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Abstract: The main contribution in this paper is to construct an implicit fixed coefficient Block
Backward Differentiation Formulas denoted as A(α)-BBDF with equal intervals for solving stiff
ordinary differential equations (ODEs). To avoid calculating the differentiation coefficients at each
step of the integration, the coefficients of the formulas will be stored, with the intention of optimizing
the performance in terms of precision and computational time. The plots of their A(α) stability region
are provided, and the order of the method is also verified. The necessary conditions for convergence,
such as the consistency and zero stability of the method, are also discussed. The numerical results
clearly showed the efficiency of the method in terms of accuracy and execution time as compared to
other existing methods in the scientific literature.
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1. Introduction

Ordinary Differential Equations (ODEs) are frequently used in much mathematical modelling of
real-world problems. Many of the applications, notably in chemical engineering and control theory,
exhibit a phenomenon known as stiffness (see [1]). As stated by [2], stiff systems are found in the
description of atmospheric phenomena, chemical reactions occurring in living species, chemical kinetics
(e.g., explosions), engineering control systems, electronic circuits, lasers, mechanics and molecular
dynamics. Many factors, such as stability, step size selection, precision, and computer time, should be
taken into account when developing a numerical method for stiff ODEs. The requirement on A-stability
puts a severe limitation on the choice of suitable methods for the solution of stiff ODEs (see [3,4]).
Therefore, a great deal of effort focuses on the development of numerical methods with a larger stability
region with the property of A-stability, so as to cope with the ‘stiffness’ of the differential equations.
The concept of A-stability for initial value problems in ODEs was introduced by [5]. Dahlquist proved
that the trapezoidal method has the highest order (=2) of the global discretization error term and has
the smallest error constant of all linear A-stable multistep methods.

In this paper, we consider general first order ordinary differential equations of the following form:

y′(x) = f (x, y(x)), y(a) = y0, a ≤ x ≤ b (1)
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where y′ = f (x, y) is a real valued function in the interval [a, b], which satisfies the Lipschitz conditions
that assured the existence and uniqueness of the solution to Equation (1). The phenomenon of stiffness
is not precisely defined in the literature. It is most common to define stiffness in terms of the eigenvalues
of the Jacobian matrix. Equation (1) is said to be stiff if the eigenvalues λi(x) of the Jacobian matrix
∂ f /∂y satisfy the following conditions:

i. Real(λi(x)) < 0, i = 1, 2, . . . , n
ii. max

t

∣∣∣Real(λi(x))
∣∣∣� min

t

∣∣∣Real(λi(x))
∣∣∣

The development of multistep block methods for solving Equation (1) has been studied by many
researchers (see [3,5–11]). Recently, numerous works have focused on the modification of various
types of multistep block methods to improve the efficiency in terms of the accuracy of the approximate
solution and the computational time, (see [3,5–11]). Although many block multistep methods have
been introduced in the past, most of these methods are based on Adams formulas for solving the
ODEs, and the focus is specifically on the solution of non-stiff systems of ODEs. For the solution of stiff
ODEs, the challenge is to develop a suitable implicit method with A-stability properties. It is important
to develop an accurate algorithm with good stability properties since it is well known that stability
appears to be the most serious limitation of block methods [12].

Backward Differentiation Formulas (BDFs) have been widely used due to their good stability
properties. Many block methods based on the classical BDFs have been proposed for stiff ODEs.
Among the most popular block methods based on Backward Differentiation Formulas (BDFs) are the
Block Backward Differentiation Formulas (BBDFs) (see [8,11,12]). They proposed an r-point Block
Backward Differentiation Formula (r-BBDF), which was later extended by [13–15]. It was reported that
the block method based on BDF can be very effective in solving stiff ODEs in terms of reducing the
computational time and improving the accuracy of the approximate solution [6–11,13–15]. Motivated
by the fact that the work that was conducted based on BDF is efficient in solving stiff ODEs, our aim is
to construct and perform some modifications to the existing block BDF by extending the method to
produce three approximate solutions at a single iteration.

The paper is organized as follows; in Section 2, we present the derivation of the method, followed
by a discussion on the stability of the method in Section 3. The implementation of the method will be
discussed in Section 4, followed by the numerical results for the new methods in Section 5. Finally,
the conclusions will be presented in Section 6.

2. Derivation of the Method

In this section, the new implicit fixed coefficient Block Backward Differentiation Formulas,
denoted as A(α)-BBDF, are constructed with equal intervals. These block methods will generate three
approximate solutions simultaneously at a single iteration from the values generated in the last block,
as described by [7]. [16] took a similar approach in adjusting the BBDF given in [7] by introducing
future points and the extra parameter ρ. The major setback of the method by [16] is choosing the best
value for the parameter ρ when developing the coefficients of the correctors. Thus, the coefficient for
the new formulas will be computed by choosing a better value for the parameter ρ in order to improve
the stability intervals and also the accuracy of the approximate solution. Moreover, the value of ρ is
chosen from the given interval (−1, 1). A detailed description of the parameter ρ for the solution of
Equation (1) can be found in many publications [16,17].

Assuming that the solution values yn−2, yn−1, and yn, specified as back values, are available,
the new three-point A(α)-BBDF method which defines the next block of approximations yn+1, yn+2,
and yn+3 will be derived. First, we consider the following k-step linear multistep method (LMM) as
defined in [18]:

k∑
j=0

α jyn+ j = h
k∑

j=0

β j fn+ j (2)
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where α j and β j are unknown constants which must be determined, and k is the step number of
the method employed, and also assuming that αk , 0 and that α0 and β0 are not both equal to zero.
The method in Equation (2) is explicit when βk = 0 and implicit otherwise. We have followed the LMM
as defined in Equation (2) by specifying the following conditions, which include the free parameter ρ.
The general form of an implicit method with k equally spaced points for solving Equation (1) can be
expressed as:

k∑
j=0

α j,i yn+ j−2 = hβi( fn+i − ρ fn+i−1), i = 1, 2, 3 (3)

so that the coefficients to be defined in Equation (3) satisfy the condition of A-stability. In Equation (3),
α j,i and βi are the coefficient matrixes of yn and fn that must be computed, and ρ is a free parameter
chosen in the interval (−1, 1), as specified in [16]. From our numerical experiments, ρ = −7/8 is
chosen since it gives good stability properties required for solving stiff ODEs. The value ρ = −7/8 was
successfully substituted into Equation (3). Specifying k = 5, the linear difference operator Li, associated
with the linear multistep method, is given as follows:

Li[y(xn); h] =
5∑

j=0

α j,iyn+ j−2 − hβi

(
fn+i +

7
8

fn+i−1

)
. (4)

Now, we expand Equation (4) to obtain:

Li[y(xn); h] = α0,iyn−2 + α1,iyn−1 + α2,iyn + α3,iyn+1 + α4,iyn+2 + α5,iyn+3

−hβi
(

fn+1 +
7
8 fn+i−1

)
= α0,iy(xn − 2h) +α1,iy(xn − h) + α2,iy(xn) + α3,iy(xn + h) + α4,iy(xn + 2h)

+ α5,iy(xn + 3h) − hβi
(

f (xn + ih) + 7
8 f (xn + (i− 1)h)

)
= α0,iy(xn − 2h) + α1,iy(xn − h) + α2,iy(xn) + α3,iy(xn + h)

+α4,iy(xn + 2h) + α5,iy(xn + 3h)
−hβi

(
f (xn + ih) + 7

8 f (xn + (i− 1)h)
)

(5)

where i = 1, 2, 3. Expanding by the Taylor series about x = xn, we obtain the following:

α j,iy(xn + ( j− 2)h) = α j,i

y(xn) + ( j− 2)hy′(xn) +
(( j− 2)h)2

2!
y′′ (xn) +

(( j− 2)h)3

3!
y′′′ (xn) + . . .

,
βi f (xn + (i− 1)h) = βi

y′(xn) + (i− 1)hy′′ (xn) +
((i− 1)h)2

2!
y′′′ (xn) +

((i− 1)h)3

3!
y(4)(xn) + . . .


βi f (xn + ih) = βi

y′(xn) + ihy′′ (xn) +
(ih)2

2!
y′′′ (xn) +

(ih)3

3!
y(4)(xn) + . . .

.
Then, collecting the terms in yn and its derivatives, we obtain the following equation:

Li[y(xn); h] = C0,iy(xn) + C1,ihy′(xn) + C2,ih2y′′ (xn) + C3,ih3y′′′ (xn) + . . .

+Cq,ihqy(q) = 0
(6)

where
C0,i = α0,i + α1,i + α2,i + α3,i + α4,i + α5,i

C1,i = −2α0,i − α1,i + α3,i + 2α4,i + 3α5,i − βi(1− ρ)

Cq,i =
1
q!

(
(−2)qα0,i + (−1)qα1,i + α3,i + 2qα4,i + 3qα5,i

)
− βi

 i(q−1)

(q− 1)!
− ρ

(i− 1)q−1

(q− 1)!

 (7)
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with q = 2, 3.
The coefficients of α j,i and βi are determined by substituting α3,1,α4,2,α5,3 = 1 into Equation (6)

for i = 1, 2, 3. The resulting equations will be solved simultaneously, and the results are tabulated in
Table 1.

Table 1. Coefficients of the A(α)-BBDF.

α0,i α1,i α2,i α3,i α4,i α5,i βi

i = 1 yn+1 1/116 −9/58 −31/29 1 27/116 −1/58 24/29

i = 2 yn+2 1/73 −11/146 6/73 −82/73 1 15/146 48/73

i = 3 yn+3 −15/236 23/59 −1 78/59 −389/236 1 24/59

All the values in Table 1 are substituted into Equation (5). Hence, the corresponding formulas for
A(α)-BBDF take the following form:

yn+1 = − 1
116 yn−2 +

9
58 yn−1 +

31
29 yn −

27
116 yn+2 +

1
58 yn+3 +

21
29 h fn + 24

29 h fn+1

yn+2 = − 1
73 yn−2 +

11
146 yn−1 −

6
73 yn +

82
73 yn+1 −

15
146 yn+3 +

43
73 h fn+1 +

48
73 h fn+2

yn+3 = 15
236 yn−2 −

23
59 yn−1 + yn −

78
59 yn+1 +

389
236 yn+2 +

21
59 h fn+2 +

24
59 h fn+3

 (8)

2.1. Order of the Method

In Section 2.1, the order of the proposed method will be verified. We illustrate the definitions of the
order for the Linear Multistep Method (LMM) as given in [18], using the following LMM Equation (2)
and the associated difference operator L, defined by:

L[z(x); h] =
k∑

j=0

[
α jz(x + jh) − hβ jz′(x + jh)

]
(9)

are said to be of the order p if C0 = C1 = · · · = Cp = 0, Cp+1 , 0. The general form for the constant Cq

is defined as:

Cq =
k∑

j=0

[
1
q!

jqα j −
1

(q− 1)!
jq−1β j

]
, q = 2, 3, . . . , p + 1.

Since the derived method is a block method, we extend the definition given in Equation (9) in the
following form:

L[z(x); h] =
k∑

j=0

[
A jz(x + jh) − hB jz′(x + jh)

]
(10)

where Aj and Bj are r by r matrices. Note that the constant Cq can be rewritten as:

Cq =
k∑

j=0

[
1
q!

jqA j −
1

(q− 1)!
jq−1B j

]
, q = 2, 3, . . . , p + 1.

It is easily shown that:

C6 =
5∑

j=0

[ 1
6!

j6A j −
1
5!

j5B j

]
=


−1/580
9/730
−33/590

 ,


0
0
0


The term C6 represents the error constant of the method. Since C0 = C1 = · · · = C5 = 0, we

conclude that the order of the developed method is five.
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3. Stability Analysis

In this section, we will investigate the linear stability analysis for the derived method. This will
lead to the location of the roots of the associated stability polynomial with respect to the unit circle in
the complex plane.

3.1. Zero Stability

The standard definition of zero stability for block methods assumes the following definition
introduced by Fatunla [19].

Definition 1. The block method is zero stable provided the roots R j, j = 1(1)k of the first characteristic
polynomial

γ(r) = det

 k∑
i=0

AiRk−i

 = 0, A(0) = −I

satisfy
∣∣∣R j

∣∣∣ ≤ 1, and that for those roots with
∣∣∣R j

∣∣∣ = 1, the multiplicity must not exceed 1. The principal root of
γ(r) is denoted by R1 = R2 = 1. A(i), i = 0(1)k are r by r matrices.

We start by considering the following test equation:

y′ = λy (11)

where λ is a complex number with a negative real part. We substitute Equation (11) into Equation (8) to obtain
the matrix coefficients specified as:

A =


1− 24

29 h 27
116 −

1
58

−
82
73 −

42
73 h 1− 48

73 h 15
146

78
59 −

389
236 −

21
59 h 1− 24

59 h

, B =


−

1
116

9
58

31
29 + 21

29 h
−

1
73

11
146 −

6
73

15
236 −

23
59 1


with h = hλ. We have the stability polynomial of the method by computing det(At− B). The stability polynomial
is given as follows:

514809
999224 t− 399

999224 h− 765
499612 + 1452159

999224 t3
−

594477
249806 t2h

2
−

1002297
499612 t3h

+ 132399
124903 t3h

2
−

27648
124903 t3h

3
+ 24507

124903 th
2
−

18522
124903 t2h

3

+ 70407
124903 th− 982719

499612 t2
−

1379493
999224 t2h

(12)

Substituting h = 0 in Equation (12), we solve the following equation to determine the roots of the
stability polynomial:

1452159
999224

t3
−

982719
499612

t2 +
514809
999224

t−
765

499612
= 0 (13)

Thus, we have the roots t = 1, 0.0030, and 0.3504. Since |t| ≤ 1, we conclude that the method is
zero stable.

3.2. Stability Region

The region of absolute stability is the set of points hλ for which the method produces a solution
that never increases in magnitude, i.e.,

∣∣∣yn+1
∣∣∣ ≤ ∣∣∣yn

∣∣∣ (see [20]). The chosen step size h should lie within
the region of absolute stability of the numerical method.

Definition 2. A numerical method is A-stable if its region of absolute stability contains the whole left-hand
half-plane Re(hλ) < 0, as illustrated in Figure 1. The stability region is denoted by the shaded areas.
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Figure 1. The region of absolute stability for an A-stable method.

Unfortunately for LMM, the A-stable methods cannot have an order greater than 2, as stated
in [20]. Furthermore, an explicit LMM cannot be A stable (see [20]). The weakening of this property
leads to the following definition (see [20]).

Definition 3. A method is stiffly stable with a stiffness abscissa D if the stability region includes all complex
numbers z such that Re(z) ≤ −D.

Definition 4. A method is A(α) stable if the stability region includes all complex numbers such that
−(π− α) ≤ arg(z) ≤ π− α.

Definition 5. is illustrated in Figure 2 by using a Backward Differentiation Formula of order 4, (BDF4), as an
example. For BDF4, α = 73.352◦ and D = 0.66667.
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Figure 2. A(α) and stiff stability as presented in [19].

The boundary of the stability region is given by the set of points determined by tiθ, 0 ≤ θ ≤ 2π,
for which |t| ≤ 1. Thus, the stability region of A(α)-BBDF, with α = 49.057◦ and D = 2.723, is shown in
Figure 2. The region of absolute stability lies outside the boundary.

It can clearly be seen in Figure 3 that our new method in Equation (8) is A(α) stable, as defined
in [20]. Next, we discuss the convergence associated with the method in Equation (2).
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3.3. Convergence of the Method

The necessary conditions for the convergence of the new method are determined using a theorem
taken from [18], which states that a linear multistep method is convergent if and only if it is zero stable
and consistent. The LMM given in Equation (2) is consistent if it satisfies these two conditions:

i.
∑k

j=0 αj = 0

ii.
∑k

j=0 jαj =
∑k

j=0 βj

Based on these conditions, we determined the consistency of the formulas given in Equation (2).
We obtained:

i.
∑5

j=0 A j =


α0,1

α0,2

α0,3

 +


α1,1

α1,2

α1,3

 +


α2,1

α2,2

α2,3

 +


α3,1

α3,2

α3,3

 +


α4,1

α4,2

α4,3

 +


α5,1

α5,2

α5,3


=


1

116
1

73
−

15
236

+

−

9
58
−

11
146
23
59

+

−

31
29
6

73
−1

+


1
−

82
73

78
59

+


27
116
1
−

389
236

+

−

1
58

15
146
1

 =


0
0
0

.
ii. ∑5

j=0 jA j = (0)


α0,1

α0,2

α0,3

 + (1)


α1,1

α1,2

α1,3

 + (2)


α2,1

α2,2

α2,3

 + (3)


α3,1

α3,2

α3,3

 + (4)


α4,1

α4,2

α4,3

 + (5)


α5,1

α5,2

α5,3


= (0)


1

116
1
73
−

15
236

+ (1)


−

9
58
−

11
146
23
59

+ (2)


−

31
29
6
73
−1

+ (3)


1
−

82
73

78
59

+ (4)


27
116
1
−

389
236

+ (5)


−

1
58

15
146
1

 =


45
29
90
73
45
59

 = 5∑
j=0

B j.

We have shown that the conditions given in [18] are satisfied. Therefore, we have verified that the
A(α)-BBDF in Equation (8) converged.

4. Implementation

For the implementation of the method, the code developed for the A(α)-BBDF method would
perform the scheme referred to as the PECE mode (Predict, Evaluate, Correct, Evaluate). The following
illustrates how the derived method is implemented to solve Equation (1).

Step 1. Predict: yp
n+1, yp

n+2, yp
n+3 are developed explicitly.

Step 2. Evaluate: fn+1 = f
(
xn+1, yp

n+1

)
fn+2 = f

(
xn+2, yp

n+2

)
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fn+3 = f
(
xn+3, yp

n+3

)
Step 3. Correct: yn+1, yn+2, yn+3 by

Step 4. Evaluate: fn+1 = f
(
xn+1, yn+1

)
fn+2 = f (xn+2, yn+2)

fn+3 = f (xn+3, yn+3)

The major drawback in the implementation of the A(α)-BBDF in general is that they are not self
starting. In this case, the Euler method is used for the computation of the backvalues. Hence, Equation (8)
can be solved using Newton’s iteration, and we restrict the number of iterations to two, i.e.,

Y(i+1)
n+ j −Y(i)

n+ j = −
[
F′j

(
y(i)n+ j

)]−1[
F j

(
y(i)n+ j

)]
, j = 1, 2, 3

where
F1 = yn+1 +

27
116

yn+2 −
1
58

yn+3 −
21
29

h f n −
24
29

h f n+1 − ς1

F2 = yn+2 −
82
73

yn+1 +
15

146
yn+3 −

42
73

h f n+1 −
48
73

h f n+2 − ς2

F3 = yn+3 +
78
59

yn+1 −
389
236

yn+2 −
21
59

h f n+2 −
24
59

h f n+3 − ς3

ς1, ς2 and ς3 are the backvalues, given as follows:

ς1 = −
1

116
yn−2 +

9
58

yn−1

ς2 = −
1
73

yn−2 +
11

146
yn−1

ς3 =
15

236
yn−2 −

23
59

yn−1

The notation i is introduced to specify the iteration. Thus, y(i+1)
n+1 will denote the ith iterative value

of yn+1, and e(i+1)
n+1 = y(i+1)

n+1 − y(i)n+1 will denote the differences between the ith and (i + 1)th iterative

values of yn+1. Similarly y(i+1)
n+2 will denote the ith iterative value of yn+2, and y(i+1)

n+3 will denote the ith
iterative value of yn+3. Thus,

e(i+1)
n+1,n+2,n+3 = y(i+1)

n+1,n+2,n+3 − y(i)n+1,n+2,n+3

The following computations, written in matrix form, are carried out to obtain the approximations:
1− 24

29 h ∂ fn+1
∂yn+1

27
116 −

1
58

−
82
73 −

42
73 h ∂ fn+1

∂yn+1
1− 48

73 h ∂ fn+2
∂yn+2

15
146

78
59 −

389
236 −

21
59 h ∂ fn+2

∂yn+2
1− 24

59 h ∂ fn+3
∂yn+3




e(i+1)
n+1

e(i+1)
n+2

e(i+1)
n+3


=


−1 −

27
116

1
58

82
73 −1 −

15
146

−
78
59

389
236 −1




y(i)n+1

y(i)n+2

y(i)n+3

+ h


0 0 21

29
0 0 0
0 0 0




f (i)n−2
f (i)n−1
f (i)n

+ h


24
29 0 0
42
73

48
73 0

0 21
59

24
59




f (i)n+1

f (i)n+2

f (i)n+3

+

ς1

ς2

ς3
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5. Numerical Results

In order to show the performance of the A(α)-BBDF method, the code was tested on several
problems, three of which are presented in this paper. It seems appropriate to compare the new method
with the existing method of the same order. We consider numerical solutions using the following
three methods:

i. The fifth order method given by [12].
ii. The fifth order method derived by [13].
iii. The new A(α)-BBDF.

Problem 1: y′ = −20
(
y− x2

)
+ 2x with initial value y(0) = 1/3 and x ∈ [0, 1]

Exact solution: y(x) = x2 + 1
3 e−20x

Source: Burden and Faires [21].

Problem 2: y′ = y(1−y)
2y−1 with initial value y(0) = 5/9 and x ∈ [0, 5]

Exact solution: y(x) = 1
2 +

√
1
4 −

5
36 e−x

Source: Alvarez and Rojo [22].

Problem 3:
y′1 = −21y1 + 19y2 − 20y3

y′2 = 19y1 − 21y2 − 20y3

y′3 = 40y1 − 40y2 − 40y3

y1(0) = 1, y2(0) = 0, y3(0) = −1 , x ∈ [0, 1]

Exact solution:
y1(x) = 0.5

[
e−2x + e(−40+40i)x

]
y2(x) = 0.5

[
e−2x
− e(−40+40i)x

]
y3(x) = −e(−40+40i)x

Source: Lambert [18].

Tables 2–4 shows the numerical results for Problems 1 to 3. We use the following abbreviations:
BBDF(5) : Fifth order Block Backward Differentiation Formula in [12]
3SBBDF : 3-point Superclass of Block Backward Differentiation Formula in [14]

A(α)-BBDF : New 3-point BBDF
NS : Number of steps
h : Step size
T : Computing time in seconds

MAXE : Maximum error
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Table 2. Numerical comparison for Problem 1 for the A(α)-BBDF method.

h. Method NS MAXE TIME

10−2
BBDF(5) 50 1.22077 (−02) 3.38123 × 10−5

3SBBDF 34 1.25970 (−02) 7.97504 × 10−6

A(α)-BBDF 34 9.80872 (−03) 5.74054 × 10−6

10−4
BBDF(5) 5,000 3.61596 (−06) 1.95107 × 10−4

3SBBDF 3334 2.78963 (−06) 2.43208 × 10−5

A(α)-BBDF 3334 2.10240 (−06) 1.81288 × 10−5

10−6
BBDF(5) 500,000 3.65378 (−10) 1.19412 × 10−2

3SBBDF 333,334 2.84503 (−10) 2.40965 × 10−3

A(α)-BBDF 333,334 2.15115 (−10) 1.24343 × 10−3

Table 3. Numerical comparison for Problem 2 for the A(α)-BBDF method.

h. Methods NS MAXE TIME

10−2
BBDF(5) 250 8.22989 (−05) 3.13736 × 10−5

3SBBDF 167 6.27205 (−05) 1.42650 × 10−5

A(α)-BBDF 167 4.80218 (−05) 5.55058 × 10−6

10−4
BBDF(5) 25,000 9.13120 (−09) 6.23244 × 10−4

3SBBDF 16,667 7.10257 (−09) 2.84914 × 10−4

A(α)-BBDF 16,667 5.36673 (−09) 3.00451 × 10−5

10−6
BBDF(5) 2,500,000 4.75320 (−11) 8.99541 × 10−2

3SBBDF 1,666,667 3.20597 (−11) 1.71905 × 10−2

A(α)-BBDF 1,666,667 2.04591 (−11) 3.01268 × 10−3

Table 4. Numerical comparison for Problem 3 for the A(α)-BBDF method.

h. Methods NS MAXE TIME

10−2
BBDF(5) 50 8.31685 (−02) 4.61774 × 10−5

3SBBDF 34 1.60854 (−01) 2.57089 × 10−5

A(α)-BBDF 34 1.46790 (−01) 1.13065 × 10−5

10−4
BBDF(5) 5000 8.63685 (−05) 7.02594 × 10−4

3SBBDF 3334 6.71328 (−05) 2.17249 × 10−4

A(α)-BBDF 3334 5.06905 (−05) 1.56282 × 10−4

10−6
BBDF(5) 500,000 8.64038 (−09) 1.33371 × 10−2

3SBBDF 333,334 6.72941 (−09) 1.62222 × 10−2

A(α)-BBDF 333,334 5.08898 (−09) 1.07846 × 10−2

The maximum error is defined as

MAXE = max
0≤n≤NS

∣∣∣y(x) − yn(x)
∣∣∣

where y(x) is the exact solution, and y(xn) is the computed solution.
The following figures show the relation between the maximum error and computational time for

Problems 1 to 3 at various step sizes.
Figures 4–6 show the variations of the step size with different errors in the A(α)-BBDF method.

It can be seen that, when using A(α)-BBDF, a lower computational time is needed to achieve the same
degree of accuracy when compared to BBDF(5) and 3SBBDF.
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6. Discussion and Conclusions

In this paper, we construct the implicit A(α)-BBDF of order five to solve first order ODEs.
The method is based on the classical BDF but differs in terms of the numbers of approximate solutions
produced at each step of the integration. In our case, three approximate solutions are produced
simultaneously at each step of the integration. These will facilitate a parallel implementation in
the future. The numerical results support the efficiency of the new A(α)-BBDF method in terms of
increasing the degree of accuracy with less computational time. Therefore, the derived method can be
a suitable alternative for solving stiff ODEs.
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