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Abstract: Feature interaction is a newly proposed feature relevance relationship, but the unintentional
removal of interactive features can result in poor classification performance for this relationship.
However, traditional feature selection algorithms mainly focus on detecting relevant and redundant
features while interactive features are usually ignored. To deal with this problem, feature relevance,
feature redundancy and feature interaction are redefined based on information theory. Then a
new feature selection algorithm named CMIFSI (Conditional Mutual Information based Feature
Selection considering Interaction) is proposed in this paper, which makes use of conditional mutual
information to estimate feature redundancy and interaction, respectively. To verify the effectiveness
of our algorithm, empirical experiments are conducted to compare it with other several representative
feature selection algorithms. The results on both synthetic and benchmark datasets indicate that our
algorithm achieves better results than other methods in most cases. Further, it highlights the necessity
of dealing with feature interaction.

Keywords: feature selection; conditional mutual information; feature interaction; classification;
computer engineering

1. Introduction

In an era of growing data complexity and volume, high dimensional data brings a huge challenge
for data processing, as it increases the computational complexity in computer engineering. Feature
selection is a widely used technique to address this issue. Theoretically, the more features are used,
the more information is provided, however this is not always true in practical experience. Excessive
features not only bring high computation complexity, but also cause the learning algorithm to over-fit
the training data. Since feature selection could provide many advantages, such as avoiding over-fitting,
resisting noise, reducing computation complexity and increasing predictive accuracy, it has attracted
increasing interest in the field of machine learning and a large amount of feature selection algorithms
have been proposed during recent years.

Feature selection could be broadly categorized into three types, i.e., wrapper, filter, and embedded
methods according to whether the selection algorithm is independent of the specified learning
algorithm [1]. Wrapper methods use a predetermined classifier to evaluate the candidate feature
subset. Therefore, they usually achieve a higher predictive accuracy than other methods, like some
heuristic algorithms that excessively depend on hyper-parameters, with a heavy computational burden
and a high risk of being overly specific to the classifier. One of the typical wrapper methods is
shown in reference [2]. For the embedded methods, feature selection is integrated into the training
process for a given learning algorithm. They are less computationally expensive, but need strict model
structure assumptions. In contrast, filter methods are independent of learning algorithms because
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they involve defining a heuristic evaluation criterion to provide a proxy measure of the classification
accuracy. Compared with wrapper and embedded methods, due to the computational efficiency and
generalization ability, filter methods are gaining more interest and many contributions have been made
in feature selection since 2008 [3]. Filter methods could be further divided according to different kinds
of evaluation criterions, such as distance, information, dependency and consistency [4]. Among these
evaluation criterions, the information metric has gained more attention and is more comprehensively
studied because of its ability to quantify the nonlinear relevance among features and classes.

Traditional feature selection algorithms mainly focus on the removing of irrelevant and redundant
features. Irrelevant features provide no useful information and redundant features provide overlapped
information about the selected features. However, feature interaction is usually ignored. Feature
interaction was first proposed by Jakulin, et al. [5] and some recent research has pointed out its effect on
classification. Interactive features could provide more information when combined together than the
sum of information provided individually. Unintentional removal of interactive features would result
in poor classification performance. An extreme example of feature interaction is the XOR problem.
Suppose we defined label C based on two features f1, f2, C= f1⊕f2, then each feature is independent of
the label C and provides no information about the class individually. However, these two features
completely determine the class together.

Wrapper methods could deal with feature interaction implicitly to some extent. However,
the heavy computational burden makes wrapper methods intractable for large scale classification
tasks. Some newly proposed filter methods have considered feature interaction [6–8]. However, it’s
still a challenge for most filter methods to handle interaction and more work is needed on an explicit
treatment of this issue. These challenges include sensitivity to data noise and data transformation [9].

Many feature selection algorithms have been proposed and widely used. Genetic Algorithm
(GA) is a heuristic algorithm with global optimization. However, “pre-mature” outcomes can occur
with expected hyper-parameters. The Symmetric Uncertainty (SU) algorithm assumes that the
evaluated feature is independent of other features and reflects only the single feature and category.
The Relief algorithm takes samples randomly while the number of samples greatly affects the results.
Correlation-based feature selection (CFS) is a filter method that selects features by measuring the
correlation between features and categories and the redundancy between different features, but its result
may not be the global optimum. The Minimum-Redundancy Maximum-Relevance (MRMR) method
searches for the most closely related features with objective category, or a subset of features that are least
redundant. It can meticulously characterize feature correlation and redundancy weights. Conditional
Mutual Information Maximization (CMIM) uses conditional mutual information to measure distance,
which makes a tradeoff between the predictive power of the candidate feature and its independence
from previously selected features. However, it may be difficult to calculate the multidimensional
probability density in high dimensional space. Those methods have achieved good performance in
some cases. However, they ignored the significance of feature interaction. Feature interaction is very
significant and can be used in many fields like object detection and recognition, and neurocomputing
and so on. Reference [10] integrated feature interaction into their proposed linear regression model to
capture the nonlinear property of data. Reference [11] proposed a method to remove relevant features
by considering the feature interaction and reducing the weakly relevant features.

In this paper, a new feature selection method based on conditional mutual information (named
CMIFSI) is proposed. Firstly, some basic information-theoretic concepts and related work are reviewed,
then a new information metric is proposed to evaluate the redundancy and interaction of candidate
features. With the aid of this metric, CMIFSI could restrain the redundant features and redress
interactive ones in the feature ranking process. To verify its performance, CMIFSI is compared with
several of the state-of-the-art feature selection methods mentioned above.
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2. Basic Information-Theoretic Concepts

In this section, we give a brief introduction to information-theoretic concepts, followed by a
summary of applications used for feature selection. Information theory was initially developed by
Shannon to deal with communication problems, and entropy is the key measure. Because of its
capability to quantify the uncertainty of random variables and the amount of information shared by
different random variables, information theory has also been widely applied to feature selection [12].

Let X be a random variable with m discrete values and p(xi) represents the probability of xi, xi is
the i-th value of X, then its uncertainty measured by entropy H(X) is defined as

H(X) = −
m∑

i=1

p(xi) log p(xi) (1)

It’s worth noting that entropy doesn’t depend on actual values but just the probability distribution
of discrete values. Then the joint entropy H(X, Y) of X and Y, a random variable with n discrete values
is defined as

H(X, Y) = −
m∑

i=1

n∑
j=1

p(xi, y j) log p(xi, y j) (2)

When p(xi, y j) is the joint distribution probabilities of xi and yi, and variable Y is known, yi is
the j-th of Y, then the reserved uncertainty of X is measured by conditional entropy H(X|Y) which is
defined as

H(X|Y) = −
m∑

i=1

n∑
j=1

p(xi, y j) log p(xi|y j) (3)

where p(xi|y j) is the posterior probabilities of X given Y. And it could be proven that

H(X|Y) = H(X, Y) −H(Y) (4)

To quantify the information shared by two random variables X and Y, a new concept termed as
mutual information (MI) is defined as

I(X; Y) =
m∑

i=1

n∑
j=1

p(xi, y j) log
p(xi|y j)

p(xi)
(5)

MI could quantify the relevance between variables, whether liner or nonlinear, and plays a key
role in feature selection based on information metric.

Additionally, the MI and the entropy could be related by the following formula

I(X; Y) = H(X) −H(X|Y) (6)

In addition, conditional mutual information (CMI) of X and Y when given a new random variable
Z is defined as

I(X; Y|Z) = H(X|Z) −H(X|Y, Z) (7)

CMI represents the quantity of information shared by X and Y when Z is known. It implies Y
brings information about X which is not already contained in Z.
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3. Related Work

Evaluation criterion is the key role in filter methods, which is intended to measure how potentially
useful a feature or feature subset should be when used in a classifier. The general evaluation criterion
of feature selection based on information metric could be represented as

J( f ) = I(C; f ) − g(C, S, f ) (8)

where f is a candidate feature, S is the selected feature subset, C is the class vector that evaluates
the candidate feature f and g(C, S, f ) is a deviated function which is used to penalize or compensate
the first part, i.e., I(C; f ). Different feature selection methods were proposed by designing modified
evaluation criterions according to Equation (8).

A simple method termed as Mutual Information Maximization (MIM) is proposed in [13], which
simplifies Equation (8) by removing the deviated function

J( f ) = I(C; f ) (9)

Since mutual information tends to favor features with more discrete values, a normalized
mutual information criterion named symmetrical uncertainty (SU) [14] is then introduced into the
feature selection.

J( f ) =
2I(C; f )

H(C) + H( f )
(10)

where H(C) and H( f ) is defined as Equation (1), I(C; f ) is defined as Equation (6). This criterion
compensates mutual information’s bias towards features with more discrete values and restricts its
value to the range of [0,1].

In general, it is widely accepted that an optimal feature set should not only be relevant with the
class individually, but also consider feature redundancy. Therefore, other modified criterions have
been proposed to pursue the “relevancy-redundancy” goal.

Battiti [15] proposed the Mutual Information Feature Selection (MIFS) criterion:

J( f ) = I(C; f ) − β
∑
fi∈S

I( f ; fi) (11)

This criterion uses mutual information to identify the relevant features, and a penalty to ensure low
redundancy within selected features. β is a configurable parameter to determine the trade-off between
relevance and redundancy. However, β is set experimentally, which results in unstable performance.

A Minimum-Redundancy Maximum-Relevance (MRMR) criterion was proposed by Peng et al. [16].

J( f ) = I(C; f ) −
1
|S|

∑
fi∈S

I( f ; fi) (12)

where |S| is the number of features in selected feature subset S In this criterion, the deviated function
g(C, S, f ) = 1

|S|
∑
fi∈S

I( f ; fi) acts as a penalty to feature redundancy.

Another similar criterion is called Joint Mutual Information (JMI) [17].

J( f ) =
∑
fi∈S

I( f , fi; C) (13)

This criterion could be re-written in the form of Equation (8) by using some relatively
simple manipulations.

J( f ) = I(C; f ) −
1
|S|

∑
fi∈S

[I( f ; fi) − I( f ; fi|C)] (14)
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In this criterion, I( f ; fi) − I( f ; fi|C) represents the amount of information about C shared by f
and fi. Therefore, the second part of this criterion is another modified deviated function to penalize
feature redundancy.

Fleuret [18] proposed the Conditional Mutual Information Maximization (CMIM) criterion

J( f ) = min
fi∈S

[I(C; f | fi)] (15)

This criterion could also be re-written in the form of Equation (8)

J( f ) = I(C; f ) −min
fi∈S

[I(C; f ) − I(C; f | fi)] (16)

Actually, the initial form of this criterion is J( f ) = I(C; f |S), since I(C; f |S) is difficult to calculate,
it should be approximated by some simplified form. When only taking feature redundancy into
consideration, the following inequality is established

I(C; f |S) ≤ I
Si∈S

(C; f |Si) ≤ I
fi∈S

(C; f | fi) (17)

Therefore, we could estimate I(C; f |S) by using the minimum value, i.e.,

I(C; f |S) ≈ min
fi∈S

[I(C; f | fi)] (18)

Many other criterions based on information metric have also been proposed, such as FCBF [19],
AMIFS [20], CMIFS [21]. Reviewing these criterions, it is easy to find that almost all of these
information based criterions focus on selecting relevant features and penalizing feature redundancy
by a deviated function, while feature interaction is ignored. As stated above, feature interaction
does exist and unintentional ignoring of this feature interaction may result in poor classification
performance. Therefore an appropriate deviated function in Equation (8) should not only penalize
feature redundancy but also compensate for feature interaction. After taking feature interaction into
account, many of the presented criterions would be ill-considered or even improper. Taking CMIM as
an example, the inequality (17) would be not tenable once feature interaction is considered, then the
final criterion min[I(C; f | fi)] would be improper as well. However, little work has been conducted to
deal with feature interaction using the information metric.

4. Some Definitions about Feature Relationships

In this section, we first present some classic definitions of feature relevance and redundancy,
then provide our formal definitions of feature irrelevance, redundancy and interaction based on
information theory.

John et al. [22] classifies features into three disjoint categories, namely, strong relevance, weak
relevance and irrelevant features. Then Yu and Liu [18] proposed the definition of redundancy base on
the concept of Markov blanket.

Let F be a full set of features, fi a feature and Si = F−
{
fi
}
, C the class vector. These definitions are

as follows.

Definition 1. (Strong relevance) A feature fi is strong relevant if and only if

P(C|F) , P(C|Si) (19)

Definition 2. (Weak relevance) A feature fi is weak relevant if and only if

P(C|F) = P(C|Si)

∃Si
′
⊂ Si, such that P(C| fi, Si

′) , P(C|Si
′)

(20)



Symmetry 2019, 11, 858 6 of 17

Corollary 1. (Irrelevance) A feature fi is irrelevant if and only if

∀Si
′
⊂ Si, P(C| fi, Si

′) = P(C|Si
′) (21)

Definition 3. (Markov blanket) Given a feature fi, let Mi ⊂ F( fi <Mi), Mi is said to be a Markov blanket for fi
if and only if

P(F−Mi −
{
fi
}
, C| fi, Mi) = P(F−Mi −

{
fi
}
, C|Mi) (22)

Definition 4. (Redundancy) A feature fi is redundant if and only if it’s weakly relevant and has a Markov
blanket Mi within F.

It’s important to note that strong relevance, weak relevance and irrelevance are paratactic, while redundancy
is a part of weak relevance. The objective of feature selection is to select an optimal or relatively suboptimal
feature subset which contains the strongly relevant and weakly relevant but non-redundant features. However,
the above definitions for relevance and redundancy rely on a whole probability distribution, which is intractable
to guide feature selection. Moreover, feature interaction has not been defined specifically either.

In the following sections, we will provide some definitions for relevance, redundancy, irrelevance and
interaction based on information theory. It’s worth noting that the following definitions are based on a candidate
feature and a selected feature subset, which is different from the above definitions but could be directly used to
guide feature selection especially those using greedy search strategy.

Let S be the subset of features which has been selected, fi is a candidate feature, C is the class vector.

Definition 5. (Irrelevance) Feature fi is irrelevant if and only if

I( fi; C) = I( fi; C|S) = 0 (23)

According to definition 5, an irrelevant feature fi couldn’t provide any information about C.

Definition 6. (Strong redundancy) Feature fi is strongly redundant with S if and only if

I( fi; C) > I( fi; C|S) = 0 (24)

Where I( fi; C) > 0 suggests that fi could provide some information about C individually, while I( fi; C|S) = 0
indicates that fi provides no more information when S is given. Therefore, the information provided by fi has
already been contained in the selected feature subset S, thus fi should not be selected.

Definition 7. (Weak redundancy) Feature fi is weakly redundant with S if and only if

I( fi; C) > I( fi; C|S) > 0 (25)

According to definition 7, I( fi; C) > I( fi; C|S) means the information about C provided by fi would decrease
when S is given, i.e., fi and S share some information about C. But fi is still useful and may be selected since it
could provide more information even S is known according to I( fi; C|S) > 0.

Definition 8. (Independent relevance) Feature fi is independently relevant with S if and only if

I( fi; C) = I( fi; C|S) > 0 (26)

According to definition 8, the information provided by an independently relevant feature has totally not
been contained in S, therefore an independently relevant feature should be selected.

Definition 9. (Interaction) Feature fi is interactive with S if and only if

I( fi; C|S) > I( fi; C) ≥ 0 (27)
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According to definition 9, I( fi; C|S) > I( fi; C) suggests that the information provided by fi would increase
when S is given. Thus feature fi and feature subset S have a synergy.

In the process of feature selection, when a feature subset is selected, a candidate feature belonging
to weak redundancy, independent relevance and interaction should be selected, while irrelevant or
strong redundant features would be eliminated.

5. A New Feature Smethod Considering Feature Interaction

The main goal of feature selection is to select a small number of features that can carry as much
information as possible. When using information metric, the objective function is defined as maxI(S; C),
where S is the selected feature subset. Based on this objective function, the evaluation criterion for a
candidate feature fi in a greedy search strategy could be represented as [23]

J( fi) = I(C; fi|S) (28)

Re-write this criterion in the form of Equation (8)

JCMI( fi) = I(C; fi) + [I( fi; C|S) − I( fi; C)] (29)

To directly calculate JCMI(fi), we need to compute the complex joint probability, which would be
computationally intractable. To address this issue, we would like to evaluate JCMI( fi) by using some
approximation technique without the involvement of complex joint probability.

The second part in JCMI ( fi) (termed as DF = I( fi; C|S) − I( fi; C)) acts as a deviated function, to
penalized or compensate the first part. Therefore, a proper approximation of DF should consider both
redundancy and interaction. One feasible method is to consider redundancy and interaction severally.

For a candidate feature fi, the selected S could be divided into three kinds of subsets, which are
redundant, independently relevant and interactive with fi respectively, denoted as Sredu, Sinde and Sinte.

The redundancy between S and fi could be represented by the subset with the highest redundancy
degree, denoted as

Sredu = arg min
Sredu⊂S

[I( fi; C|Sredu) − I( fi; C)] (30)

Similarly, the interaction between S and fi could be represented by the subset with the highest
interaction degree, denoted as

Sinte = arg max
Sinte⊂S

[I( fi; C|Sinte) − I( fi; C)] (31)

In addition, according to Definition 8, I( fi; C) = I( fi; C|Sinde), so independently relevant subsets
Sinde doesn’t influence the selection of candidate feature fi and could be ignored. Therefore, the
deviated function DF could be replaced by

DF = [I( fi; C|Sredu) − I( fi; C)] + [I( fi; C|Sinte) − I( fi; C)] (32)

For features in Sredu, more features would intensify redundancy, thus

I( fi; C|Sredu) ≤ I
f j∈Sredu

( fi; C| f j) (33)

We estimate I( fi; C|Sredu) by their minimum value, i.e., I( fi; C|Sredu) ≈ min I
f j∈Sredu

( fi; C| f j).

Similarly, for features in Sinte, more features would intensify interaction

I( fi; C|Sinte) ≥ I
f j∈Sinte

( fi; C| f j) (34)
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We estimate I( fi; C|Sinte) by their maximum value, i.e., I( fi; C|Sinte) ≈ max I
f j∈Sinte

( fi; C| f j).

Therefore, DF could be approximated by

DF ≈ [min I
f j∈Sredu

( fi; C| f j) − I( fi; C)] + [max I
f j∈Sinte

( fi; C| f j) − I( fi; C)] (35)

Since the subsets Sredu, Sinte are all implicit, we should generalize the above DF into the whole
subset S. It’s easy to prove that min I

f j∈Sredu
( fi; C| f j) = min I

f j∈S
( fi; C| f j). Therefore, the first part of DF

is denoted as min[[min I
f j∈S

( fi; C| f j) − I( fi; C)], 0], comparing with zero in case of Sredu = ∅. Similarly,

the second part of DF is denoted as max[[max I
f j∈S

( fi; C| f j) − I( fi; C)], 0].

Finally, the deviated function DF is represented as

DF = min[[min I
f j∈S

( fi; C| f j) − I( fi; C)], 0] + max[[max I
f j∈S

( fi; C| f j) − I( fi; C)], 0] (36)

And the evaluation criterion of a candidate fi is defined as

JCMI( fi) = I(C; fi) + DF
= I(C; fi) + min[[min I

f j∈S
( fi; C| f j) − I( fi; C)], 0] + max[[max I

f j∈S
( fi; C| f j) − I( fi; C)], 0], (37)

It’s important to note that this new evaluation criterion makes use of a similar idea with CMIM,
except taking feature interaction into consideration. And it would degenerate to the CMIM criterion
once interaction is ignored.

With this newly defined evaluation criterion, a new feature selection algorithm termed as CMIFSI
is proposed in this paper, the details of the Algorithm 1 are as follows

Algorithm 1 CMIFSI algorithm

Input: A training dataset D with a full feature set F = {f 1,f 2, . . . fn} and class vector C
A predefined threshold K

Output: The selected feature sequence
1. Initialize parameters: the selected feature subset S = Ø, k = 0, deviated function DF(fi, S) = 0 for all candidate
features;
2. for i = 1 to n do
3. Calculate I(fi;C)
4. end
5. While k < K do
6. For each candidate feature fi ∈ F do
7. Update DF(fi, S) according to Equation (36)
8. Calculate the evaluation value

JCMI(fi) = I(fi;C) + DF(fi, S)
9. End
10. Select the feature fj with the largest JCMI(fi)

S = S∪fj
F = F − fj

11. k = k + 1
12. end

As shown in Algorithm 1, a sequential forward search strategy was adopted in this algorithm
and the procedure was terminated by a predefined threshold K. The low K value can achieve low
computation complexity but may lose many effective features that are useful, while a high K value
can achieve better classification accuracy but also entails high computation complexity. Actually,
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when the threshold is exceeded, the classification accuracy doesn’t increase much but the computation
complexity still increases. As a result, an appropriate K value is needed. The features are ranked in
descending order according to the new evaluation criterion.

Now we analyze the time complexity of our algorithm. Suppose the total number of candidate
feature is n, and the predefined threshold is K. When k features have been selected, the complexity of
updating the deviated function is O(n-k) for each while loop. Therefore, the complexity for K selected
features is n + (n − 1) + (n − 2)+ . . . + (n − K + 1) = nK − 1/2(K2 − K), namely its time complexity is
O(nK). In the worst case, when all candidate features are selected, i.e., K = n, the time complexity
is O(n2).

6. Experiments and Results

In this section, we empirically evaluate the effectiveness of the proposed algorithm by comparing
it with some other representative feature selection algorithms using both synthetic and benchmark
datasets. The experiment setup is described in Section 6.1, while the results and discussion on synthetic
and benchmark datasets are shown in Sections 6.2 and 6.3, respectively.

6.1. Experiment Setup

To evaluate the effectiveness of a feature selection algorithm, a simple and direct criterion is the
similarity degree between the selected subset and the optimal subset, but it can only be measured using
synthetic data whose optimal subset is known beforehand. For real-world data like some benchmark
datasets, such prior knowledge in unavailable and we usually use the predictive accuracy on selected
subset of features as an indirect measure.

Six representative feature selection algorithms (GA, SU, Relief [24], CFS [25], MRMR, CMIM) were
selected to compare with CMIFSI using both synthetic and benchmark datasets. All of these methods
could effectively identify irrelevant features and some of them (e.g. CFS, MRMR, CMIM) could detect
redundant features as well.

In the experiment on benchmark datasets, two different learning algorithms (C4.5 and SVM) were
used to evaluate the predictive accuracy on the selected feature subsets. This meant we could verify
whether the performance of our new algorithm would be limited to the specified learning algorithm.

The experiment is mainly conducted in the WEKA (WEKA is a software and can be available
at http://www.cs.waikato.ac.nz/~{}ml) environment with the default settings. Some of these feature
selection algorithms and learning algorithms (like SU, Relief, CFS, C4.5) could be found in the WEKA
environment, other algorithms were implemented in MATLAB. To achieve impartial results, five-fold
validation and ten-fold cross validation were adopted for each step in selecting features and verifying
the classification capability, respectively.

6.2. Experiment on Synthetic Datasets

6.2.1. Synthetic Datasets

In this section, five synthetic datasets were employed to evaluate the effectiveness of different
feature selection algorithms. These synthetic datasets were generated by the data generation RDG1 in
a WEKA environment. The description of these five datasets is as follows:

Data1
There are 100 instances and 10 Boolean features denoted as a0,a1,a2 . . . ,a9 with 2 classes. Six of

these ten features are irrelevant and the target concept was defined as

c1 = a5 ∨ (a1 ∧ a6).

http://www.cs.waikato.ac.nz/~{}ml
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Data2
There are 100 instances and 10 Boolean features denoted as a0,a1,a2 . . . ,a9 with 2 classes. Five of

the ten features are irrelevant and the target concept was defined as

c1 = (a0 ∧ a1 ∧ a5)∨ (a8 ∧ a0 ∧ a6)∨ a0.

Data3
There are 100 instances and 10 Boolean features denoted as a0,a1,a2 . . . ,a9 with 2 classes. Six of

the ten features are irrelevant and the target concept was defined as

c1 = a5 ∨ (a1 ∧ a6 ∧ a8).

Data4
There are 200 instances and 15 Boolean features denoted as a0,a1,a2 . . . ,a14 with 3 classes. Eleven

of the fifteen features are irrelevant and the target concept was defined as

c0 = a2 ∨ (a2 ∧ a12 ∧ a8)

c1 = a8 ∨ (a2 ∧ a12 ∧ a8)

c2 = therest

Data5
There are 100 instances and 10 Boolean features denoted as a0,a1,a2 . . . ,a9 with 2 classes. Six of

the ten features are irrelevant and the target concept was defined as

c1 = (a1 ∧ a5) ⊕ (a0 ∧ a6).

Features absent in the definitions of the target concepts are redundant or irrelevant, and the
relevant and interactive features in each synthetic dataset are shown in Table 1.

Table 1. Relevant and interactive features of the four synthetic datasets.

Dataset Relevant Features Interactive Features

Data1 a1,a5,a6 (a1,a6)
Data2 a0,a1,a5,a6,a8 (a0,a1,a5),(a0,a6,a8)
Data3 a1,a5,a6,a8 (a1,a6,a8)
Data4 a2,a8,a12,a13 (a2,a8,a12)
Data5 a0,a1,a5,a6 (a1,a5),(a0,a6)

6.2.2. Results on Synthetic Datasets

Feature selection methods could be divided into two types: subset selection and feature ranking [1].
Subset selection preserves relevant features and removes as much irrelevant and redundant features as
possible, while feature ranking ranks features in a descending order according to specific evaluation
criterions and the number of selected features is predefined. In this experiment, GA, SU, Relief,
MRMR, CMIM, CMIFSI belonged to feature ranking and CFS was a kind of subset selection method.
The feature selection/ranking results are shown in Table 2 with no threshold predefined. The bold
values in entries represent features belong to the optimal subset and the notation” *” denotes correct
selected/ranked features.

It can be seen that when comparing with other feature selection algorithms, CMIFSI achieves the
best performance. For data1, data2 and data3, CMIFSI ranks the optimal subset in the top, which
means the feature ranking result is more accurate than the other results. For data4 and data5, all feature
selection algorithms failed to obtain the correct results, but CMIFSI still performed better than other
algorithms since its feature ranking sequence is more similar to the optimal subset. This is mainly
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because feature interaction really exists in these datasets (as shown in Table 1), but all algorithms
except for CMIFSI just focus on detecting irrelevant and redundant features while feature interaction is
ignored, which results in poor performance. Among the other feature selection algorithms, CMIM and
Relief performed with approximately suboptimal results on all the four synthetic datasets, and other
methods failed to obtain satisfying results.

Table 2. Feature selection results on synthetic datasets.

Algorithm Data1 Data2

GA a1,a2,a5,a0,a6,a9,a4,a7,a3,a8 a8,a0,a6,a5,a7,a3,a2,a1,a9,a4
SU a1,a5,a2,a0,a7,a9,a8,a4,a3,a6 a8,a0,a6,a7,a1,a5,a4,a3,a2,a9

Relief a1,a5,a6,a2,a7,a7,a4,a9,a0,a3* a8,a0,a6,a1,a5,a7,a2,a3,a4,a9*
CFS a1,a2,a5 a0,a6,a7,a8

MRMR a1,a0,a7,a8,a6,a5,a2,a9,a4,a3 a8,a6,a5,a3,a2,a0,a7,a1,a9,a4
CMIM a1,a6,a5,a2,a7,a9,a0,a8,a3,a4* a8,a0,a6,a5,a7,a1,a4,a3,a9,a2
CMIFSI a1,a6,a5,a4,a2,a9,a7,a8,a3,a0* a8,a0,a1,a6,a5,a7,a4,a2,a9,a3*

Optimal subset a1,a5,a6 a0,a1,a5,a6,a8

Algorithm Data3 Data4

GA a5,a6,a9,a1,a3,a2,a0,a7,a8,a4 a2,a13,a11,a8,a1,a14,a5,a12,a0,a6,a10,a7,a3,a4,a9
SU a5,a1,a6,a7,a0,a3,a4,a9,a8,a2 a2,a8,a13,a10,a6,a11,a0,a1,a14,a4,a7,a5,a3,a9,a12

Relief a5,a1,a6,a2,a0,a9,a4,a8,a7,a3 a2,a8,a13,a11,a14,a10,a7,a4,a12,a1,a6,a3,a5,a0,a9
CFS a0,a1,a5,a7 a0,a2,a8,a10,a11,a13,a14

MRMR a5,a6,a3,a2,a9,a1,a0,a4,a7,a8 a2,a13,a11,a1,a8,a7,a5,a12,a10,a6,a0,a14,a4,a3,a9
CMIM a5,a6,a1,a0,a7,a2,a4,a8,a9,a3 a2,a8,a13,a4,a10,a1,a0,a14,a11,a6,a12,a3,a5,a7,a9
CMIFSI a5,a6,a1,a8,a2,a4,a0,a9,a7,a3* a2,a8,a13,a4,a12,a11,a5,a1,a14,a10,a3,a0,a6,a9,a7

Optimal subset a1,a5,a6,a8 a2,a8,a12,a13

Algorithm Data5

GA a1,a6,a9,a5,a3,a2,a8,a4,a0,a7
SU a1,a5,a6,a2,a9,a0,a7,a3,a4,a8

Relief a5,a1,a6,a2,a9,a4,a8,a0,a7,a3
CFS a6,a2,a1,a5

MRMR a1,a6,a2,a9,a5,a3,a0,a8,a7,a4
CMIM a5,a6,a1,a9,a0,a2,a4,a7,a8,a3
CMIFSI a5,a6,a1,a2,a0,a9,a4,a8,a7,a3

Optimal subset a0,a1,a5,a6

The above results and discussion demonstrate the necessity of taking feature interaction into
consideration in feature selection. For datasets that involved interactive features, most of the traditional
feature selection algorithms would fail to achieve an optimal result. Take data4 for example, a12 is a
relevant feature in the optimal subset which is interactive with a2, a8, traditional algorithms remove
it or rank it at the back of the feature sequence mainly because its correlation with the class is low
individually and its interaction with other features is ignored. However, during the selection process
of CMIFSI, once a2 and a8 are selected, the evaluation criterion value of a12 would be compensated
because of its interaction with a2, a8, which would increase its probability of being selected. Therefore,
the result of CMIFSI is found to be superior to others.

6.3. Experiment on Benchmark Datasets

6.3.1. Benchmark Datasets

Ten datasets from the UCI Machine Learning Repository [26] are adopted in our simulation
experiments. These datasets contain various numbers of features, instances, and classes, as shown in
Table 3. At the same time, the distribution of each class in terms of number of instances is shown as
Figure 1.
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Data preprocess was applied before feature selection. Missing values were replaced by the most
frequently used values and means for nominal and numeric features, respectively. For algorithms
based on information metric, the MDL discretization method was applied to transform the numerical
features into discrete ones. Algorithms conducted in WEKA are set with default parameters. For SVM,
the grid searching method was adopted to obtain its relatively optimal parameters. In addition, we
selected the top K features that produce the highest accuracy and limited their maximum to 20 (used in
GA, SU, Relief MRMR, CMIM and CMIFSI), since the objective of feature selection is to reduce the
original feature dimension.

Table 3. Summary of UCI benchmark datasets.

No. Datasets Features Instances Classes

1 Wine 13 178 3
2 Kr-vs-kp 36 3196 2
3 SPECTF-heart 44 267 2
4 Zoo 16 101 7
5 Credit Approval 15 690 2
6 Optical Recognition of Handwritten Digits 64 1797 10
7 Contraceptive Method Choice 9 1473 3
8 Congressional Voting Records 16 435 2
9 Waveform 21 5000 3
10 Waveform+noise 40 5000 3

Symmetry 2019, 11, x FOR PEER REVIEW 12 of 17 

 

Table 3. At the same time, the distribution of each class in terms of number of instances is shown as 
Figure 1. 

 
Figure 1. Distribution of each class in terms of number of instances. 

Data preprocess was applied before feature selection. Missing values were replaced by the most 
frequently used values and means for nominal and numeric features, respectively. For algorithms 
based on information metric, the MDL discretization method was applied to transform the numerical 
features into discrete ones. Algorithms conducted in WEKA are set with default parameters. For 
SVM, the grid searching method was adopted to obtain its relatively optimal parameters. In addition, 
we selected the top K features that produce the highest accuracy and limited their maximum to 20 
(used in GA, SU, Relief MRMR, CMIM and CMIFSI), since the objective of feature selection is to 
reduce the original feature dimension. 

Table 3. Summary of UCI benchmark datasets. 

No. Datasets Features Instances Classes 
1 Wine 13 178 3 
2 Kr-vs-kp 36 3196 2 
3 SPECTF-heart 44 267 2 
4 Zoo 16 101 7 
5 Credit Approval 15 690 2 
6 Optical Recognition of Handwritten Digits 64 1797 10 
7 Contraceptive Method Choice 9 1473 3 
8  Congressional Voting Records 16 435 2 
9 Waveform 21 5000 3 

10 Waveform+noise 40 5000 3 

6.3.2. Results on Benchmark Datasets 

Tables 4 and 5 record the number of features selected by different feature selection algorithms 
using C4.5 and SVM, respectively. It is shown that all these feature selection algorithms achieve 
reduction of dimensionality by selecting only a portion of the original features. Furthermore, CMIFSI 
tends to obtain smaller feature subsets than those of other feature selection algorithms. AVE is the 
average of the same selected features of the same dataset. From the table, we can see that in most 
cases CMIFSI outperform the other algorithms. 

Table 4. Number of features selected by different feature selection algorithms using C4.5. 

No.  C4.5  

Figure 1. Distribution of each class in terms of number of instances.

6.3.2. Results on Benchmark Datasets

Tables 4 and 5 record the number of features selected by different feature selection algorithms
using C4.5 and SVM, respectively. It is shown that all these feature selection algorithms achieve
reduction of dimensionality by selecting only a portion of the original features. Furthermore, CMIFSI
tends to obtain smaller feature subsets than those of other feature selection algorithms. AVE is the
average of the same selected features of the same dataset. From the table, we can see that in most cases
CMIFSI outperform the other algorithms.

Tables 6 and 7 show the 10-fold cross-validation accuracies of C4.5 and SVM respectively,
where “Unselected” depicts the accuracies on datasets with original features. The bold values
indicate the highest accuracies among these six feature selection algorithms using the same classifier.
Notation”*” denotes the highest accuracies in each dataset corresponding to a specific classifier,
including “Unselected”. The last row “W/T/L” in each table summarizes the wins/ties/losses in accuracy
over all datasets by comparing various feature sets with those selected by CMIFSI. At the same time,
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we computed the confidence intervals of all our results to evaluate the algorithms. Here, we used the
bootstrapping method with 1000 as the sampling number and a 95% confidence level. The results are
shown in Tables 8 and 9.

Table 4. Number of features selected by different feature selection algorithms using C4.5.

No.
C4.5

Total GA SU Relief CFS MRMR CMIM CMIFSI AVE.

1 13 6 3 5 11 3 3 3 4.86
2 36 15 13 15 7 14 19 19 14.57
3 44 3 2 1 21 1 2 3 4.71
4 16 10 14 9 9 10 4 4 8.57
5 15 8 6 9 6 4 3 7 6.14
6 64 20 15 20 38 17 20 20 21.43
7 9 8 7 7 8 8 7 4 7.0
8 16 12 13 9 5 12 10 6 9.57
9 21 17 17 16 16 17 16 9 15.43

10 40 16 13 11 15 16 11 13 13.57

Table 5. Number of features selected by different feature selection algorithms using SVM.

No.
SVM

Total GA SU Relief CFS MRMR CMIM CMIFSI AVE.

1 13 2 5 8 11 9 6 8 7.0
2 36 13 13 20 7 12 15 15 13.57
3 44 15 18 5 21 14 8 19 14.29
4 16 9 9 8 9 7 9 5 8.0
5 15 6 5 1 6 6 4 3 4.43
6 64 20 19 13 38 17 11 11 18.43
7 9 8 5 5 8 9 3 7 6.43
8 16 6 2 1 5 3 5 4 3.71
9 21 19 19 18 16 18 20 19 18.43

10 40 20 20 19 15 18 17 16 18.29

Table 6. Accuracy of selected features using C4.5.

No.
C4.5

Unselected GA SU Relief CFS MRMR CMIM CMIFSI

1 93.80 92.67 96.07 94.38 93.80 97.19* 97.19* 97.19*
2 99.31* 95.48 96.62 97.70 94.09 96.65 96.53 97.74
3 74.90 79.40 79.78 79.40 77.90 79.40 79.78 80.15*
4 92.08 95.05* 95.05* 95.05* 93.07 95.05* 94.06 94.06
5 84.93 86.24 86.09 86.81 86.81 86.96* 85.65 85.94
6 87.42 86.16 87.48* 86.94 87.42 87.20 86.92 87.26
7 53.22 55.53 55.53 55.53 54.58 45.96 55.53 56.21*
8 96.32 95.86 96.32 96.32 94.94 96.78* 96.32 96.32
9 75.94 76.82 77.04 76.92 76.76 77.04 77.16 77.22*
10 75.08 77.40 77.82 77.92* 77.30 76.58 77.82 77.82

Ave. 83.30 84.06 84.78 84.71 83.67 83.88 84.70 84.99
W/T/L 1/1/8 2/0/8 3/2/5 3/2/5 2/0/8 3/1/6 0/4/6
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Table 7. Accuracy on selected features using SVM.

No.
SVM

Unselected GA SU Relief CFS MRMR CMIM CMIFSI

1 94.44 97.85 97.22 98.89 95.56 98.89 98.33 99.40*
2 94.91 95.03 95.68 97.80* 94.87 96.21 95.03 96.94
3 79.78 82.57 83.70 83.33 81.48 82.22 82.59 84.81*
4 93.07 97.27 94.54 96.36 88.18 97.27 98.18* 97.27
5 85.51 87.79 88.10 87.82 88.50 87.39 87.10 88.55*
6 95.11* 88.28 90.78 88.39 88.28 89.44 88.00 88.00
7 51.28 53.85 54.32 53.85 54.79 50.81 54.46 55.34*
8 96.09 94.31 95.90 95.45 93.86 96.59 96.59 97.27*
9 84.08 85.59 86.22 85.70 85.20 86.12 86.56* 86.24
10 86.02 86.12 86.18 86.12 85.50 86.42* 85.82 86.18

Ave. 86.03 86.87 87.26 87.37 85.62 87.14 87.27 88.00
W/T/L 1/0/9 1/1/8 1/1/8 1/0/9 1/0/9 2/1/7 2/2/6

Table 8. Confidence intervals on selected features using C4.5.

No.
C4.5

Unselected GA SU Relief CFS MRMR CMIM CMIFSI

1 [93.41,94.35] [92.04,92.96] [95.73,96.70] [93.50,94.46] [93.20,94.16] [96.77,97.70] [96.53,97.70] [96.84,97.86]
2 [98.62,99.58] [94.92,95.81] [95.95,97.00] [97.55,98.50] [93.49,94.36] [95.59,96.62] [95.81,96.76] [97.68,98.66]
3 [74.45,75.44] [78.76,79.71] [79.84,80.90] [79.10,80.08] [77.59,78.66] [78.78,79.80] [77.96,79.80] [79.68,80.65]
4 [91.92,92.86] [94.48,95.46] [94.55,95.55] [94.68,95.59] [92.53,93.52] [94.19,95.23] [93.58,94.61] [93.56,94.51]
5 [84.03,85.05] [85.80,86.73] [85,58,86.40] [86.50,87.55] [86.04,87.17] [86.84,87.72] [85.13,86.10] [85.14,86.00]
6 [86.87,87.73] [85.57,86.60] [87.20,88.09] [86.40,87.49] [87.05,87.92] [86.71,87.74] [86.53,87.44] [86.36,87.40]
7 [52.47,53.93] [54.29,55.75] [55.06,56.35] [55.13,56.60] [53.82,55.66] [45.45,46.71] [53.85,55.38] [55.34,56.33]
8 [96.32,96.74] [95.56,96.37] [95.81,96.72] [95.56,96.38] [94.08,94.87] [96.16,96.95] [96.06,96.87] [96.16,97.05]
9 [75.19,76.16] [76.63,77.52] [76.67,77.56] [76.58,77.51] [76.33,77.30] [76.51,77.47] [76.45,77.31] [77.09,78.09]

10 [74.58,75.58] [77.01,77.97] [76.92,77.70] [77.86,78.77] [76.97,77.86] [75.96,76,91] [77.10,78.06] [77.27,78.15]

Table 9. Confidence intervals on selected features using SVM.

No.
SVM

Unselected GA SU Relief CFS MRMR CMIM CMIFSI

1 [93.95,94.87] [97.71,98.52] [96.80,97.64] [98.59,99.35] [95.14,95.95] [98.48,99.27] [97.61,98.36] [98.47,99.52]
2 [94.40,95.27] [94.81,95.60] [95.14,95.92] [97.50,98.32] [94.22,94.96] [95.35,96.23] [94.46,95.31] [96.83,97.60]
3 [78.68,79.49] [82.39,83.31] [83.05,83.84] [82.94,83.73] [80.81,81.55] [81.98,82.88] [82.50,83.39] [84.32,85.13]
4 [92.38,93.33] [96.71,97.42] [94.31,95.20] [95.56,96.35] [87.56,88.47] [96.77,97.61] [96.78,98.55] [96.88,97.77]
5 [85.26,86.08] [87.52,88.27] [87,58,88.46] [87.01,87.85] [88.22,89.14] [86.77,87.52] [86.49,87.38] [88.56,89.40]
6 [94.68,95.60] [87.69,88.44] [90.39,91.22] [87.87,88.77] [87.88,88.65] [89.07,89.98] [87.66,88.46] [87.20,88.03]
7 [51.24,52.02] [53.41,54.22] [53.74,54.59] [53.63,54.46] [54.34,55.17] [50.53,51.38] [54.02,54.79] [55.18,55.98]
8 [95.82,96.60] [93.64,94.47] [95.34,96.21] [95.30,96.18] [93.60,94.38] [96.13,96.97] [96.37,97.23] [96.53,97.28]
9 [83.79,84.59] [85.13,86.00] [85.43,86.40] [85.06,85.80] [84.89,85.80] [85.77,86.63] [86.18,86.98] [86.10,86.90]

10 [85.69,86.58] [86.33,87.13] [86.68,87.60] [87.45,88.21] [84.86,85.69] [86.94,87.77] [86.80,87.62] [87.71,88.56]

The results in Tables 6 and 7 show that CMIFSI tends to outperform other feature selection
algorithms on these ten benchmark datasets, regardless of whether C4.5 or SVM is used. The proposed
method gets the highest classification accuracy on five datasets of ten. The average classification
accuracies of CMIFSI are higher than others in both tables. From the view of “W/T/L”, CMIFSI is
also relatively superior to other selectors. More specifically, CMIFSI obtains 5 maximal classification
accuracies (denoted by bold value) over ten datasets whether use C4.5 or SVM.

CMIFSI and CMIM are similar to some extent, since they apply the same method to evaluate
feature redundancy, except that the feature interaction is ignored by CMIM. Actually, CMIFSI could be
regarded as a modification to the original CMIM. Therefore, it’s worth comparing these two algorithms
to verify whether the modification to CMIM is worthwhile. The results in Tables 6 and 7 show that
CMIFSI outperforms CMIM in almost all of the datasets. In contrast, MRMR, which uses a different
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way to evaluate feature redundancy, achieves higher classification accuracies than CMIFSI in some
cases, even though its average accuracy is lower than CMIM and CMIFSI in both tables.

Apart from comparison among feature selectors, it’s interesting to find that for some cases such
as the 6th dataset using C4.5 and SVM, the accuracies based on feature selection tend to be lower
than the ones based on the original features. This doesn’t mean that feature selection deteriorated the
classification performance. Actually it mainly resulted from a limitation in this experiment. Since we
restricted the maximal number of features selected to 20, when the optimal feature subset consisted of
more than 20 features, feature selector resulted in poor performance.

To further evaluate the effectiveness of our new algorithm, another experiment was conducted to
compare different feature ranking algorithms (GA, SU, Relief, MRMR, CMIM and CMIFSI) by adding
features for learning one by one in the order that the features are ranked. This experiment was applied
to two datasets with more than 20 features (i.e., kr-vs-kp and waveform). These two datasets with
different number of selected features were tested on both C4.5 and SVM, and the average classification
accuracies of these features are shown in Figure 2.
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redundancy and interaction. A similar result was obtained by reference [27] on this dataset and this
may be due to the properties inherent to this dataset. For other selectors which are all based on
information metric, CMIFSI achieves the best performance, which is comparable to Relief to some
extent. And the superiority of CMIFSI increases as more features are added for learning. For dataset
“waveform” (shown in Figure 2b), CMIFSI outperforms other selectors in most cases. For instance,
all plots of CMIFSI are higher than others when feature number is less than ten especially in the number
of 9. As more features are added, all selectors tend to perform comparably. It is worth noting that
with the increase of the number of features, it more sources may needed for calculation as part of the
process of prediction.

7. Discussion and Conclusions

In this paper, several feature selection algorithms based on information metric were reviewed in
the framework of a general evaluation criterion. Then feature interaction was introduced and some
new definitions were proposed to better analyze feature relationships. The state-of-the art methods like
CMIM based on conditional mutual information are not rigorous enough to select features, because
they don’t consider the relationship between features beyond relevance and redundancy. To address
the drawback that most of these traditional feature selection methods ignore feature interaction, a new
algorithm CMIFSI based on conditional mutual information was proposed to take interaction into
consideration. The main idea of CMIFSI is to penalize feature redundancy and compensate feature
interaction in the evaluation criterion. Experiments were conducted to compare CMIFSI with other
6 up-to-data feature selection algorithms on both synthetic and benchmark datasets, and the results
showed that CMIFSI works well and outperforms other algorithms in most cases. Many features are
related to each other, so if we only select features by considering relevant or redundant features while
ignoring feature interactions, some feature interactions may cause bad performance on the results.
Therefore, the methods that consider feature interaction perform better on some datasets than the
methods that do not. Based on the mutual information methods, we proposed exploiting feature
interaction to capture more information, making the classifier more efficient for prediction.

Further work is still needed to improve the performance stability of this new algorithm.
Furthermore, while CMIFSI adopts an approximation method to estimate feature redundancy and
interaction, other new methods are called for to better handle feature interaction. It is still a challenging
task to deal with feature interaction.
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