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Abstract: The Density Peak Clustering (DPC) algorithm is a new density-based clustering method. 
It spends most of its execution time on calculating the local density and the separation distance for 
each data point in a dataset. The purpose of this study is to accelerate its computation. On average, 
the DPC algorithm scans half of the dataset to calculate the separation distance of each data point. 
We propose an approach to calculate the separation distance of a data point by scanning only the 
neighbors of the data point. Additionally, the purpose of the separation distance is to assist in 
choosing the density peaks, which are the data points with both high local density and high 
separation distance. We propose an approach to identify non-peak data points at an early stage to 
avoid calculating their separation distances. Our experimental results show that most of the data 
points in a dataset can benefit from the proposed approaches to accelerate the DPC algorithm. 

Keywords: clustering; density-based clustering; density peak 
 

1. Introduction 

Clustering is the process of categorizing objects into groups (called clusters) of similar objects 
and is a widely-used data mining technique both in academic and applied research [1,2]. Many 
clustering methods appear in the literature, but they differ in the notion of similarity. For example, 
the k-means algorithm [3] represents each cluster by a centroid, and those objects near the same 
centroid are deemed similar; the DBSCAN algorithm [4] defines the notion of density and deems the 
objects in a continuous region with a density exceeding a specified threshold as similar; some studies 
measure the similarity using the concept of symmetry. 

The k-means algorithm is an example of the partitioning-based clustering methods, and most of 
the partitioning-based clustering methods can find only spherical shaped clusters [5]. In contrast, the 
DBSCAN algorithm is an example of the density-based clustering methods, which can not only find 
clusters of arbitrary shapes but also detect outliers [5]. Although a density-based clustering method 
usually requires more execution time than a partitioning-based clustering method does, it can often 
discover meaningful clustering results that a partitioning-based clustering method cannot reveal. 
Several applications of clustering to real-world problems use both of these approaches to extract 
different clustering results of the same dataset, to highlight different aspects of the data. 

The Density Peak Clustering (DPC) algorithm, proposed by Rodriguez and Laio [6], is a new 
density-based clustering method that has received much attention for the past few years [7–17]. It 
accelerates the clustering process by first searching for the density peaks in a dataset, and then 
constructing clusters from the density peaks. To search density peaks, DPC must calculate two 
quantities for each data point: local density and separation distance (see Section 2 for details) [9]. 
Then, data points with relatively high local density and separation distance are selected as the density 
peaks. Many works refer to the density peak of a cluster as the “center” of the cluster. Since density-
based clustering methods yield clusters of arbitrary shapes, the notion of “center” is somewhat 
misleading. This work uses “density peak” instead of “center” to avoid confusion. 
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The contribution of this work is to propose two methods (called ADPC1 and ADPC2) that 
accelerate the DPC algorithm. The first method ADPC1 accelerates the calculation of separation 
distances and yields the same clustering results as that of the DPC algorithm. The second method 
ADPC2 accelerates the DPC algorithm by identifying a significant portion of the non-peak data points 
and avoiding calculating their separation distances. Since calculating the separation distances for all 
data points is a time-consuming step with O(𝑁𝟐) time complexity where 𝑁 is the number of data 
points, our proposed methods can significantly speed up the DPC algorithm. 

The rest of this work is organized as follows: Section 2 reviews related work, with a focus on the 
DPC algorithm. Sections 3 and 4 propose our methods. Section 5 presents the experimental results. 
Finally, Section 6 concludes this study. 

2. Related Works  

2.1. Clustering Methods 

In the literature, clustering methods have been classified into several categories [18]: 
partitioning-based methods, hierarchical methods, density-based methods, grid-based methods, and 
model-based methods. Partitioning-based methods (e.g., k-means and possibilistic c-means) focus on 
discovering compact and hyperellipsoidally shaped clusters. With k-means, the clustering results are 
sensitive to outliers. The possibilistic c-means (PCM) method is resilient to outliers, but it requires 
additional parameters γ, one for each cluster. Adaptive PCM algorithm [19] allows the parameters γ 
to change as the algorithm evolves. 

Hierarchical methods work by iteratively (or recursively) dividing a large cluster into small 
clusters (or by combining small clusters as a large cluster). As a result, their clustering results can be 
represented by a dendrogram. Bianchi, et. [20] proposed a clustering method that forms clusters by 
iterative partitioning of an undirected graph. 

Density-based methods discover clusters that are continuous regions with a high local density 
within the regions. Unlike the partitioning-based methods, density-based methods yield clusters of 
arbitrary shapes. Grid-based methods use a grid data structure to quantize the data space into a finite 
number of cells and perform the clustering operations directly on the cells. Model-based methods try 
to fit the data to some mathematical model. 

Some clustering methods do not fit nicely into the above categorization. For example, subspace 
clustering [21] methods identify clusters based on their association with subspaces in high-
dimensional spaces. 

2.2. Density Peak Clustering Algorithm 

As described in Section 1, the DPC algorithm [6] must calculate the local density and the 
separation distance for each data point. Given a dataset X, the local density ρ(𝑥௜) of a data point 𝑥௜ ∈X is the number of data points in the neighborhood of 𝑥௜. That is: ρ(𝑥௜) = |B(𝑥௜)| (1) 

where B(𝑥௜) denotes the neighborhood of 𝑥௜ and is defined as the set of data points in X whose 
distance to 𝑥௜ is less than a user-specified parameter 𝑑௖. That is: B(𝑥௜) = {𝑥௝ ∈ X|d൫𝑥௜, 𝑥௝൯ < 𝑑௖} (2) 

where d൫𝑥௜, 𝑥௝൯ represents the distance between 𝑥௜ and 𝑥௝. Notably, Equations (2) and (1) use the 
parameter 𝑑௖ as a hard threshold to derive the neighborhood and the local density of a data point, 
respectively.  

The value of 𝑑௖ can be chosen so that the average number of neighbors of a data point is around 
p% of the number of the data points in X, and the suggested value [6] for p is between 1 and 2. For 
small datasets, Rodriguez and Laio [6] suggested using an exponential kernel to calculate the local 
density, as shown in Equation (3): 
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ρ(𝑥௜) = ෍ 𝑒𝑥𝑝 ൭− d൫𝑥௜, 𝑥௝൯ଶ𝑑௖ଶ ൱௫ೕ∈ଡ଼  (3) 

The separation distance δ(𝑥௜) of 𝑥௜ is the minimum distance from 𝑥௜ to any other data point 
with a local density > ρ(𝑥௜), or the maximum distance from 𝑥௜ to any other data point in X if there 
exists no data point with a local density > ρ(𝑥௜), as shown in Equation (4): 

δ(𝑥௜) = ቐ min௝:஡(𝒙ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) < max௫ೕ∈ଡ଼ ρ൫𝑥௝൯max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , otherwise.  (4) 

For ease of exposition, we use σ(𝑥௜) to denote the index j of the data point 𝑥௝ that is the nearest 
to 𝑥௜ and ρ(𝑥௝) > ρ(𝑥௜), and if no such data point exists, σ(𝑥௜) is set to i, as shown in Equation (5): 

σ(𝑥௜)  = ൝ argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if ρ(𝑥௜) < max௫ೕ∈ଡ଼ ρ൫𝑥௝൯𝑖, otherwise.  (5) 

Notably, there may be more than one data point that is the nearest to 𝑥௜ and has a local density > ρ(𝑥௜). According to Laio’s Matlab implementation of the DPC algorithm [22], if this situation 
happens, then σ(𝑥௜) is randomly chosen from the indexes of those data points with the highest local 
density among all the data points that are the nearest to 𝑥௜ and have a local density > ρ(𝑥௜). 

Once ρ(𝑥௜) and δ(𝑥௜) of each data point have been determined, the DPC algorithm uses the 
following assumption to select density peaks: if a data point 𝑥௜ ∈ X is a density peak, then 𝑥௜ must 
be surrounded by many data points (i.e., ρ(𝑥௜) is large) and must be at a relatively high distance 
from other data points with a local density greater than ρ(𝑥௜) (i.e., δ(𝑥௜) is large). To assist choosing 
the density peaks, the DPC algorithm plots each data point in a decision graph, which is a two-
dimensional graph with the local density and the separation distance as the horizontal and vertical 
axes, respectively. Data points with both high local density and high separation distance are 
manually selected as the density peaks. Alternatively, one can set a threshold on γ(𝑥௜) = ρ(𝑥௜)δ(𝑥௜) 
and select data points with γ(𝑥௜) greater than the threshold as density peaks [6].  

After all density peaks have been determined, each density peak acts as the starting point of a 
cluster, and thus the number of density peaks equals the number of clusters. Each non-peak data 
point is assigned to the same cluster as its nearest data point of higher density, i.e., data points 𝑥௜ is 
assigned to the cluster that contains 𝑥஢(௫೔). Let 𝑦௜ denote the cluster label of data point 𝑥௜, then 𝑦௜ =𝑦஢(௫೔).  

Algorithm 1 shows the DPC algorithm. Notably, it is important to sort the data points by their 
local density descendingly in Step 2 so that calculating δ(𝑥௜) and σ(𝑥௜) in Step 3 and the cluster 
assignment in Step 6 can be done efficiently. Without Step 2, for each data point 𝑥௜, Step 3 would 
require scanning all data points in X to find the data points with a local density > ρ(𝑥௜). With Step 2, 
Step 3 only needs to scan the data points located before 𝑥௜ in X, and, thus, reduces the running time 
of Step 3 by half on average. Additionally, with Step 2, data points with higher local density are 
processed earlier in Step 6. Since ρ൫𝑥஢(௫೔)൯ > ρ(𝑥௜), 𝑦஢(௫೔) will be determined before 𝑦௜ in Step 6, and, 
thus, Step 6 can complete cluster assignment in O(𝑁) time.  

Algorithm 1. DPC algorithm. 

Input: the set of data points X ∈ ℝே×ெ and the parameters 𝑑௖ for defining 
the neighborhood, and 𝑑௥ for selecting density peaks  
Output: the label vector of cluster index y ∈ ℝே×ଵ 
Algorithm: 
1. Calculate ρ(𝑥௜) for each 𝑥௜ ∈ X using either (1) or (3). 
2. Sort all data points in X by their local densities descendingly. 
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3. Calculate δ(𝑥௜)  and σ(𝑥௜)  for each 𝑥௜ ∈ X  using (4) and (5), 
respectively. 

4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks. 
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖.  // starting point of each cluster 
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔).  // cluster assignment 
7. Return y. 

Appendix A describes Laio’s implementation details for Step 3 of the DPC algorithm. 
Specifically, we discuss how it handles two ambiguous situations when calculating the separation 
distance using Equation (4). 

3. Accelerating APC by Scanning Neighbors Only 

As described earlier, for each data point 𝑥௜ ∈ X, Step 3 of the DPC algorithm in Algorithm 1 
requires to scan half of X on average to find 𝑥஢(௫೔), i.e., the data point nearest to 𝑥௜ and with a local 
density > ρ(𝑥௜). Observation 1 shows that we can find 𝑥஢(௫೔) by scanning only the neighbors of 𝑥௜, if 
the local density of 𝑥௜ is less than the maximal local density of its neighbors. Most data points satisfy 
this condition, and the size of a data point’s neighborhood is much smaller than the size of X, so the 
time complexity of Step 3 can be reduced from O(𝑁𝟐) to O(𝑁𝑏) where 𝑁 denotes the number of 
data points in X, and 𝑏 denotes the average neighborhood size. 
Observation 1. If 𝜌(𝑥௜) < 𝑚𝑎𝑥௫ೕ∈஻(௫೔) 𝜌൫𝑥௝൯ for some data point 𝑥௜ ∈ X, then the data point nearest to 𝑥௜ and 

with a local density > 𝜌(𝑥௜) is in 𝐵(𝑥௜), i.e., 𝑥ఙ(௫೔) ∈  𝐵(𝑥௜). 
Based on Observation 1, we rewrite Equations (4) and (5) to Equations (6) and (7) below. In 

Algorithm 2, we propose an accelerated version of DPC (called ADPC1), which produces the same 
clustering results as DPC does, but in less time: 

δ(𝑥௜) = ⎩⎪⎨
⎪⎧ min௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ min௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯  and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ ,  if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ .  (6) 

σ(𝑥௜) =
⎩⎪⎨
⎪⎧ argmin௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ argmin௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) = max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯  and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰𝑖,  if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ .  (7) 

 

Algorithm 2. ADPC1 algorithm. 

Input: the set of data points X ∈ ℝே×ெ  and the parameters 𝑑௖  for defining the 
neighborhood, and 𝑑௥ for selecting density peaks 
Output: the label vector of cluster index y ∈ ℝே×ଵ 
Algorithm: 
1. Calculate ρ(𝑥௜) and B(𝑥௜) for each 𝑥௜ ∈ X using either (1) and (2) or (3) and (2). 
2. Sort all data points in X by their local density descendingly. 
3. Calculate δ(𝑥௜) and σ(𝑥௜) for each 𝑥௜ ∈ X using (6) and (7). 
4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks. 
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖.  // starting point of each cluster 
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔).  // cluster assignment 

7. Return y. 
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*The parts different from the DPC in Algorithm 1 are highlighted in red. 

Notably, in Step 1 of Algorithm 1, the DPC algorithm uses B(𝑥௜) to calculate local density ρ(𝑥௜), 
but, afterwards, B(𝑥௜) is no longer needed. However, in Algorithm 2, the ADPC1 algorithm needs to 
keep B(𝑥௜) for calculating δ(𝑥௜) and σ(𝑥௜) in Step 3. If ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯, then we only need to 

scan B(𝑥௜) to calculate σ(𝑥௜) and δ(𝑥௜). If ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ does not hold, then σ(𝑥௜) and δ(𝑥௜) 

are calculated the same way as in the DPC algorithm, i.e., scanning half of the dataset X on average. 
Since it is often that the local density of a data point is less than the maximal local density of its 
neighbors, ADPC1 can greatly reduce the execution time. Appendix B describes the implementation 
details for Step 3 of the ADPC1 algorithm. 

4. Accelerating APC by Skipping Non-Peaks 

Both DPC and ADPC1 need to calculate the separation distance δ(𝑥௜) for each data point 𝑥௜. 
Recall that the purpose of calculating δ(𝑥௜) is to assist determining whether 𝑥௜ is a density peak. 
Therefore, if we can determine 𝑥௜ as a non-peak data point at an early stage, then there is no need to 
calculate δ(𝑥௜). Observation 2 shows the necessary condition of a density peak, which can be applied 
to detect most non-peak data points in a dataset. 
Observation 2. If 𝜌(𝑥௜) < 𝑚𝑎𝑥௫ೕ∈஻(௫೔) 𝜌൫𝑥௝൯ for some data point 𝑥௜ ∈ X, then 𝑥௜ cannot be a density peak. 

If 𝑥௜ is not a density peak, then we can omit to calculate δ(𝑥௜) by simply assigning δ(𝑥௜) to a 
small value, say 0. However, without calculating δ(𝑥௜), we do not know σ(𝑥௜), i.e., the index of the 
data point nearest to 𝑥௜  and with a local density > ρ(𝑥௜) . Notably, σ(𝑥௜)  is needed for cluster 
assignment in Step 6 of the DPC and ADPC1 algorithms. To resolve this problem, we use the index 
of the data point with the highest local density in the neighborhood of 𝑥௜ as a surrogate for σ(𝑥௜) 
and redefine Equations (6) and (7) as Equations (8) and (9) below: δ(𝑥௜)  

= ⎩⎪⎨
⎪⎧ 0, if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ min௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) ≧ max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯  and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ ,  if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ .  (8) 

σ(𝑥௜)  
=

⎩⎪⎨
⎪⎧ argmax௝:௫ೕ∈୆(௫೔) ρ(𝑥௝) , if B(𝑥௜) ≠ ϕ and ρ(𝑥௜) < max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ argmin௝:௫ೕ∈ଡ଼ ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯ , if B(𝑥௜) = ϕ or ൬ρ(𝑥௜) ≧ max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯  and ρ(𝑥௜) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯൰𝑖,  if ρ(𝑥௜) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ .  (9) 

Notably, Equations (8) and (9) only modify the first case of Equations (6) and (7), i.e., when the 
local density of 𝑥௜ is less than the maximal local density of its neighbors. Based on Equations (8) and 
(9), we propose another accelerated version of DPC (called ADPC2), which is the same as ADPC1 in 
Algorithm 2 except that Step 3 of ADPC2 uses Equations (8) and (9) instead of Equations (6) and (7) 
to calculate δ(𝑥௜)  and σ(𝑥௜) , as shown in Algorithm 3. Notably, because ADPC1 and ADPC2 
calculate σ(𝑥௜)  differently, their clustering results can be slightly different from each other. 
Appendix C describes the implementation details for Step 3 of the ADPC2 algorithm. 

Algorithm 3. ADPC2 algorithm. 

Input: the set of data points X ∈ ℝே×ெ  and the parameters 𝑑௖  for defining the 
neighborhood, and 𝑑௥ for selecting density peaks 
Output: the label vector of cluster index y ∈ ℝே×ଵ 
Algorithm: 
1. Calculate ρ(𝑥௜) and B(𝑥௜) for each 𝑥௜ ∈ X using either (1) and (2) or (3) and (2). 
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2. Sort all data points in X by their local density descendingly. 
3. Calculate δ(𝑥௜) and σ(𝑥௜) for each 𝑥௜ ∈ X using (8) and (9). 
4. Select data points with ρ(𝑥௜)δ(𝑥௜) > 𝑑௥ as density peaks. 
5. For each density peak 𝑥௜, set 𝑦௜ = 𝑖.  // starting point of each cluster 
6. For each non-peak data point 𝑥௜, set 𝑦௜ = 𝑦஢(𝒙೔).  // cluster assignment 

7. Return y. 
*The parts different from the DPC in Algorithm 1 are highlighted in red. 

5. Performance Study 

5.1. Test Datasets 

In this study, we use 12 well-known two-dimensional synthetic datasets to demonstrate the 
performance of the proposed algorithms. Dataset Spiral [23] consists of three spiral-shaped clusters. 
Dataset Flame [24] consists of two non-Gaussian clusters of points, where both clusters are of 
different sizes and shapes. Dataset Aggregation [25] consists of seven perceptually distinct (non-
Gaussian) clusters of points. Dataset R15 [26] consists of 15 similar Gaussian clusters that are 
positioned on concentric circles. Dataset D31 [26] consists of 31 similar Gaussian clusters that are 
positioned along random curves. Datasets A1, A2, and A3 [27] contain 20, 35, and 50 circular clusters, 
respectively, where each cluster has 150 points. Datasets S1, S2, S3, and S4 [28] each contain 15 
Gaussian clusters, where the degree of cluster overlapping is S1 < S2 < S3 < S4. Appendix D gives a 
detailed characterization of these datasets. 

5.2. Experiment Setup 

The experiment was divided into two tests. Test 1 used a hard threshold to calculate the local 
density, as defined in Equations (1) and (2); Test 2 used an exponential kernel to calculate the local 
density, as defined in Equation (3). In both tests, the value of 𝑑௖ for defining the neighborhood is 
determined by the parameter p, as suggested in [6] and described in Section 2. We varied the value 
of p from 0.5 to 4 with a step size of 0.5. A large p implied a large 𝑑௖  and consequently a large 
neighborhood. 

In this experimental study, we compared the performance of the proposed ADPC1 and ADPC2 
against DPC. Recall that both ADPC1 and ADPC2 accelerated the way to derive the separation 
distances of those data points with a local density less than the maximal local density of their 
neighbors. Thus, we calculated the proportion (denoted by 𝑅෰) of such data points in a dataset for 
various p values, i.e., 𝑅෰ = ே෱ே where 𝑁෱ is the number of such data points in the dataset, and 𝑁 is the 
total number of data points in the dataset. Usually, both 𝑁෱ and 𝑅෰ grow with a large neighborhood 
(i.e., a large 𝑑௖ or p). Thus, the proposed ADPC1 and ADPC2 should perform better with a larger p. 

Since these three algorithms only differ on how to calculate the separation distance, we collected 
and compared their execution time for calculating the local density and the separation distance, i.e., 
from Step 1 to Step 3 of these algorithms in Algorithms 1 and 2. Then, for ease of comparison, we 
calculated the percentage of execution time improvement of ADPC1 (or ADPC2) over DPC by the 
difference of the execution times of DPC and ADPC1 (or ADPC2), divided by the execution time of 
DPC. 

5.3. Experiment Results 

5.3.1. Test 1: Use a Fixed Threshold for Local Density 

In Test 1, a fixed threshold is used to determine the neighborhood for calculating the local 
density of each data point. Table 1 shows the value of 𝑅෰, i.e., the proportion of data points with a 
local density less than the maximal local density of their neighbors. According to Table 1, except for 
some small datasets (e.g., Spiral, Flame, Aggregation, and R15 datasets) and small p combinations, 
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the value of 𝑅෰ is usually greater than 80% in most cases, indicating that a large proportion of the 
data points in a dataset can be benefited from ADPC1 and ADPC2 to accelerate the calculation of 
their separation distances. Please refer to Table A9 in Appendix E for the value of 𝑁෱, i.e., the number 
of data points with a local density less than the maximal local density of their neighbors. 

A larger p implies a larger 𝑑௖ , and thus a larger neighborhood range and probably more 
neighbors in the neighborhood. Intuitively, for a data point with a larger number of neighbors, it 
becomes less likely that the local density of the data point is greater than the maximal local density 
of its neighbors. Therefore, as the value of p increases, the value of 𝑅෰ tend to increase (with some 
exceptions). 

Table 1. The value of 𝑅෭ for various dataset and p combinations. (Using a fixed threshold) 

Dataset p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 
Spiral 19.87% 28.85% 35.26% 44.55% 51.60% 59.94% 66.67% 74.36% 
Flame 31.25% 59.58% 73.75% 86.67% 88.75% 92.08% 94.17% 96.25% 

Aggregation 77.28% 89.34% 94.42% 96.45% 96.83% 96.57% 96.57% 97.46% 
R15 58.00% 81.67% 89.50% 93.00% 93.83% 95.00% 94.00% 94.50% 
D31 95.23% 97.68% 97.87% 97.97% 97.19% 87.94% 65.61% 80.06% 
A1 95.13% 98.50% 98.90% 98.93% 99.03% 99.10% 98.80% 98.73% 
A2 97.90% 99.07% 98.90% 98.76% 99.09% 99.31% 99.73% 99.75% 
A3 98.64% 98.91% 98.84% 99.41% 99.69% 99.77% 99.81% 99.87% 
S1 86.10% 96.12% 98.24% 98.72% 98.90% 99.12% 99.48% 99.46% 
S2 87.02% 96.68% 98.68% 99.06% 99.00% 99.08% 99.36% 99.22% 
S3 89.48% 97.64% 98.84% 99.18% 99.54% 99.40% 99.54% 99.64% 
S4 87.10% 96.36% 98.60% 99.10% 99.28% 99.36% 99.44% 99.52% 

Table 2 shows the percentage of execution time improvement of ADPC1 and ADPC2 over DPC. 
Except for the two small datasets Spiral and Flame at p = 0.5, both ADPC1 and ADPC2 substantially 
reduced the execution time of DPC. ADPC2 took less time than ADPC1 did for most dataset and p 
value combinations. For the execution time of the three algorithms, please see Table A11 in Appendix 
E. 

For most cases in Table 1, the values of 𝑅෰ were large and did not change much as the value of p 
increased. As a result, the impact of p‘s value on the execution time improvement was not obvious in 
Table 2. To show that the impact of 𝑅෰ on the percentage of execution time improvement, consider 
the case of dataset D31 at p = 3 and 3.5. In Table 1, the value of 𝑅෰ dropped from 87.94% at p = 3 to 
65.61% at p = 3.5. The corresponding case in Table 2 showed that at p = 3, ADPC1 (or ADPC2) incurred 
the execution time improvement over DPC by 77.86% (or 80.44%). However, at p = 3.5, ADPC1 (or 
ADPC2) incurred the execution time improvement over DPC by only 47.06% (or 48.53%). This 
example shows that a large 𝑅෰ helps ADPC1 and ADPC2 to reduce the percentage of execution time 
improvement. However, if a small p is applied on a small dataset, then the resulting 𝑅෰ value is too 
small, causing ADPC2 to perform slower than DPC does (e.g., datasets Flame and Spiral at p = 0.5). 

Table 2. Percentage of execution time improvements over DPC (using a fixed threshold). 

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 

Spiral 
ADPC1 7.89% 12.31% 54.43% 38.46% 0.00% 33.33% 33.33% 0.00% 
ADPC2 –18.42% 29.42% 43.04% 10.09% 33.34% 0.07% 0.04% 66.62% 

Flame 
ADPC1 50.00% 0.01% 50.03% 100.00% 50.09% 49.99% 100.00% 50.00% 
ADPC2 -0.01% 50.01% 50.10% 50.00% 50.00% 100.00% 50.08% 50.07% 

Aggregation 
ADPC1 67.86% 70.59% 77.78% 78.95% 78.95% 73.69% 80.00% 72.23% 
ADPC2 69.09% 76.47% 83.33% 84.21% 84.21% 78.95% 75.00% 77.78% 

R15 
ADPC1 20.00% 54.55% 54.55% 72.73% 72.73% 75.00% 72.73% 72.73% 
ADPC2 40.00% 54.55% 72.73% 72.73% 72.73% 83.33% 81.82% 81.82% 

D31 
ADPC1 79.36% 82.37% 83.02% 82.14% 81.43% 77.86% 47.06% 53.88% 
ADPC2 79.56% 83.56% 84.29% 83.93% 83.21% 80.44% 48.53% 56.47% 

A1 ADPC1 79.77% 83.14% 83.33% 82.26% 81.15% 80.84% 80.44% 78.73% 
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ADPC2 80.16% 83.91% 84.47% 83.77% 83.41% 83.47% 83.03% 81.79% 

A2 
ADPC1 83.35% 84.11% 83.38% 82.51% 81.51% 80.42% 79.92% 79.12% 
ADPC2 83.98% 84.61% 82.13% 84.12% 83.37% 82.76% 82.50% 82.05% 

A3 
ADPC1 84.56% 83.59% 82.57% 82.33% 81.67% 80.11% 79.22% 79.09% 
ADPC2 84.91% 85.11% 84.61% 83.90% 83.54% 83.07% 82.73% 81.99% 

S1 
ADPC1 65.66% 79.50% 81.64% 81.86% 81.78% 81.06% 80.13% 79.39% 
ADPC2 66.22% 80.29% 82.98% 83.46% 83.64% 83.44% 82.75% 82.03% 

S2 
ADPC1 67.13% 79.81% 82.37% 82.14% 81.55% 80.94% 79.89% 78.85% 
ADPC2 67.55% 80.76% 83.45% 83.63% 83.56% 82.95% 82.44% 81.96% 

S3 
ADPC1 71.51% 81.36% 82.43% 82.43% 81.86% 80.73% 79.89% 78.85% 
ADPC2 71.78% 82.45% 83.65% 83.89% 83.60% 82.99% 82.57% 81.93% 

S4 
ADPC1 68.75% 79.65% 82.05% 81.99% 80.95% 80.54% 79.87% 79.17% 
ADPC2 69.03% 80.46% 83.27% 83.60% 82.97% 82.95% 82.40% 82.06% 

5.3.2. Test 2: Use an Exponential Kernel for Local Density 

In Test 2, an exponential kernel (see Equation (3)) is used to calculate the local density of each 
data point. Table 3 shows the value of 𝑅෰ for various dataset and p combinations. Please refer to Table 
A10 in Appendix E for the value of 𝑁෱. Similar to Table 1 in Test 1, a large proportion of the data 
points can be benefited from ADPC1 and ADPC2. Furthermore, each value of 𝑅෰ in Table 3 is greater 
than its corresponding value in Table 1. That is, for the same dataset and the same p value, an even 
larger proportion of data points can be benefited from ADPC1 and ADPC2 using the exponential 
kernel than using a fixed threshold to calculate the local density. In Test 2, a larger p value always 
incurs a larger 𝑅෰ values in Table 3. The results are consistent with that of Test 1. 

Table 3. The value of 𝑅෭ for various dataset and p combinations. (Using an exponential kernel) 

Dataset p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 
Spiral 47.44% 80.45% 91.67% 96.47% 98.72% 99.04% 99.04% 99.04% 
Flame 49.17% 78.33% 91.25% 96.25% 96.67% 97.50% 97.50% 97.92% 

Aggregation 92.01% 97.59% 98.35% 98.73% 98.86% 98.98% 99.11% 99.11% 
R15 73.17% 87.83% 92.67% 95.33% 96.00% 96.83% 97.33% 97.33% 
D31 96.23% 98.19% 98.74% 98.94% 99.00% 99.03% 99.19% 99.52% 
A1 97.13% 98.90% 99.23% 99.27% 99.33% 99.33% 99.37% 99.43% 
A2 98.57% 99.28% 99.31% 99.35% 99.56% 99.73% 99.79% 99.87% 
A3 98.99% 99.29% 99.37% 99.67% 99.77% 99.88% 99.91% 99.91% 
S1 91.84% 97.60% 98.88% 99.26% 99.56% 99.66% 99.66% 99.68% 
S2 92.10% 98.20% 99.36% 99.60% 99.64% 99.68% 99.70% 99.70% 
S3 94.54% 98.64% 99.32% 99.58% 99.66% 99.70% 99.74% 99.76% 
S4 93.04% 98.20% 99.06% 99.42% 99.48% 99.60% 99.70% 99.74% 

Table 4 shows the percentage of execution time improvement of ADPC1 and ADPC2 over DPC. 
ADPC1 always took less time than DPC did, except at p = 0.5 for Spiral dataset; ADPC2 always took 
less time than DPC did, except at p = 0.5 for Flame dataset. In general, both ADPC1 and ADPC2 
required substantially less execution time than DPC did. ADPC2 usually achieved higher 
improvement than ADPC1 did; however, the difference is small. For the execution time of the three 
algorithms, please see Table A12 in Appendix E. 

Table 4. Percentage of execution time improvements over DPC (using an exponential kernel). 

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 

Spiral 
ADPC1 –11.97% 7.48% 17.07% 23.06% 21.44% 6.68% 21.43% 14.30% 
ADPC2 7.40% 21.15% 26.25% 6.52% 21.43% 20.00% 21.44% 21.44% 

Flame 
ADPC1 12.50% 12.50% 12.50% 11.11% 25.00% 22.21% 12.50% 22.22% 
ADPC2 0.00% 12.50% 0.001% 22.22% 12.51% 22.22% 12.50% 22.22% 

Aggregation 
ADPC1 16.98% 15.00% 15.00% 17.07% 17.07% 15.00% 13.75% 13.75% 
ADPC2 14.52% 15.00% 16.25% 18.29% 18.29% 16.25% 16.25% 16.25% 

R15 ADPC1 9.80% 10.42% 12.49% 14.58% 12.50% 16.33% 14.89% 14.89% 
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ADPC2 9.80% 10.42% 12.49% 16.67% 14.58% 16.33% 14.89% 17.02% 

D31 
ADPC1 15.82% 15.49% 16.55% 16.08% 15.74% 16.01% 15.81% 15.51% 
ADPC2 15.90% 16.01% 17.80% 16.80% 17.15% 16.21% 15.43% 16.63% 

A1 
ADPC1 16.15% 15.56% 15.40% 15.73% 15.38% 15.32% 15.54% 14.99% 
ADPC2 16.99% 16.16% 16.19% 16.51% 16.61% 16.19% 16.88% 16.78% 

A2 
ADPC1 15.40% 16.05% 16.21% 16.81% 14.43% 16.21% 16.73% 15.75% 
ADPC2 15.90% 16.94% 16.49% 16.70% 16.52% 17.31% 17.38% 17.04% 

A3 
ADPC1 17.25% 16.59% 15.09% 16.76% 15.00% 16.18% 14.56% 14.76% 
ADPC2 16.84% 15.38% 16.08% 18.30% 15.68% 17.06% 15.70% 16.15% 

S1 
ADPC1 14.59% 15.16% 16.13% 15.32% 16.08% 17.20% 15.87% 17.60% 
ADPC2 13.83% 15.53% 15.58% 17.18% 16.07% 17.57% 16.69% 18.72% 

S2 
ADPC1 13.74% 16.19% 17.47% 16.00% 16.17% 11.36% 15.92% 15.73% 
ADPC2 14.07% 16.65% 17.76% 16.28% 16.88% 16.63% 17.40% 17.43% 

S3 
ADPC1 16.26% 16.52% 16.77% 16.25% 16.77% 17.31% 15.77% 16.29% 
ADPC2 14.75% 16.55% 15.87% 16.29% 15.52% 17.74% 16.46% 16.27% 

S4 
ADPC1 14.48% 16.03% 17.01% 15.91% 16.51% 16.08% 15.46% 15.83% 
ADPC2 13.56% 16.53% 16.55% 16.87% 16.26% 16.77% 16.28% 16.70% 

Comparing Tables 2 and 4 show that the execution time improvement is greater in Test 1 than 
in Test 2. In Test 1, calculating the local density of a data point requires simply counting the number 
of data points in its neighborhood (see Equations (1) and (2)). However, in Test 2, calculating the local 
density of a data point is much time consuming because it requires calculating an exponential 
function 𝑁-1 times, where 𝑁 is the number of data points in the dataset (see Equation (3)). The 
execution time collected in this study is the execution time for calculating the local density and the 
separation distance. All three algorithms use the same method to calculate the local density, and they 
are only differed on how to calculate the separation distance. That is, the execution time improvement 
of ADPC1 and ADPC2 over DPC is due to the improvement on how to calculate the separation 
distance. Since much more time was spent on calculating the local density in Test 2 than in Test 1, the 
percentage of execution time improvement is smaller in Test 2 than in Test 1. 

6. Conclusions 

As discussed in Section 3, if the local density of a data point 𝑥௜ is less than the largest local 
density of its neighbors, then ADPC1 and ADPC2 can reduce the time complexity for calculating the 
separation distance of 𝑥௜ from O(𝑁) to O(|B(𝑥௜)|) where 𝑁 denotes the number of data points in 
the dataset, and |B(𝑥௜)| denotes the number of neighbors of 𝑥௜ . Thus, the effectiveness of both 
ADPC1 and ADPC2 depends on the proportion of the data points satisfying this condition. The 
experimental results in Tables 1 and 3 show that most data points in a dataset satisfy this condition, 
except for some small datasets using a small neighborhood setting. Consequently, both ADPC1 and 
ADPC2 improve the execution time of DPC, as shown in Tables 2 and 4. Furthermore, in most cases, 
ADPC2 requires less execution time than ADPC1 does. 

Consider the case that all data points in a continuous region have the same local density. Then, 
there exists no data point in the region with a local density less than the largest local density of its 
neighbors, and consequently, both ADPC1 and ADPC2 cannot accelerate the computation of the 
separation distance for the data points in this region. If the entire dataset contains many such regions, 
then the advantage of ADPC1 and ADPC2 diminishes. However, according to Tables 1 and 3, except 
for small datasets with a small neighborhood range (i.e., small 𝑑௖), both ADPC1 and ADPC2 are 
advantageous.  

The proposed methods focus on accelerating the calculation of the separation distance. However, 
it is also possible to improve the DPC algorithm by accelerating the calculation of the local density 
[9]. Besides, the DPC algorithm has several shortcomings that have received much attention in the 
literature. First, choosing proper values for DPC’s parameters is not straightforward, but it can highly 
affect the quality of the clustering results. To resolve this problem, [7] applied the concept of heat 
diffusion and [8] employed the potential entropy of the data field to determine the value of 𝑑௖ . 
Additionally, [12] proposed a comparative technique to choose the density peaks. Thus, how to make 
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the DPC algorithm more adaptive to the datasets with less human intervention is worthy of further 
investigation. 

The local density of a data point 𝑥௜ can be defined from two different perspectives. One is to 
specify a fixed distance and count the number of data points within the fixed distance from 𝑥௜. The 
DPC algorithm adopted this perspective. Another perspective is to specify a fixed number of 
neighbors and measure the distances of these neighbors to 𝑥௜. [13,14] adopted this perspective and 
defined new methods to calculate the local density based on the k-nearest neighbors of 𝑥௜. Since the 
definition of the local density significantly affects the clustering results, how to choose a proper 
method to define the local density is an important issue worthy of further investigation for density-
based clustering algorithms. 

Our future work intends to extend the DPC algorithm as a hierarchical clustering algorithm.  
Conceptually, the DPC algorithm builds a directed acyclic graph of all data points with an out-degree 
≤ 1. Then, it selects several data points from the graph as the density peaks. Finally, it removes the 
outgoing links of the density peaks and breaks the graph into several subgraphs, each of which 
represents a cluster. By adding an ordering on the density peaks and incrementally removing the 
outgoing links of the density peaks according to this ordering, it is possible to yield the clustering 
results as a dendrogram. Furthermore, integrating the notion of central symmetry [29] or point 
symmetry [30] with the DPC algorithm for the detection of symmetry objects is also worthy of further 
investigation. 
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Appendix A. Implementation Details for Calculating Separation Distance in DPC 

Consider the case of more than one data points with a local density = the maximal local density 
in X. According to Equation (4), the separation distance of any data point 𝑥௜ with the maximal local 
density will be set to the maximal distance from 𝑥௜  to any point in X , i.e., max௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ . 

Consequently, all data points with the maximal local density have high separation distances and, 
thus, will be chosen as the density peaks to form individual clusters, regardless that some of these 
data points may be near to each other. Notably, many data points with an equal local density are less 
likely to occur when Equation (3) is used for calculating local density because the Gaussian kernel in 
Equation (3) yields a floating-point value. However, the local density calculated using Equation (1) 
is an integer, and data points with an equal local density become common. 

Laio’s Matlab implementation of the DPC algorithm [22] resolved the above problem as follows. 
Recall that in Step 2 of the DPC algorithm in Algorithm 1, all data points in X are sorted by their 
local densities descendingly, i.e., ρ(𝑥௜) ≥ ρ(𝑥௝) for 𝑖 < 𝑗. After Step 2, Laio used the ordering of the 
data points’ positions in X  instead of the ordering on local density for calculating separation 
distances. Specifically, Laio used Equations (A1) and (A2) instead of Equations (4) and (5) to calculate 
separation distances. Notably, in this work, we use 𝑥௜  to denote the ith data point in X , and 
whenever the ordering of the data points in X is rearranged, the data point referred as 𝑥௜  also 
changes. Notably, it is possible that more than one data point has the same local density, but each 
position in X can only be taken by one data point: 

δ(𝑥௜)  = ቐmax௫ೕ∈ଡ଼ d൫𝑥௜, 𝑥௝൯ , if 𝑖 = 1min௝ழ௜ d൫𝑥௜, 𝑥௝൯ , if 1 < 𝑖 (A1) 
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σ(𝑥௜)  = ቊ 1 if 𝑖 = 1argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯ , if 1 < 𝑖 (A2) 

According to Equation (A1), only the separation distance of the first data point 𝑥ଵ in X is set to 
the maximal distance, and for each data point 𝑥௜ஷଵ, we only scan those data points located before 𝑥௜ 
in X . Notably, with Equations (A1) and (A2), it is possible that σ(𝑥௜ஷଵ) = 𝑗  but ρ൫𝑥௝൯ = ρ(𝑥௜) 
because the ordering on local density is non-monotonically decreasing after Step 2 of the DPC 
algorithm in Algorithm 1. However, with Equations (4) and (5), if σ(𝑥௜) = 𝑗 and 𝑖 ≠ 𝑗, then ρ൫𝑥௝൯ >ρ(𝑥௜) must hold. Thus, the definition of separation distance according to Equation (4) has been 
slightly modified in Equation (A1), and the difference is illustrated in Figure A1. 

 
Figure A1. Difference between using Equation (4) and using Equation (A1) to calculate separation 
distance. 

Figure A2 shows Laio’s implementation for Step 3 of the DPC algorithm based on Equations 
(A1) and (A2). It is obvious that only the first data point is handled differently from the rest of the 
data points. Figure A3 shows the implementation of Step 3 of the DPC algorithm based on Equations 
(4) and (5). Data points with the maximal local density are handled in the same manner in Figures A2 
and A3. However, for data points with a local density less than the maximal local density, Figure A3 
faithfully implements Equations (4) and (5) to ensure that no data point with the same local density 
as 𝑥௜ is scanned when calculating δ(𝑥௜), as illustrated in Figure A1. 

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯;   σ(𝑥ଵ) = 1; 
For 𝑖 = 2 to |X| do  σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯; 

δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯; 

Figure A2. Implementation details of Step 3 of DPC algorithm (in Algorithm 1) based on Laio’s 
implementation [22]. 

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯;   σ(𝑥ଵ) = 1; 
For 𝑘 = 2 to |X| do   //  for points with maximal local density in X 

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯;  δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯; 

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ 

end if 
For 𝑖 = 𝑘 to |X| do   //  for points with local density < maximal local density 

        σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;   // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; 
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Figure A3. Implementation details of Step 3 of DPC algorithm (in Algorithm 1) based on Equations 
(4) and (5). 

Appendix B. Implementation Details for Calculating Separation Distance in ADPC1 

Figure A4 gives a detailed description of Step 3 of the ADPC1 algorithm in Algorithm 2. Notably, 
before this step, all data points in X have been sorted by their local densities descendingly. To resolve 
the problem of multiple data points with the maximal local density, we adopt the same approach 
described in Appendix A, as shown in the first for loop of Figure A4. That is, only the separation 
distance of the first data point with the maximal local density in X is set to the maximal distance. For 
each data point 𝑥௜ஷଵ  with the maximal local density, the separation distance δ(𝑥௜) is set to the 
minimal distance from 𝑥௜ to other data points located before 𝑥௜ in X. Notably, the data points with 
the maximal local density are handled in the same manner in Figures A2, A3, and A4. The second for 
loop in Figure A4 applies Equations (6) and (7) to process the data points with local density < the 
maximal local density.  

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯;   σ(𝑥ଵ) = 1; 
For 𝑘 = 2 to |X| do   //  for points with maximal local density in X 

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯;  δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯; 

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯  

end if 
For 𝑖 = 𝑘 to |X| do   //  for points with local density < maximal local density 

    If B(𝑥௜) = ϕ or ρ(𝑥௜) =  max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ then  // the greatest density in B(𝒙௜)  

σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;   // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; 

         else   // not the greatest density in B(𝑥௜) σ(𝑥௜) = argmin௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;  // only scan B(𝑥௜) 

δ(𝑥௜) = min௝:௫ೕ∈୆(௫೔) ∧ ஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; 

     endif 

Figure A4. Implementation details of Step 3 of ADPC1 algorithm (in Algorithm 2) based on Equations 
(6) and (7). 

Appendix C. Implementation Details for Calculating Separation Distance in ADPC2 

Figure A5 gives a detailed description of Step 3 of the ADPC2 algorithm in Algorithm 3. To 
resolve the problem of multiple data points with the maximal local density, we adopt the same 
approach described in Appendix A, as shown in the first for loop of Figure A5. The second for loop 
in Figure A5 bases on Equations (8) and (9) to process the data points with local density < the maximal 
local density.  

3. δ(𝑥ଵ) = max௫ೕ∈ଡ଼ d൫𝑥ଵ, 𝑥௝൯;   σ(𝑥ଵ) = 1; 
For 𝑘 = 2 to |X| do   //  for points with maximal local density in X 



Symmetry 2019, 11, 859 13 of 18 

 

If ρ(𝑥௞) = max௫ೕ∈ଡ଼ ρ൫𝑥௝൯ then σ(𝑥௜) = argmin௝ழ௜ d൫𝑥௜, 𝑥௝൯;  δ(𝑥௜) = min௝ழ௜ d൫𝑥௜, 𝑥௝൯; 

else break; // exit the for loop, and 𝑥௞ is the first point with ρ(𝑥௞) ≠ max௫ೕ∈ଡ଼ ρ൫𝑥௝൯  

end if 
For 𝑖 = 𝑘 to |X| do   //  for points with local density < maximal local density 

    If B(𝑥௜) = ϕ or ρ(𝑥௜) =  max௫ೕ∈୆(௫೔) ρ൫𝑥௝൯ then  // the greatest density in B(𝑥௜)  

σ(𝑥௜) = argmin௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯;   // only scan 𝑥௝ for 𝑗 < 𝑖 until ρ(𝑥௝) ≤ ρ(𝑥௜). δ(𝑥௜) = min௝:஡(௫ೕ)வ஡(௫೔) d൫𝑥௜, 𝑥௝൯; 

         else   // not the greatest density in B(𝑥௜) σ(𝑥௜) = argmax௝:௫ೕ∈୆(௫೔) ρ(𝑥௝);  // use a surrogate 

δ(𝑥௜) = 0; 
     endif 

Figure A5. Implementation details of Step 3 of the ADPC2 algorithm (in Algorithm 3) based on 
Equations (8) and (9). 

Appendix D. Datasets 

Figures A6 and A7 show the data distribution of the 12 two-dimensional synthetic datasets used 
in Section 5. Table A8 describes the number of clusters and the number of points in these datasets. 

 
 (a) S1  

(b) S2 

 
(c) S3 (d) S4 

Figure A6. Data distribution of the 12 datasets (part 1). 
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(a) Spiral 

 
(b) Flame 

(c) Aggregation 
 

(d) R15 

 
(e) D31 

 
(f) A1 

 
(g) A2 (h) A3 

Figure A7. Data distribution of the 12 datasets (part 2). 
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Table A8. Number of points and number of clusters in the 12 datasets. 

Dataset Number of clusters Number of points 
Spiral 3 312 
Flame 2 240 

Aggregation 7 788 
R15 15 600 
D31 31 3100 
A1 20 3000 
A2 35 5250 
A3 50 7500 
S1 15 5000 
S2 15 5000 
S3 15 5000 
S4 15 5000 

Appendix E. More Experimental Results 

Tables A9 and A10 show the number 𝑁෱ of the data points with a local density < the maximal 
local density of their neighbors in Tests 1 and 2, respectively. Tables A11 and A12 show the execution 
time of the three algorithms (DPC, ADPC1 and ADPC2) in Tests 1 and 2, respectively.  

Table A9. The value of 𝑁෭ for various dataset and p combination (Test 1 uses a fixed threshold) 

Dataset (N) p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 
Spiral (N = 312) 62 90 110 139 161 187 208 232 
Flame (N = 240) 75 143 177 208 213 221 226 231 

Aggregation (N = 788) 609 704 744 760 763 761 761 768 
R15 (N = 600) 348 490 537 558 563 570 564 567 

D31 (N = 3100) 2952 3028 3034 3037 3013 2726 2034 2482 
A1 (N = 3000) 2854 2955 2967 2968 2971 2973 2964 2962 
A2 (N = 5250) 5140 5201 5192 5185 5202 5214 5236 5237 
A3 (N = 7500) 7398 7418 7413 7456 7477 7483 7486 7490 
S1 (N = 5000) 4305 4806 4912 4936 4945 4956 4974 4973 
S2 (N = 5000) 4351 4834 4934 4953 4950 4954 4968 4961 
S3 (N = 5000) 4474 4882 4942 4959 4977 4970 4977 4982 
S4 (N = 5000) 4355 4818 4930 4955 4964 4968 4972 4976 

Table A10. The value of 𝑁෭ for various dataset and p value combination (Test 2 uses an exponential 
kernel) 

Dataset (N) p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 
Spiral (N = 312) 148 251 286 301 308 309 309 309 
Flame (N = 240) 118 188 219 231 232 234 234 235 

Aggregation (N = 788) 725 769 775 778 779 780 781 781 
R15 (N = 600) 439 527 556 572 576 581 584 584 

D31 (N = 3100) 2983 3044 3061 3067 3069 3070 3075 3085 
A1 (N = 3000) 2914 2967 2977 2978 2980 2980 2981 2983 
A2 (N = 5250) 5175 5212 5214 5216 5227 5236 5239 5243 
A3 (N = 7500) 7424 7447 7453 7475 7483 7491 7493 7493 
S1 (N = 5000) 4592 4880 4944 4963 4978 4983 4983 4984 
S2 (N = 5000) 4605 4910 4968 4980 4982 4984 4985 4985 
S3 (N = 5000) 4727 4932 4966 4979 4983 4985 4987 4988 
S4 (N = 5000) 4652 4910 4953 4971 4974 4980 4985 4987 



Symmetry 2019, 11, 859 16 of 18 

 

Table A11. The execution time in seconds (Test 1 uses a fixed threshold). 

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 

Spiral 
DPC 0.038101 0.046879 0.079211 0.052139 0.04688 0.046879 0.046879 0.046879 

ADPC1 0.035094 0.041108 0.036096 0.032086 0.046879 0.031252 0.031252 0.046879 
ADPC2 0.04512 0.033088 0.04512 0.046878 0.031251 0.046845 0.04686 0.015646 

Flame 
DPC 0.031253 0.031255 0.031273 0.031252 0.031253 0.031252 0.031252 0.031253 

ADPC1 0.015626 0.031253 0.015626 0 0.015599 0.015628 0 0.015628 
ADPC2 0.031255 0.015625 0.015605 0.015627 0.015627 0 0.0156 0.015606 

Aggregation 
DPC 0.252673 0.265685 0.281293 0.296938 0.296938 0.296938 0.312564 0.281312 

ADPC1 0.081215 0.078132 0.062506 0.062507 0.062506 0.078133 0.062506 0.078133 
ADPC2 0.0781 0.062507 0.04688 0.04688 0.046901 0.062507 0.078133 0.062505 

R15 
DPC 0.156265 0.171892 0.171892 0.171892 0.171892 0.187519 0.171891 0.171891 

ADPC1 0.125012 0.078131 0.078131 0.04688 0.046879 0.04688 0.046873 0.046878 
ADPC2 0.093759 0.07813 0.046879 0.046879 0.046878 0.031253 0.031253 0.031253 

D31 
DPC 4.281704 4.344213 4.375495 4.375465 4.375464 4.234823 3.187837 3.625386 

ADPC1 0.883543 0.7657 0.742746 0.781333 0.812588 0.937631 1.687681 1.672092 
ADPC2 0.875124 0.71418 0.687573 0.7032 0.734489 0.828213 1.640798 1.578292 

A1 
DPC 4.016051 4.078557 4.125437 4.141065 4.145534 4.160485 4.234813 4.187945 

ADPC1 0.81259 0.687572 0.687606 0.734455 0.781332 0.79696 0.828212 0.89072 
ADPC2 0.796961 0.656319 0.640726 0.67195 0.687573 0.687573 0.718826 0.762816 

A2 
DPC 12.48567 12.4857 12.59509 12.59508 12.59509 12.68885 12.76698 12.7982 

ADPC1 2.078376 1.984586 2.093839 2.203357 2.328372 2.484632 2.564224 2.672159 
ADPC2 2.000502 1.922079 2.250205 2.000213 2.093969 2.187732 2.234609 2.297118 

A3 
DPC 25.42454 25.53396 25.69023 25.72854 26.01839 26.11215 26.40587 26.33089 

ADPC1 3.926412 4.189912 4.47909 4.547357 4.769292 5.194029 5.486006 5.506579 
ADPC2 3.83774 3.802774 3.953544 4.1411 4.281703 4.420601 4.561412 4.742328 

S1 
DPC 11.42309 11.81372 11.65747 11.71463 11.75125 11.79816 11.79813 11.82938 

ADPC1 3.922292 2.422134 2.140852 2.125225 2.140851 2.234612 2.344002 2.437762 
ADPC2 3.8584 2.328372 1.984588 1.93774 1.922111 1.953329 2.035082 2.125227 

S2 
DPC 11.21994 11.45434 11.52083 11.5481 11.68874 11.64186 11.65748 11.67311 

ADPC1 3.687891 2.312742 2.031496 2.062718 2.15648 2.218986 2.344 2.469012 
ADPC2 3.641011 2.203357 1.906452 1.890826 1.922079 1.984584 2.047092 2.105681 

S3 
DPC 11.29808 11.48559 11.56373 11.56373 11.62623 11.59498 11.65748 11.67311 

ADPC1 3.21909 2.14085 2.031468 2.031467 2.109567 2.234612 2.343999 2.469044 
ADPC2 3.187838 2.015836 1.890857 1.86247 1.906452 1.97208 2.031466 2.109599 

S4 
DPC 11.25118 11.51685 11.57936 11.62623 11.56371 11.64183 11.71999 11.70437 

ADPC1 3.515999 2.344002 2.078346 2.093971 2.203359 2.265865 2.359625 2.437758 
ADPC2 3.484713 2.250242 1.937706 1.906451 1.968992 1.984586 2.062751 2.099317 

Table A12. The execution time in seconds (Test 2 uses an exponential kernel). 

Dataset Algorithm p = 0.5 p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4 

Spiral 
DPC 0.217607 0.227606 0.24064 0.230642 0.218788 0.234399 0.218773 0.218806 

ADPC1 0.243648 0.210588 0.199559 0.177449 0.17189 0.218742 0.171892 0.187521 
ADPC2 0.201514 0.179477 0.177471 0.215608 0.171891 0.18752 0.171869 0.171893 

Flame 
DPC 0.12501 0.125012 0.125014 0.14064 0.125013 0.14064 0.125014 0.14064 

ADPC1 0.109386 0.109386 0.109386 0.125014 0.093759 0.109406 0.109387 0.109387 
ADPC2 0.12501 0.109385 0.125013 0.109386 0.10938 0.109386 0.109384 0.109385 

Aggregation 
DPC 1.299488 1.250166 1.250131 1.281362 1.281407 1.250169 1.250164 1.250162 

ADPC1 1.078868 1.062644 1.062612 1.062614 1.062644 1.062645 1.078269 1.078274 
ADPC2 1.11083 1.062613 1.046983 1.047022 1.047018 1.047019 1.047018 1.047018 

R15 
DPC 0.779632 0.750111 0.750057 0.750113 0.750075 0.765738 0.734483 0.73445 

ADPC1 0.703232 0.671957 0.656351 0.640727 0.656351 0.640728 0.625097 0.625066 
ADPC2 0.703232 0.671978 0.656351 0.625098 0.640724 0.640691 0.625097 0.60947 

D31 
DPC 20.34588 19.8146 19.90442 19.53329 19.65834 19.5177 19.54898 19.64271 

ADPC1 17.12682 16.74525 16.61117 16.39237 16.56423 16.39233 16.4581 16.59551 
ADPC2 17.11119 16.64242 16.36111 16.25173 16.28676 16.35301 16.53297 16.37674 

A1 
DPC 18.58013 18.08004 17.95503 17.98625 17.8769 17.8988 17.95503 17.8769 

ADPC1 15.57978 15.26725 15.18911 15.15783 15.12657 15.15679 15.16565 15.19659 
ADPC2 15.42351 15.15789 15.04847 15.01722 14.90703 15.00159 14.92343 14.87658 

A2 
DPC 56.31846 55.53715 55.05268 55.67778 55.25958 55.44339 55.5684 55.64653 

ADPC1 47.64571 46.62474 46.12989 46.31741 47.2863 46.45805 46.27054 46.87997 
ADPC2 47.3644 46.12753 45.97363 46.37992 46.12989 45.84858 45.91012 46.16624 

A3 
DPC 115.6921 112.1025 112.9651 115.0125 112.3618 112.9651 112.1213 112.8714 

ADPC1 95.73069 93.50614 95.91672 95.73115 95.51016 94.68273 95.79348 96.21016 
ADPC2 96.21336 94.86226 94.79854 93.96594 94.73864 93.69754 94.52285 94.63775 

S1 
DPC 53.11501 51.63048 50.92332 50.58346 50.44285 50.78661 50.19283 51.5836 

ADPC1 45.36419 43.80152 42.70859 42.8327 42.33265 42.0513 42.2279 42.50451 
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ADPC2 45.77048 43.614 42.9889 41.89504 42.33735 41.86379 41.8169 41.92629 

S2 
DPC 51.88047 50.97416 50.89606 50.00531 50.36472 50.08341 50.73976 50.56783 

ADPC1 44.75324 42.71937 42.00446 42.00442 42.22323 44.39533 42.66078 42.61389 
ADPC2 44.58285 42.48891 41.85598 41.86382 41.86418 41.7544 41.9107 41.75443 

S3 
DPC 51.89613 50.14595 50.17026 49.89592 50.03655 50.63037 50.13029 50.03656 

ADPC1 43.45777 41.86382 41.75443 41.78568 41.64504 41.86382 42.22323 41.88364 
ADPC2 44.23907 41.84819 42.20761 41.77006 42.27011 41.65029 41.87944 41.89504 

S4 
DPC 51.45296 50.1772 50.42723 50.5679 50.36469 50.05215 50.00527 50.23967 

ADPC1 44.00467 42.13493 41.84819 42.52013 42.05134 42.00442 42.274 42.28573 
ADPC2 44.47347 41.88291 42.08256 42.03568 42.17635 41.66067 41.86382 41.84976 
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