the ordering of the
data points’ positions in X instead of the ordering on local density for calculating separation
distances. Specifically, Laio used Equations (A1) and (A2) instead of Equations (4) and (5) to calculate
separation distances. Notably, in this work, we use 𝑥௜ to denote the ith data point in X , and
whenever the ordering of the data points in X is rearranged, the data point referred as 𝑥௜ also
changes. Notably, it is possible that more than one data point has the same local density, but each
position in X can only be taken by one data point:

δ(𝑥௜) = ቐmax௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , if 𝑖 = 1min௝ழ௜ d൫𝑥௜, 𝑥௝൯ , if 1 < 𝑖 (A1)

Symmetry 2019, 11, 859 11 of 18

σ(𝑥௜) = ቊ 1 if 𝑖 = 1argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯ , if 1 < 𝑖 (A2)

According to Equation (A1), only the separation distance of the first data point 𝑥ଵ in X is set to
the maximal distance, and for each data point 𝑥௜ஷଵ, we only scan those data points located before 𝑥௜
in X . Notably, with Equations (A1) and (A2), it is possible that σ(𝑥௜ஷଵ) = 𝑗 but ρ൫𝑥௝൯ = ρ(𝑥௜)
because the ordering on local density is non-monotonically decreasing after Step 2 of the DPC
algorithm in Algorithm 1. However, with Equations (4) and (5), if σ(𝑥௜) = 𝑗 and 𝑖 ≠ 𝑗, then ρ൫𝑥௝൯ >ρ(𝑥௜) must hold. Thus, the definition of separation distance according to Equation (4) has been
slightly modified in Equation (A1), and the difference is illustrated in Figure A1.

Figure A1. Difference between using Equation (4) and using Equation (A1) to calculate separation
distance.

Figure A2 shows Laio’s implementation for Step 3 of the DPC algorithm based on Equations
(A1) and (A2). It is obvious that only the first data point is handled differently from the rest of the
data points. Figure A3 shows the implementation of Step 3 of the DPC algorithm based on Equations
(4) and (5). Data points with the maximal local density are handled in the same manner in Figures A2
and A3. However, for data points with a local density less than the maximal local density, Figure A3
faithfully implements Equations (4) and (5) to ensure that no data point with the same local density
as 𝑥௜ is scanned when calculating δ(𝑥௜), as illustrated in Figure A1.

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯; σ(𝑥ଵ) = 1;
For 𝑖 = 2 to |X| do σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯;

δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯;

Figure A2. Implementation details of Step 3 of DPC algorithm (in Algorithm 1) based on Laio’s
implementation [22].

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯; σ(𝑥ଵ) = 1;
For 𝑘 = 2 to |X| do // for points with maximal local density in X

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯; δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯;

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯

end if
For 𝑖 = 𝑘 to |X| do // for points with local density < maximal local density

 σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;

Symmetry 2019, 11, 859 12 of 18

Figure A3. Implementation details of Step 3 of DPC algorithm (in Algorithm 1) based on Equations
(4) and (5).

Appendix B. Implementation Details for Calculating Separation Distance in ADPC1

Figure A4 gives a detailed description of Step 3 of the ADPC1 algorithm in Algorithm 2. Notably,
before this step, all data points in X have been sorted by their local densities descendingly. To resolve
the problem of multiple data points with the maximal local density, we adopt the same approach
described in Appendix A, as shown in the first for loop of Figure A4. That is, only the separation
distance of the first data point with the maximal local density in X is set to the maximal distance. For
each data point 𝑥௜ஷଵ with the maximal local density, the separation distance δ(𝑥௜) is set to the
minimal distance from 𝑥௜ to other data points located before 𝑥௜ in X. Notably, the data points with
the maximal local density are handled in the same manner in Figures A2, A3, and A4. The second for
loop in Figure A4 applies Equations (6) and (7) to process the data points with local density < the
maximal local density.

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯; σ(𝑥ଵ) = 1;
For 𝑘 = 2 to |X| do // for points with maximal local density in X

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯; δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯;

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯

end if
For 𝑖 = 𝑘 to |X| do // for points with local density < maximal local density

 If B(𝑥௜) = ϕ or ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ then // the greatest density in B(𝒙௜)

σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;

 else // not the greatest density in B(𝑥௜) σ(𝑥௜) = argmin௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; // only scan B(𝑥௜)

δ(𝑥௜) = min௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;

 endif

Figure A4. Implementation details of Step 3 of ADPC1 algorithm (in Algorithm 2) based on Equations
(6) and (7).

Appendix C. Implementation Details for Calculating Separation Distance in ADPC2

Figure A5 gives a detailed description of Step 3 of the ADPC2 algorithm in Algorithm 3. To
resolve the problem of multiple data points with the maximal local density, we adopt the same
approach described in Appendix A, as shown in the first for loop of Figure A5. The second for loop
in Figure A5 bases on Equations (8) and (9) to process the data points with local density < the maximal
local density.

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯; σ(𝑥ଵ) = 1;
For 𝑘 = 2 to |X| do // for points with maximal local density in X

Symmetry 2019, 11, 859 13 of 18

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯; δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯;

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯

end if
For 𝑖 = 𝑘 to |X| do // for points with local density < maximal local density

 If B(𝑥௜) = ϕ or ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ then // the greatest density in B(𝑥௜)

σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;

 else // not the greatest density in B(𝑥௜) σ(𝑥௜) = argmax௝:௫ೕ∈୆(௫೔) ρ(𝑥௝); // use a surrogate

δ(𝑥௜) = 0;
 endif

Figure A5. Implementation details of Step 3 of the ADPC2 algorithm (in Algorithm 3) based on
Equations (8) and (9).

Appendix D. Datasets

Figures A6 and A7 show the data distribution of the 12 two-dimensional synthetic datasets used
in Section 5. Table A8 describes the number of clusters and the number of points in these datasets.

 (a) S1

(b) S2

(c) S3 (d) S4

Figure A6. Data distribution of the 12 datasets (part 1).

Symmetry 2019, 11, 859 14 of 18

(a) Spiral

(b) Flame

(c) Aggregation

(d) R15

(e) D31

(f) A1

(g) A2 (h) A3

Figure A7. Data distribution of the 12 datasets (part 2).

0
5

10
15
20
25
30
35

0 10 20 30
14
16
18
20
22
24
26
28

0 5 10 15

0

5

10

15

20

25

30

0 10 20 30 40
3
5
7
9

11
13
15
17
19

3 8 13 18

Symmetry 2019, 11, 859 15 of 18

Table A8. Number of points and number of clusters in the 12 datasets.

Dataset Number of clusters Number of points
Spiral 3 312
Flame 2 240

Aggregation 7 788
R15 15 600
D31 31 3100
A1 20 3000
A2 35 5250
A3 50 7500
S1 15 5000
S2 15 5000
S3 15 5000
S4 15 5000

Appendix E. More Experimental Results

Tables A9 and A10 show the number 𝑁෱ of the data points with a local density < the maximal
local density of their neighbors in Tests 1 and 2, respectively. Tables A11 and A12 show the execution
time of the three algorithms (DPC, ADPC1 and ADPC2) in Tests 1 and 2, respectively.

Table A9. The value of 𝑁෭ for various dataset and p combination (Test 1 uses a fixed threshold)

Dataset (N) p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4
Spiral (N = 312) 62 90 110 139 161 187 208 232
Flame (N = 240) 75 143 177 208 213 221 226 231

Aggregation (N = 788) 609 704 744 760 763 761 761 768
R15 (N = 600) 348 490 537 558 563 570 564 567

D31 (N = 3100) 2952 3028 3034 3037 3013 2726 2034 2482
A1 (N = 3000) 2854 2955 2967 2968 2971 2973 2964 2962
A2 (N = 5250) 5140 5201 5192 5185 5202 5214 5236 5237
A3 (N = 7500) 7398 7418 7413 7456 7477 7483 7486 7490
S1 (N = 5000) 4305 4806 4912 4936 4945 4956 4974 4973
S2 (N = 5000) 4351 4834 4934 4953 4950 4954 4968 4961
S3 (N = 5000) 4474 4882 4942 4959 4977 4970 4977 4982
S4 (N = 5000) 4355 4818 4930 4955 4964 4968 4972 4976

Table A10. The value of 𝑁෭ for various dataset and p value combination (Test 2 uses an exponential
kernel)

Dataset (N) p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4
Spiral (N = 312) 148 251 286 301 308 309 309 309
Flame (N = 240) 118 188 219 231 232 234 234 235

Aggregation (N = 788) 725 769 775 778 779 780 781 781
R15 (N = 600) 439 527 556 572 576 581 584 584

D31 (N = 3100) 2983 3044 3061 3067 3069 3070 3075 3085
A1 (N = 3000) 2914 2967 2977 2978 2980 2980 2981 2983
A2 (N = 5250) 5175 5212 5214 5216 5227 5236 5239 5243
A3 (N = 7500) 7424 7447 7453 7475 7483 7491 7493 7493
S1 (N = 5000) 4592 4880 4944 4963 4978 4983 4983 4984
S2 (N = 5000) 4605 4910 4968 4980 4982 4984 4985 4985
S3 (N = 5000) 4727 4932 4966 4979 4983 4985 4987 4988
S4 (N = 5000) 4652 4910 4953 4971 4974 4980 4985 4987

Symmetry 2019, 11, 859 16 of 18

Table A11. The execution time in seconds (Test 1 uses a fixed threshold).

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4

Spiral
DPC 0.038101 0.046879 0.079211 0.052139 0.04688 0.046879 0.046879 0.046879

ADPC1 0.035094 0.041108 0.036096 0.032086 0.046879 0.031252 0.031252 0.046879
ADPC2 0.04512 0.033088 0.04512 0.046878 0.031251 0.046845 0.04686 0.015646

Flame
DPC 0.031253 0.031255 0.031273 0.031252 0.031253 0.031252 0.031252 0.031253

ADPC1 0.015626 0.031253 0.015626 0 0.015599 0.015628 0 0.015628
ADPC2 0.031255 0.015625 0.015605 0.015627 0.015627 0 0.0156 0.015606

Aggregation
DPC 0.252673 0.265685 0.281293 0.296938 0.296938 0.296938 0.312564 0.281312

ADPC1 0.081215 0.078132 0.062506 0.062507 0.062506 0.078133 0.062506 0.078133
ADPC2 0.0781 0.062507 0.04688 0.04688 0.046901 0.062507 0.078133 0.062505

R15
DPC 0.156265 0.171892 0.171892 0.171892 0.171892 0.187519 0.171891 0.171891

ADPC1 0.125012 0.078131 0.078131 0.04688 0.046879 0.04688 0.046873 0.046878
ADPC2 0.093759 0.07813 0.046879 0.046879 0.046878 0.031253 0.031253 0.031253

D31
DPC 4.281704 4.344213 4.375495 4.375465 4.375464 4.234823 3.187837 3.625386

ADPC1 0.883543 0.7657 0.742746 0.781333 0.812588 0.937631 1.687681 1.672092
ADPC2 0.875124 0.71418 0.687573 0.7032 0.734489 0.828213 1.640798 1.578292

A1
DPC 4.016051 4.078557 4.125437 4.141065 4.145534 4.160485 4.234813 4.187945

ADPC1 0.81259 0.687572 0.687606 0.734455 0.781332 0.79696 0.828212 0.89072
ADPC2 0.796961 0.656319 0.640726 0.67195 0.687573 0.687573 0.718826 0.762816

A2
DPC 12.48567 12.4857 12.59509 12.59508 12.59509 12.68885 12.76698 12.7982

ADPC1 2.078376 1.984586 2.093839 2.203357 2.328372 2.484632 2.564224 2.672159
ADPC2 2.000502 1.922079 2.250205 2.000213 2.093969 2.187732 2.234609 2.297118

A3
DPC 25.42454 25.53396 25.69023 25.72854 26.01839 26.11215 26.40587 26.33089

ADPC1 3.926412 4.189912 4.47909 4.547357 4.769292 5.194029 5.486006 5.506579
ADPC2 3.83774 3.802774 3.953544 4.1411 4.281703 4.420601 4.561412 4.742328

S1
DPC 11.42309 11.81372 11.65747 11.71463 11.75125 11.79816 11.79813 11.82938

ADPC1 3.922292 2.422134 2.140852 2.125225 2.140851 2.234612 2.344002 2.437762
ADPC2 3.8584 2.328372 1.984588 1.93774 1.922111 1.953329 2.035082 2.125227

S2
DPC 11.21994 11.45434 11.52083 11.5481 11.68874 11.64186 11.65748 11.67311

ADPC1 3.687891 2.312742 2.031496 2.062718 2.15648 2.218986 2.344 2.469012
ADPC2 3.641011 2.203357 1.906452 1.890826 1.922079 1.984584 2.047092 2.105681

S3
DPC 11.29808 11.48559 11.56373 11.56373 11.62623 11.59498 11.65748 11.67311

ADPC1 3.21909 2.14085 2.031468 2.031467 2.109567 2.234612 2.343999 2.469044
ADPC2 3.187838 2.015836 1.890857 1.86247 1.906452 1.97208 2.031466 2.109599

S4
DPC 11.25118 11.51685 11.57936 11.62623 11.56371 11.64183 11.71999 11.70437

ADPC1 3.515999 2.344002 2.078346 2.093971 2.203359 2.265865 2.359625 2.437758
ADPC2 3.484713 2.250242 1.937706 1.906451 1.968992 1.984586 2.062751 2.099317

Table A12. The execution time in seconds (Test 2 uses an exponential kernel).

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4

Spiral
DPC 0.217607 0.227606 0.24064 0.230642 0.218788 0.234399 0.218773 0.218806

ADPC1 0.243648 0.210588 0.199559 0.177449 0.17189 0.218742 0.171892 0.187521
ADPC2 0.201514 0.179477 0.177471 0.215608 0.171891 0.18752 0.171869 0.171893

Flame
DPC 0.12501 0.125012 0.125014 0.14064 0.125013 0.14064 0.125014 0.14064

ADPC1 0.109386 0.109386 0.109386 0.125014 0.093759 0.109406 0.109387 0.109387
ADPC2 0.12501 0.109385 0.125013 0.109386 0.10938 0.109386 0.109384 0.109385

Aggregation
DPC 1.299488 1.250166 1.250131 1.281362 1.281407 1.250169 1.250164 1.250162

ADPC1 1.078868 1.062644 1.062612 1.062614 1.062644 1.062645 1.078269 1.078274
ADPC2 1.11083 1.062613 1.046983 1.047022 1.047018 1.047019 1.047018 1.047018

R15
DPC 0.779632 0.750111 0.750057 0.750113 0.750075 0.765738 0.734483 0.73445

ADPC1 0.703232 0.671957 0.656351 0.640727 0.656351 0.640728 0.625097 0.625066
ADPC2 0.703232 0.671978 0.656351 0.625098 0.640724 0.640691 0.625097 0.60947

D31
DPC 20.34588 19.8146 19.90442 19.53329 19.65834 19.5177 19.54898 19.64271

ADPC1 17.12682 16.74525 16.61117 16.39237 16.56423 16.39233 16.4581 16.59551
ADPC2 17.11119 16.64242 16.36111 16.25173 16.28676 16.35301 16.53297 16.37674

A1
DPC 18.58013 18.08004 17.95503 17.98625 17.8769 17.8988 17.95503 17.8769

ADPC1 15.57978 15.26725 15.18911 15.15783 15.12657 15.15679 15.16565 15.19659
ADPC2 15.42351 15.15789 15.04847 15.01722 14.90703 15.00159 14.92343 14.87658

A2
DPC 56.31846 55.53715 55.05268 55.67778 55.25958 55.44339 55.5684 55.64653

ADPC1 47.64571 46.62474 46.12989 46.31741 47.2863 46.45805 46.27054 46.87997
ADPC2 47.3644 46.12753 45.97363 46.37992 46.12989 45.84858 45.91012 46.16624

A3
DPC 115.6921 112.1025 112.9651 115.0125 112.3618 112.9651 112.1213 112.8714

ADPC1 95.73069 93.50614 95.91672 95.73115 95.51016 94.68273 95.79348 96.21016
ADPC2 96.21336 94.86226 94.79854 93.96594 94.73864 93.69754 94.52285 94.63775

S1
DPC 53.11501 51.63048 50.92332 50.58346 50.44285 50.78661 50.19283 51.5836

ADPC1 45.36419 43.80152 42.70859 42.8327 42.33265 42.0513 42.2279 42.50451

Symmetry 2019, 11, 859 17 of 18

ADPC2 45.77048 43.614 42.9889 41.89504 42.33735 41.86379 41.8169 41.92629

S2
DPC 51.88047 50.97416 50.89606 50.00531 50.36472 50.08341 50.73976 50.56783

ADPC1 44.75324 42.71937 42.00446 42.00442 42.22323 44.39533 42.66078 42.61389
ADPC2 44.58285 42.48891 41.85598 41.86382 41.86418 41.7544 41.9107 41.75443

S3
DPC 51.89613 50.14595 50.17026 49.89592 50.03655 50.63037 50.13029 50.03656

ADPC1 43.45777 41.86382 41.75443 41.78568 41.64504 41.86382 42.22323 41.88364
ADPC2 44.23907 41.84819 42.20761 41.77006 42.27011 41.65029 41.87944 41.89504

S4
DPC 51.45296 50.1772 50.42723 50.5679 50.36469 50.05215 50.00527 50.23967

ADPC1 44.00467 42.13493 41.84819 42.52013 42.05134 42.00442 42.274 42.28573
ADPC2 44.47347 41.88291 42.08256 42.03568 42.17635 41.66067 41.86382 41.84976

References

1. Aggarwal, C.C.; Reddy, C.K. Data clustering: Algorithms and applications. Chapman and Hall/CRC: Boca
Raton, FL, USA, 2014.

2. Pham, G.; Lee, S.-H.; Kwon, O.-H.; Kwon, K.-R. A watermarking method for 3d printing based on menger
curvature and k-mean clustering. Symmetry 2018, 10, 97.

3. MacQueen, J. Some methods for classification and analysis of multivariate observations, In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley,
Calif., 1967; University of California Press: Berkeley, Calif., pp 281–297.

4. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters a density-
based algorithm for discovering clusters in large spatial databases with noise. KDD, 1996, 96, 226–231.

5. Han, J.; Kamber, M.; Pei, J. Data mining: Concepts and techniques. Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 2011; p. 696.

6. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492.
7. Mehmood, R.; Zhang, G.; Bie, R.; Dawood, H.; Ahmad, H. Clustering by fast search and find of density

peaks via heat diffusion. Neurocomput. 2016, 208, 210–217.
8. Wang, S.; Wang, D.; Li, C.; Li, Y.; Ding, G. Clustering by fast search and find of density peaks with data

field. Chinese J. Electron. 2016, 25, 397–402.
9. Bai, L.; Cheng, X.; Liang, J.; Shen, H.; Guo, Y. Fast density clustering strategies based on the k-means

algorithm. Pattern Recognit. 2017, 71, 375–386.
10. Mehmood, R.; El-Ashram, S.; Bie, R.; Dawood, H.; Kos, A. Clustering by fast search and merge of local

density peaks for gene expression microarray data. Sci. Reports 2017, 7, 45602.
11. Liu, S.; Zhou, B.; Huang, D.; Shen, L. Clustering mixed data by fast search and find of density peaks. Math.

Problems Eng. 2017, 2017, 7.
12. Li, Z.; Tang, Y. Comparative density peaks clustering. Expert Syst. Appl. 2018, 95, 236–247.
13. Du, M.; Ding, S.; Jia, H. Study on density peaks clustering based on k-nearest neighbors and principal

component analysis. Knowledge-Based Syst. 2016, 99, 135–145.
14. Yaohui, L.; Zhengming, M.; Fang, Y. Adaptive density peak clustering based on k-nearest neighbors with

aggregating strategy. Knowledge-Based Syst. 2017, 133, 208–220.
15. Ding, S.; Du, M.; Sun, T.; Xu, X.; Xue, Y. An entropy-based density peaks clustering algorithm for mixed

type data employing fuzzy neighborhood. Knowledge-Based Syst. 2017, 133, 294–313.
16. Yang, X.-H.; Zhu, Q.-P.; Huang, Y.-J.; Xiao, J.; Wang, L.; Tong, F.-C. Parameter-free laplacian centrality

peaks clustering. Pattern Recognit. Letters 2017, 100, 167–173.
17. Cheng, S.; Duan, Y.; Fan, X.; Zhang, D.; Cheng, H. Review of Fast Density-Peaks Clustering and Its

Application to Pediatric White Matter Tracts. Annual Conference on Medical Image Understanding and
Analysis. Springer International Publishing: Cham, Switzerland, 2017; pp 436–447.

18. Han, J.; Kamber, M.; Pei, J. 10-cluster analysis: Basic concepts and methods. In Data mining, 3rd ed.; Han,
J.; Kamber, M.; Pei, J., Eds. Morgan Kaufmann: Boston, MA, USA, 2012; pp 443–495.

19. Xenaki, S.D.; Koutroumbas, K.D.; Rontogiannis, A.A. A novel adaptive possibilistic clustering algorithm.
IEEE Trans. Fuzzy Syst. 2016, 24, 791–810.

20. Bianchi, G.; Bruni, R.; Reale, A.; Sforzi, F. A min-cut approach to functional regionalization, with a case
study of the italian local labour market areas. Optim. Letters 2016, 10, 955–973.

21. Deng, Z.; Choi, K.-S.; Jiang, Y.; Wang, J.; Wang, S. A survey on soft subspace clustering. Inf. Sci. 2016, 348,
84–106.

Symmetry 2019, 11, 859 18 of 18

22. Laio, A. Available online: http://people.sissa.it/~laio/Research/Clustering_source_code/cluster_dp.tgz
(accessed on 27 May 2019).

23. Chang, H.; Yeung, D.-Y. Robust path-based spectral clustering. Pattern Recognit. 2008, 41, 191–203.
24. Fu, L.; Medico, E. Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC

Bioinf. 2007, 8, 3.
25. Gionis, A.; Mannila, H.; Tsaparas, P. Clustering aggregation. ACM Trans. Knowl. Discov. Data 2007, 1, 4.
26. Veenman, C.J.; Reinders, M.J.T.; Backer, E. A maximum variance cluster algorithm. IEEE Trans. Pattern

Anal. Mach. Intell. 2002, 24, 1273–1280.
27. Kärkkäinen, I.; Fränti, P. Dynamic local search algorithm for the clustering problem. University of Joensuu:

Joensuu: Kuopio, Finland, 2002.
28. Fränti, P.; Virmajoki, O. Iterative shrinking method for clustering problems. Pattern Recognit. 2006, 39, 761–

775.
29. Lin, J.; Peng, H.; Xie, J.; Zheng, Q. Novel clustering algorithm based on central symmetry. In Proceedings

of the Internation Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004;
pp. 1329–1334.

30. Bandyopadhyay, S.; Saha, S. A Point Symmetry-Based Clustering Technique for Automatic Evolution of
Clusters. IEEE Trans. Knowl. Data Eng. 2008, 20, 1441–1457.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

