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Abstract: The existence of a homogeneous geodesic in homogeneous Finsler manifolds was positively
answered in previous papers. However, the result is not optimal. In the present paper, this result is
refined and the existence of at least two homogeneous geodesics in any homogeneous Finsler manifold
is proved. In a previous paper, examples of Randers metrics which admit just two homogeneous
geodesics were constructed, which shows that the present result is the best possible.
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1. Introduction

Homogeneous spaces are a natural generalization of symmetric spaces and they keep many of
their nice properties. One of them is the existence of a transitive group of transformations, which are
sometimes called symmetries. The importance of geodesic curves is well known in mathematics and
also in physics and homogeneous geodesics are, moreover, orbits of these symmetries. In physics,
they are related with relative equilibria. In Riemannian geometry, homogeneous geodesics were
studied by many authors and many results were obtained, see the recent survey paper [1] by the author.
In recent years, homogeneous geodesics attained interest in Finsler geometry. In the present paper,
we shall focus on the existence of homogeneous geodesics in homogeneous Finsler manifolds and on
an interesting phenomenon related with nonreversibility of general Finsler metrics and consequent
nonreversibility of homogeneous geodesics.

The existence of at least one homogeneous geodesic in arbitrary homogeneous Riemannian
manifold was proved by O. Kowalski and J. Szenthe in [2]. In the papers [3,4], it was proved that
this result is optimal, namely, examples of homogeneous Riemannian metrics on solvable Lie groups
were constructed which admit just one homogeneous geodesic through any point. Generalization
of this existence result to pseudo-Riemannian geometry was proved by the author using a different
approach in the broader context of homogeneous affine manifolds in [5]. This affine approach was used
by the author also in [6] to prove that an even-dimensional Lorentzian manifold admits a light-like
homogeneous geodesic.

Generalization of this existence result to Finsler geometry was proved in the series of papers [7] by
Z. Yan and S. Deng for Randers metrics, [8] by the author for odd-dimensional Finsler metrics, [9] by
the author for Berwald or reversible Finsler metrics, [10] by Z. Yan and L. Huang in general. In this
last paper, an original approach by O. Kowalski and J. Szenthe is modified and a purely Finslerian
construction is used. However, due to the nonreversibility of general Finsler metrics, it was conjectured
by the author in [11] that the result and its proofs in the nonreversible situation are not optimal.
In comparison with Riemannian geometry, the situation is rather delicate. In the context of Finsler
geometry, the trajectory of the unique homogeneous geodesic in a Riemannian manifold should be
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regarded as two geodesics—they have the same trajectory, their initial vectors are X and −X and they
have opposite parametrizations. For a general homogeneous Finsler manifold, the initial vectors of the
two homogeneous geodesics may be non-opposite. In the paper [11], examples of invariant Randers
metrics which admit just two homogeneous geodesics were constructed. The initial vectors of these
geodesics are X + Y and −X + Y, for certain vectors X, Y ∈ Tp M.

In the present paper, the mentioned proofs are revised and refined. The complete and selfcontained
proof of the existence of two homogeneous geodesics through an arbitrary point in arbitrary
homogeneous Finsler manifold is given. Some constructions from [2,10,12] are used.

2. Basic Settings

A Minkowski norm on the vector space V is a nonnegative function F : V→ R which is smooth
on V \ {0}, positively homogeneous (F(λy) = λF(y) for any λ > 0) and whose Hessian gij = ( 1

2 F2)yiyj

is positively definite on V \ {0}. Variables (yi) are the components of a vector y ∈ V with respect to
a basis B of V and putting yi to a subscript refers to the partial derivative. The pair (V, F) is called a
Minkowski space. The tensor gy whose components are gij(y) is the fundamental tensor. We recall the
well known formulas

gy(y, u) =
1
2

dF2(y + su)
ds

∣∣
s=0, ∀y, u ∈ V,

gy(y, y) = F2(y), ∀y ∈ V. (1)

A Finsler metric on a differentiable manifold M is a function F on TM which is differentiable on
TM \ {0} and such that its restriction to any tangent space Tx M is a Minkowski norm. The pair (M, F)
is called a Finsler manifold. On a Finsler manifold, functions gij depend differentiably on x ∈ M and
on o 6= y ∈ Tx M.

Let M be a Finsler manifold (M, F). If some connected Lie group G acts transitively on M by
isometries, then M is called a homogeneous manifold. We remark that a homogeneous manifold
(M, F) may admit more presentations as a homogeneous space in the form G/H, corresponding to
various transitive isometry groups.

Homogeneous manifold M can be identified with the homogeneous space G/H. Here H is
the isotropy group of the origin p ∈ M. A homogeneous Finsler space (G/H, F) is a reductive
homogeneous space in the following sense: Denote by g and h the Lie algebras of the groups G and
H, respectively, and consider the representation Ad: H × g → g of H on g. There exists a reductive
decomposition g = m+ h where m ⊂ g is a vector subspace with the property Ad(H)(m) ⊂ m. For a
fixed reductive decomposition g = m+ h it is natural to identify m ⊂ g = TeG with the tangent
space Tp M via the projection π : G → G/H = M. Using this identification, from the Minkovski
norm and its fundamental tensor on Tp M, we obtain the Ad(H)-invariant Minkowski norm and the
Ad(H)-invariant fundamental tensor on m.

We further recall the slit tangent bundle TM0, which is defined as TM0 = TM \ {0}. Using the
restriction of the projection π : TM→ M to TM0, we construct the pullback vector bundle π∗TM over
TM0. The Chern connection is the unique linear connection on π∗TM which is torsion free and almost
g-compatible. See some monograph, for example [13] by D. Bao, S.-S. Chern and Z. Shen or [14] by
S. Deng for details. Using the Chern connection, the derivative along a curve γ(t) can be defined.
A regular differentiable curve γ with tangent vector field T is a geodesic if it holds DT(

T
F(T) ) = 0.

In particular, for a geodesic of constant speed it holds DTT = 0.
A geodesic γ(s) through the point p is homogeneous if it is an orbit of a one-parameter group of

isometries. Explicitly, if there exists a nonzero vector X ∈ g such that γ(t) = exp(tX)(p) for all t ∈ R.
Such a vector X is called a geodesic vector. Geodesic vectors are characterized by the geodesic lemma,
proved in Riemannian geometry by O. Kowalski and L. Vanhecke in [15] and generalized to Finsler
geometry by D. Latifi in [16].
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Lemma 1 ( [16]). Let (G/H, F) be a homogeneous Finsler space with a reductive decomposition g = m+ h.
A nonzero vector y ∈ g is geodesic if and only if it holds

gym(ym, [y, u]m) = 0 ∀u ∈ m,

where the subscript m indicates the projection of a vector from g to m.

3. The Main Result

Theorem 1. Let (M, F) be a homogeneous Finsler manifold. There exist at least two homogeneous geodesics
through arbitrary point p ∈ M.

Proof. Let G be a transitive isometry group of M and let H be the isotropy group of a fixed point
p ∈ M. We express M as the homogeneous space M = G/H. Let K be the Killing form on G and
let Rad(K) be the null space of K. We choose m = h⊥ with respect to K. The decomposition in
Ad(H)-invariant and the Finsler metric induces the invariant Minkowski norm and its fundamental
tensor on m. We shall denote these again by F and g. The Killing form K is negatively semidefinite on
g and negatively definite on h, because H is compact. Hence, Rad(K) ⊆ m. We shall distinguish the
two cases:

(Case 1) Rad(K) = m: we chose a hyperplane W ⊂ m such that [m,m] ⊂ W. We used the
construction and notation from [12] to show that there exist two vectors n1, n2 ∈ m such that

gni (ni, w) = 0 ∀w ∈W, i = 1, 2.

Consider an arbitrary fixed vector v /∈W. The function φ(w) := F(v− w) defined on W attains
its minimum m at a unique point w0 ∈W. We put

n1 =
v− w0

m
.

It can be proved that the definition of the vector n1 does not depend on the choice of the vector v
on the same side of the hyperplane W. If we start with a vector v on the other side of the hyperplane
W, the same construction leads to the vector n2 on the other side of the hyperplane W and it is in
general not opposite to n1, unless F is reversible. We shall now write n for any of the two vectors n1, n2.
For an arbitrary fixed vector w ∈W, the equality

F2(n + tw) =
1

m2 F2(v− w0 + tmw) =
1

m2 φ2(w0 − tmw),

shows that the function F2(n + tw) attains its minimum at t = 0 and hence, using Formula (1), it holds

0 =
1
2

d
dt

F2(n + tw)
∣∣
t=0 = gn(n, w), ∀w ∈W,

which is the desired property. In particular, it is satisfied for any w ∈ [m,m] ⊂ W. We obtain
immediately, using Lemma 1, that n1 and n2 are geodesic vectors.

(Case 2) Rad(K) ( m: we started with the construction and notation as in [10], up to a sign.
We shall investigate the function

f (z) = −K(z, z)
F2(z)

,
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which is nonnegative on m \ {0}. This function is homogeneous and it is reasonable to restrict the
definition domain to the indicatrix

IF = {z ∈ m; F(z) = 1}.

The function f (z) attains its maximum λ1 at y1 ∈ IF. To find the second vector is more
delicate. Since the group H is compact and Rad(K) is an Ad(H)-invariant subspace, there exists
an Ad(H)-invariant K-orthogonal complement W of Rad(K) in m. Each vector z ∈ m can be uniquely
decomposed as z = z1 + z2, where z1 ∈ Rad(K) and z2 ∈W. Denote k = dim(Rad(K)) and let

Dk = {z1 ∈ Rad(K), F(z1) < 1}

be the open unit disc in Rad(K). For each fixed z1 ∈ Dk, consider the set

Sz1 = {z2 ∈W, F(z1 + z2) = 1},

which has the topology of a sphere. From now on, if not stated otherwise, z1 + z2 means z1 ∈ Dk,
z2 ∈ Sz1 and z1 + z2 ∈ IF. Because −K > 0 on W, the function f (z1 + z2) is positive for any z1 ∈ Dk
and limz1→∂Dk

f (z1 + z2) = 0. For fixed z1 and with definition domain Sz1 , f (z1 + z2) attains its
minimum ε(z1) > 0 at some z̄2(z1) ∈ Sz1 . For each z1 ∈ Dk, we choose one such z̄2 and consider the
mapping ϕ : Dk → IF, z1 7→ z1 + z̄2. The function f (ϕ(z1)) = ε(z1) is smooth on Dk and it attains
its maximum λ2 at z̄1. Here z̄1 can be chosen and the map ϕ can be defined in a way that there is a
neighbourhood U ⊂ Dk of z̄1 such that the mapping ϕ

∣∣
U is smooth. We put y2 = ϕ(z̄1) ∈ IF.

It remains to show that y1 and y2 are geodesic vectors. As to y1, the function

f̃ (z) = K(z, z) + λ1F2(z)

attains its minimum 0 at y1. For any fixed w ∈ m, the function f̂ (t) = f̃ (y1 + tw) attains its minimum
0 at t = 0 and hence f̂ ′(0) = 0. Using Formula (1), it follows that

−K(y1, w) = λ1 · gy1(y1, w), ∀w ∈ m

and the formula

gy1(y1, [y1, z]m) =
−1
λ

K(y1, [y1, z]m) =
−1
λ

K([y1, y1], z) = 0, ∀z ∈ m

shows that y1 is a geodesic vector. As to y2, we have to modify this approach. The function

f̃ (z) = K(z, z) + λ2F2(z)

attains value 0 at y2. For fixed u ∈ W, the function f̂ (t) = f̃ (y2 + tu) attains its maximum 0 at t = 0
and hence f̂ ′(0) = 0. It follows that

−K(y2, u) = λ2 · gy2(y2, u), ∀u ∈W. (2)

Now, let v ∈ Rad(K) be arbitrary fixed vector. Recall that y2 = z1 + z2. Consider the line z1 + tv
in Rad(K), the curve c(t) = ϕ(z1 + tv) in IF and denote by v̄ the tangent vector to c(t) at t = 0.
The function f̂ (t) = f̃ (c(t)) attains its minimum 0 at t = 0 and hence f̂ ′(0) = 0. It follows that

−K(y2, v̄) = λ2 · gy2(y2, v̄). (3)
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Consider a basis {ui} of W, a basis {vj} of Rad(K) and construct vectors v̄j as above. It is easy to
see that {ui, v̄j} is a basis of m and hence Formulas (2) and (3) for each vector v̄j imply

−K(y2, w) = λ2 · gy2(y2, w), ∀w ∈ m.

We finish the proof with the formula

gy2(y2, [y2, z]m) =
−1
λ2

K(y2, [y2, z]m) =
−1
λ2

K([y2, y2], z) = 0, ∀z ∈ m,

which shows that y2 is a geodesic vector.
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