
symmetryS S

Article

Some Identities of Ordinary and Degenerate
Bernoulli Numbers and Polynomials

Dmitry V. Dolgy 1, Dae San Kim 2 , Jongkyum Kwon 3,* and Taekyun Kim 4

1 Hanrimwon, Kwangwoon University, Seoul 139-701, Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, Korea
3 Department of Mathematics Education and ERI, Gyeongsang National University, Jinju,

Gyeongsangnamdo 52828, Korea
4 Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea
* Correspondence: mathkjk26@gnu.ac.kr

Received: 28 May 2019; Accepted: 26 June 2019; Published: 1 July 2019
����������
�������

Abstract: In this paper, we investigate some identities on Bernoulli numbers and polynomials
and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant
integrals on Zp. In particular, we derive various expressions for the polynomials associated with
integer power sums, called integer power sum polynomials and also for their degenerate versions.
Further, we compute the expectations of an infinite family of random variables which involve the
degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.
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1. Introduction

We begin this section by reviewing some known facts. In more detail, we recall the integral
equation for the p-adic invariant integral of a uniformly differentiable function on Zp and its
generalizations, the expression in terms of some values of Bernoulli polynomials for the integer power
sums, and the p-adic integral representaions of Bernoulli polynomials and of their generating functions.

Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic integers, the field of p-adic
rational numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm is
normalized as |p|p = 1

p . Let f be a uniformly differentiable function on Zp. Then the p-adic invariant
integral of f (also called the Volkenborn integral of f ) on Zp is defined by

I0( f ) =
∫
Zp

f (x)dµ0(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x)

= lim
N→∞

pN−1

∑
x=0

f (x)µ0(x + pNZp).

(1)

Here we note that µ0(x + pNZp) =
1

pN is a distribution but not a measure. The existence of such
integrals for uniformly differentiable functions on Zp is detailed in [1,2]. It can be seen from (1) that

I0( f1) = I0( f ) + f ′(0), (2)

where f1(x) = f (x + 1), and f ′(0) = d f (x)
dx |x=0, (see [1,2]).
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In general, by induction and with fn(x) = f (x + n), we can show that

I0( fn) = I0( f ) +
n−1

∑
k=0

f ′(k), (n ∈ N), (3)

As is well known, the Bernoulli polynomials are given by the generating function (see [3–5])

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (4)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers.
From (4), we note that (see [3–5])

Bn(x) =
n

∑
l=0

(
n
l

)
Bl xn−l , (n ≥ 0), (5)

and

B0 = 1,
n

∑
k=0

(
n
k

)
Bk − Bn =

{
1, if n = 1,
0, if n > 1,

Let (see [6–13])

Sp(n) =
n

∑
k=1

kp, (n, p ∈ N). (6)

The generating function of Sp(n) is given by

∞

∑
p=0

Sp(n)
tp

p!
=

n

∑
k=1

ekt =
1
t

(
t

et − 1

(
e(n+1)t − et

))

=
∞

∑
p=0

(
Bp+1(n + 1)− Bp+1(1)

p + 1

)
tp

p!
.

(7)

Thus, by (7), we get

Sp(n) =
Bp+1(n + 1)− Bp+1(1)

p + 1
, (n, p ∈ N). (8)

From (2), we have ∫
Zp

e(x+y)tdµ0(y) =
t

et − 1
ext =

∞

∑
n=0

Bn(x)
tn

n!
. (9)

By (9), we get (see [11,12]) ∫
Zp
(x + y)ndµ0(y) = Bn(x), (n ≥ 0), (10)

From (8) and (10), we can derive the following equation.

∫
Zp
(x + k + 1)p+1dµ0(x)−

∫
Zp

xp+1dµ0(x) = (p + 1)
k

∑
n=1

np, (p ∈ N). (11)

Thus, by (6) and (11), and for p ∈ N, we get

Sp(k) =
1

p + 1

{ ∫
Zp
(x + k + 1)p+1dµ0(x)−

∫
Zp

xp+1dµ0(x)
}

. (12)
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The purpose of this paper is to investigate some identities on Bernoulli numbers and polynomials
and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant
integrals on Zp.

The outline of this paper is as in the following. After reviewing well- known necessary results
in Section 1, we will derive some identities on Bernoulli polynomials and numbers in Section 2.
In particular, we will introduce the integer power sum polynomials and derive several expressions for
them. In Section 3, we will obtain some identities on degenerate Bernoulli numbers and polynomials.
Especially, we will introduce the degenerate integer power sum polynomials, a degenerate version
of the integer power sum polynomials and deduce various representations of them. In the final
Section 4, we will consider an infinite family of random variables and compute their expectations to
see that they involve the degenerate Stirling polynomials of the second and some value of higher-order
Bernoulli polynomials.

2. Some Identities of Bernoulli Numbers and Polynomials

For p ∈ N, we observe that

(j + 1)p+1 − jp+1 =
p+1

∑
i=0

(
p + 1

i

)
ji − jp+1

= (p + 1)jp +
p−1

∑
i=1

(
p + 1

i

)
ji + 1.

(13)

Thus, we get

(n + 1)p+1 =
n

∑
j=0

{
(j + 1)p+1 − jp+1

}
= (p + 1)

n

∑
j=0

jp +
p−1

∑
i=1

(
p + 1

i

) n

∑
j=0

ji + (n + 1). (14)

From (14), we have

Sp(n) =
1

p + 1

{
(n + 1)p+1 − (n + 1)−

p−1

∑
i=1

(
p + 1

i

)
Si(n)

}
. (15)

Therefore, by (15), we obtain the following lemma.

Lemma 1. For n, p ∈ N, we have∫
Zp
(x + n + 1)p+1dµ0(x)−

∫
Zp

xp+1dµ0(x)

=(n + 1)p+1 − (n + 1)−
p−1

∑
i=1

(
p + 1

i

)
1

i + 1

×
{ ∫

Zp
(x + n + 1)i+1dµ0(x)−

∫
Zp

xi+1dµ0(x)
}

.

(16)

From Lemma 1, we note the following.

Corollary 1. For n, p ∈ N, we have

Bp+1(n + 1)− Bp+1 = (n + 1)p+1 − (n + 1)−
p−1

∑
i=1

(
p + 1

i

)
1

i + 1

(
Bi+1(n + 1)− Bi+1

)
. (17)
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For n ∈ N0 = N∪ {0}, by (1), we get

∫
Zp

(
y + 1− x

)n

dµ0(y) = (−1)n
∫
Zp
(y + x)ndµ0(y). (18)

From (18), we note that
Bn(1− x) = (−1)nBn(x), (n ≥ 0). (19)

Now, we observe that, for n ≥ 1,

Bn(2) =
n

∑
l=0

(
n
l

)
Bl(1) = B0 +

(
n
1

)
B1(1) +

n

∑
l=2

(
n
l

)
Bl(1)

= B0 +

(
n
1

)
B1 + n +

n

∑
l=2

(
n
l

)
Bl = n +

n

∑
l=0

(
n
l

)
Bl

= n + Bn(1).

(20)

Thus we have completed the proof for the next lemma.

Lemma 2. For any n ∈ N0, the following identity is valid:

Bn(2) = n + Bn + δn,1, (21)

where δn,1 is the Kronecker’s delta.
For any n, m ∈ N with n, m ≥ 2, we have

∫
Zp

xm(−1 + x)ndµ0(x) =
n

∑
i=0

(
n
i

)
(−1)n−i

∫
Zp

xm+idµ0(x)

=
n

∑
i=0

(
n
i

)
(−1)n−iBm+i

= (−1)n−m
n

∑
i=0

(
n
i

)
Bm+i.

(22)

On the other hand,

∫
Zp

xm(x− 1)ndµ0(x) =
m

∑
i=0

(
m
i

) ∫
Zp
(x− 1)n+idµ0(x)

=
m

∑
i=0

(
m
i

)
(−1)n+i

∫
Zp
(x + 2)n+idµ0(x)

=
m

∑
i=0

(
m
i

)
(−1)n+i

(
Bn+i + n + i

)
=

m

∑
i=0

(
m
i

)
(−1)n+iBn+i

=
m

∑
i=0

(
m
i

)
Bn+i.

(23)

Therefore, by (22) and (23), we obtain the following theorem.

Theorem 1. For any m, n ∈ N with m, n ≥ 2, the following symmetric identity holds:

(−1)n
n

∑
i=0

(
n
i

)
Bm+i = (−1)m

m

∑
i=0

(
m
i

)
Bn+i. (24)
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From (5), we note that

Bn(1) =
n

∑
l=0

(
n
l

)
Bl , (n ≥ 0).

For n ≥ 2, we have

Bn = Bn(1) =
n

∑
l=0

(
n
l

)
Bl =

n

∑
l=0

(
n
l

)
Bn−l . (25)

Now, we define the integer power sum polynomials by

Sp(n|x) =
n

∑
k=0

(k + x)p, (n, p ∈ N0). (26)

Note that Sp(n|0) = Sp(n), (n ∈ N0, p ∈ N).
For N ∈ N0, we have

t
N

∑
k=0

e(k+x)t =
∫
Zp

e(N+1+x+y)tdµ0(y)−
∫
Zp

e(x+y)tdµ0(y). (27)

Then it is immediate to see from (27) that we have

N

∑
k=0

e(k+x)t =
∞

∑
n=0

1
n + 1

{ ∫
Zp
(N + 1 + x + y)n+1dµ0(y)−

∫
Zp
(x + y)n+1dµ0(y)

}
tn

n!
. (28)

Now, we see that (28) is equivalent to the next theorem.

Theorem 2. For n, N ∈ N0, we have

Sn(N|x) = 1
n + 1

{
Bn+1(x + N + 1)− Bn+1(x)

}
. (29)

Let4 denote the difference operator given by

4 f (x) = f (x + 1)− f (x). (30)

Then, by (30) and induction, we get

4n f (x) =
n

∑
k=0

(
n
k

)
(−1)n−k f (x + k), (n ≥ 0). (31)
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Now, we can deduce the Equation (32) from (27) as in the following:

N

∑
k=0

e(k+x)t =
1
t

ext(e(N+1)t − 1)
∫
Zp

eytdµ0(y)

=
1

et − 1

( N+1

∑
m=0

(
N + 1

m

)
(et − 1)m − 1

)
ext

=
1

et − 1

N+1

∑
m=1

(
N + 1

m

)
(et − 1)mext

=
N

∑
m=0

(
N + 1
m + 1

)
(et − 1)mext

=
∞

∑
n=0

{ N

∑
m=0

(
N + 1
m + 1

) m

∑
k=0

(
m
k

)
(−1)m−k(k + x)n

}
tn

n!

=
∞

∑
n=0

{ N

∑
k=0

N

∑
m=k

(
N + 1
m + 1

)(
m
k

)
(−1)m−k(k + x)n

}
tn

n!
.

(32)

Therefore, (31) and (32) together yield the next theorem.

Theorem 3. For n, N ≥ 0, we have

Sn(N|x) =
N

∑
m=0

(
N + 1
m + 1

)
4m xn =

N

∑
k=0

(k + x)nT(N, k), (33)

where T(N, k) = ∑N
m=k (

N+1
m+1)(

m
k )(−1)m−k.

In particular, we have

S0(N|x) =
N

∑
k=0

T(N, k) = N + 1.

We recall here that the Stirling polynomials of the second kind S2(n, k|x) are given by (see [14])

1
k!
(et − 1)kext =

∞

∑
n=k

S2(n, k|x) tn

n!
. (34)

Note here that S2(n, k|0) = S2(n, k) are Stirling numbers of the second kind. Then, we can show
that, for integers n, m ≥ 0, we have

1
m!
4m xn =

{
S2(n, m|x), if n ≥ m,
0, if n < m.

(35)

We can see this, for example, by taking λ→ 0 in (51).

Remark 1. Combing (33) and (35), we obtain

Sn(N|x) =
min{N,n}

∑
m=0

(
N + 1
m + 1

)
m!S2(n, m|x).
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For any m, k ∈ N with m− k ≥ 2, we observe that∫
Zp

xm−kdµ0(x) =
∫
Zp
(x + 1)m−kdµ0(x)

=
m−k

∑
j=0

(
m− k

m− k− j

) ∫
Zp

xm−k−jdµ0(x)

=
m

∑
j=k

(
m− k
m− j

) ∫
Zp

xm−jdµ0(x)

=
1
(m

k )

m

∑
j=k

(
m
j

)(
j
k

) ∫
Zp

xm−jdµ0(x).

(36)

Thus we have shown the following result.

Theorem 4. For any m, k ∈ N with m− k ≥ 2, the following holds true:(
m
k

) ∫
Zp

xm−kdµ0(x) =
m

∑
j=k

(
m
j

)(
j
k

) ∫
Zp

xm−jdµ0(x). (37)

From (10) and (37), we derive the following corollary.

Corollary 2. For m, k ∈ N with m− k ≥ 2, we have(
m
k

)
Bm−k =

m

∑
j=k

(
m
j

)(
j
k

)
Bm−j. (38)

3. Some Identities of Degenerate Bernoulli Numbers and Polynomials

In this section, we assume that 0 6= λ ∈ Cp with |λ|p < p−
1

p−1 . The degenerate exponential
function is defined as (see [3,13])

ex
λ(t) = (1 + λt)

x
λ .

Note that limλ→0 ex
λ(t) = ext. In addition, we denote (1 + λt)

1
λ = e1

λ(t) simply by eλ(t).
As is well known, the degenerate Bernoulli polynomials are defined by Carlitz as

t
eλ(t)− 1

ex
λ(t) =

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn,λ(x)
tn

n!
. (39)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers, (see [3,15]).
From (39), we note that (see [3])

βn,λ(x) =
n

∑
l=0

(
n
l

)
(x)n−l,λβl,λ, (40)

where (x)0,λ = 1, (x)n,λ = x(x− λ) · · · (x− (n− 1)λ), (n ≥ 1).
By (39) and (40), we get

βn,λ(1)− βn,λ = δn,1. (41)
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Now, we observe that

N

∑
k=0

ek+x
λ (t) =

eN+1
λ (t)− 1
eλ(t)− 1

ex
λ(t) =

1
t

{
t

eλ(t)− 1

(
eN+1+x

λ (t)− ex
λ(t)

)}
=

1
t

∞

∑
n=0

(
βn,λ(N + 1 + x)− βn,λ(x)

)
tn

n!

=
∞

∑
n=0

(
βn+1,λ(N + 1 + x)− βn+1,λ(x)

n + 1

)
tn

n!
, (n ∈ N0).

(42)

On the other hand,
N

∑
k=0

ek+x
λ (t) =

∞

∑
n=0

( N

∑
k=0

(k + x)n,λ

)
tn

n!
. (43)

Let us define a degenerate version of the integer power sum polynomials, called the degenerate
integer power sum polynomials, by

Sp,λ(n|x) =
n

∑
k=0

(k + x)p,λ, (n ≥ 0). (44)

Note that limλ→0 Sp,λ(n|x) = Sp(n|x), (n ≥ 0).
Therefore, by (42) and (43), we obtain the following theorem.

Theorem 5. For n, N ∈ N0, we have

Sn,λ(N|x) = 1
n + 1

(
βn+1,λ(N + 1 + x)− βn+1,λ(x)

)
. (45)

Now, we observe that

N

∑
k=0

ex+k
λ (t) =

1
eλ(t)− 1

(
eN+1

λ (t)− 1
)

ex
λ(t)

=
1

eλ(t)− 1

(
(eλ(t)− 1 + 1)N+1 − 1

)
ex

λ(t)

=
1

eλ(t)− 1

N+1

∑
m=1

(
N + 1

m

)
(eλ(t)− 1)mex

λ(t)

=
N

∑
m=0

(
N + 1
m + 1

)
(eλ(t)− 1)mex

λ(t)

=
∞

∑
n=0

( N

∑
m=0

(
N + 1
m + 1

) m

∑
k=0

(
m
k

)
(−1)m−k(k + x)n,λ

)
tn

n!
.

=
∞

∑
n=0

( N

∑
k=0

N

∑
m=k

(
N + 1
m + 1

)(
m
k

)
(−1)m−k(k + x)n,λ

)
tn

n!
.

(46)

Therefore, (31) and (46) together give the next result.

Theorem 6. For any n, N ∈ N0, the following identity holds:

Sn,λ(N|x) =
N

∑
m=0

(
N + 1
m + 1

)
4m (x)n,λ =

N

∑
k=0

(k + x)n,λT(N, k), (47)
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where T(N, k) = ∑N
m=k (

N+1
m+1)(

m
k )(−1)m−k.

As is known, the degenerate Stirling polynomials of the second kind are defined by Kim as
(see [14])

(x + y)n,λ =
n

∑
k=0

S2,λ(n, k|x)(y)k, (48)

where (x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1).
From (48), we can derive the generating function for S2,λ(n, k|x), (n, k ≥ 0), as follows:

1
k!
(eλ(t)− 1)kex

λ(t) =
∞

∑
n=k

S2,λ(n, k|x) tn

n!
. (49)

When x = 0, S2,λ(n, k|0) = S2,λ(n, k) are called the degenerate Stirling numbers of the
second kind.

By (49), we get

∞

∑
n=m

S2,λ(n, m|x) tn

n!
=

1
m!

(eλ(t)− 1)mex
λ(t)

=
1

m!

m

∑
k=0

(
m
k

)
(−1)m−kek+x

λ (t)

=
∞

∑
n=0

(
1

m!

m

∑
k=0

(
m
k

)
(−1)m−k(x + k)n,λ

)
tn

n!

=
∞

∑
n=0

(
1

m!
4m (x)n,λ

)
tn

n!
.

(50)

Now, comparison of the coefficients on both sides of (50) yield following theorem.

Theorem 7. For any n, m ≥ 0, the following identity holds:

1
m!
4m (x)n,λ =

{
S2,λ(n, m|x), if n ≥ m,
0, if n < m.

(51)

Remark 2. Combing (47) and (51), we obtain

Sn,λ(N|x) =
min{N,n}

∑
m=0

(
N + 1
m + 1

)
m!S2,λ(n, m|x).

From (30) and proceeding by induction, we have

(1 +4)k f (x) =
k

∑
m=0

(
k
m

)
4m f (x) = f (x + k), (k ≥ 0). (52)

By (52), we get
N

∑
k=0

(x + k)n,λ =
N

∑
k=0

(1 +4)k(x)n,λ. (53)

It is known that Daehee numbers are given by the generating function

log(1 + t)
t

=
∞

∑
n=0

Dn
tn

n!
, (see [1,4,6]). (54)
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From (2), we have

∫
Zp

ex+y
λ (t)dµ0(y) =

1
λ log(1 + λt)

eλ(t)− 1
ex

λ(t)

=
log(1 + λt)

λt
t

eλ(t)− 1
ex

λ(t)

=
∞

∑
l=0

Dl
λltl

l!

∞

∑
m=0

βm,λ(x)
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
λl Dl βn−l,λ(x)

)
tn

n!
.

(55)

From (55), we have

∫
Zp
(x + y)n,λdµ0(y) =

n

∑
l=0

(
n
l

)
λl Dl βn−l,λ(x), (n ≥ 0).

4. Further Remark

A random variable X is a real-valued function defined on a sample space. We say that X is a
continuous random variable if there exists a nonnegative function f , defined on (−∞, ∞), having the
property that for any set B of real numbers (see [16,17])

P{X ∈ B} =
∫

B
f (x)dx. (56)

The function f is called the probability density function of random variable X.
Let X be a uniform random variable on the interval (α, β). Then the probability density function

f of X is given by

f (x) =

{
1

β−α , if α < x < β,
0, otherwise.

(57)

Let X be a continuous random variable with the probability density function f . Then the
expectation of X is defined by

E[X] =
∫ ∞

−∞
x f (x)dx.

For any real-valued function g(x), we have (see [16])

E[g(X)] =
∫ ∞

−∞
g(x) f (x)dx. (58)
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Assume that X1, X2, · · · , Xk are independent uniform random variables on (0, 1). Then we have

E[ex+X1+X2+···+Xk
λ (t)] = ex

λ(t)E[eX1
λ (t)]E[eX2

λ (t)] · · · E[eXk
λ (t)]

= ex
λ(t)

λ

log(1 + λt)
(eλ(t)− 1)× · · · × λ

log(1 + λt)
(eλ(t)− 1)︸ ︷︷ ︸

k−times

=

(
λt

log(1 + λt)

)k k!
tk

1
k!
(eλ(t)− 1)kex

λ(t)

=
k!
tk

∞

∑
l=0

B(l−k+1)
l (1)λl tl

l!

∞

∑
m=k

S2,λ(m, k | x)
tm

m!

=
k!
tk

∞

∑
n=k

( n

∑
m=k

(
n
m

)
S2,λ(m, k | x)B(n−m−k+1)

n−m (1)λn−m
)

tn

n!
,

(59)

where B(α)
n (x) are the Bernoulli polynomials of order α, given by (see [4,7,8])(

t
et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
, (60)

and we used the well-known formula(
t

log(1 + t)

)n

(1 + t)x−1 =
∞

∑
k=0

B(k−n+1)
k (x)

tk

k!
. (61)

From (59), we note that(
n
k

)
E[(x + X1 + X2 + · · ·+ Xk)n−k,λ]

=
n

∑
m=k

(
n
m

)
S2,λ(m, k | x)B(n−m−k+1)

n−m (1)λn−m.
(62)

5. Conclusions

It is well-known and classical that the first n positive integer power sums can be given by an
expression involving some values of Bernoulli polynomials. Here we investigated some identities on
Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials,
which can be deduced from certain p-adic invariant integrals on Zp.

In particular, we introduced the integer power sum polynomials associated with integer power
sums and obtained various expressions of them. Namely, they can be given in terms of Bernoulli
polynomials, difference operators, and of the Stirling polynomials of the second kind. In addition,
we introduced a degenerate version of the integer power sum polynomials, called the degenerate
integer power sum polynomials and were able to find several representations of them. In detail, they
can be represented in terms of Carlitz degenerate Bernoulli polynomials, difference operators, and of
the degenerate Stirling numbers of the second kind.

In the final section, we considered an infinite family of random variables and proved that the
expectations of them are expressed in terms of the degenerate Stirling polynomials of the second and
some value of higher-order Bernoulli polynomials.
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Most of the results in Sections 1 and 2 are reviews of known results, other than that,
we demonstrated the usefulness of the p-adic invariant integrals in the study of integer power sum
polynomials. However, we emphasize that the results in Sections 3 and 4 are new. In particular,
we showed that the degenerate Stirling polynomials of the second kind, introduced as a degenerate
version of the Stirling polynomials of the second kind, appear naturally and meaningfully in the
context of calculations of an infinite family of random variables (see (62)). We also showed that they
appear in an expression of the degenerate integer power sum polynomials (Remark 2) which is a
degenerate version of the integer power sum polynomials (see (26)).

We have witnessed in recent years that studying various degenerate versions of some old and
new polynomials, initiated by Carlitz in the classical papers [3,15], is very productive and promising
(see [3,5,14,15,18,19] and references therein). Lastly, we note that this idea of considering degenerate
versions of some polynomials extended even to transcendental functions like the gamma functions
(see [19]).
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