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Abstract: In this paper, we study a generalization of the well-known Kelvin-Voigt viscoelasticity
equation describing the mechanical behaviour of viscoelasticity. We perform a Lie symmetry analysis.
Hence, we obtain the Lie point symmetries of the equation, allowing us to transform the partial
differential equation into an ordinary differential equation by using the symmetry reductions.
Furthermore, we determine the conservation laws of this equation by applying the multiplier method.
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1. Introduction

The continuous development of mechanics and its engineering applications have increased
remarkably the interest in non-linear phenomena, such as viscoelasticity. Viscoelastic materials are of
interest in a wide variety of applications, from passive damping to aircraft tire construction. A good
modelling of the material’s behaviour is essential for the accurate design incorporating this material.

Viscoelastic behaviour appears in materials showing some sort of liquid-like elastic behaviour.
However, a simple Hooke’s law linear elastic constitutive relationship is not an accurate representation
of viscoelastic material’s behaviour. Viscoelastic materials are commonly said to have “memory”
because of their rheological properties.

The rheological models, such as the Kelvin-Voigt model or the Maxwell model, are usually used
to describe the viscoelastic behaviour. The Kelvin-Voigt model consists of a lumped parameter model
similar to a spring and dashpot in parallel, while the Maxwell model describes a serially connected
spring and dashpot. In addition, many papers have been published studying these models [1–4].

Many physical phenomena, as viscoelasticity, are described by non-linear partial differential
equations (PDEs). In particular, the Kelvin-Voigt viscoelasticity equation is given by

utt − (C(x) ux)x − (B(x) utx)x = 0.

Nevertheless, in this paper we focus on a generalization of the Kelvin-Voigt viscoelasticity
equation described by

utt − (C(x) f (u)x)x − (B(x) utx)x = 0, (t, x) ∈ R×Ω, (1)

where Ω is an open subset of R and u a scalar real-valued function. Also, f (u) is a smooth enough
non-linear function, and C(x) 6= 0, B(x) 6= 0 are smooth enough functions too, depending on the
variable x ∈ Ω. Throughout the paper the subscripts denote partial derivatives.
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There is no general theory for solving non-linear PDEs. Therefore, in this work, we use Lie theory
to analyse Equation (1). Lie group analysis is a powerful tool to find general solutions for PDEs. This
theory, originally defined by Sophus Lie at the end of the nineteenth century, develops solutions for
PDEs by the transformation groups of Lie [5–8]. The fundamental basis of the Lie group method
is that if a differential equation is invariant under a Lie group of transformations, then a reduction
transformation exists. For instance, for PDEs with two independent variables like Equation (1), a single
group reduction can transform the PDE into an ordinary differential equation (ODE), easier to solve.

Furthermore, a very important concept in the analysis of PDEs is the notion of conservation
law. Conservation laws determine conserved quantities and constants of motion. They also detect
integrability and check accuracy of numerical solutions method. Recently, Anco and Bluman [9,10]
developed a method that does not need the existence of Lagrangians because it is based on adjoint
equations for non-linear equations and avoids the integrals of functions. This method called the
multiplier method allows finding all local conservation laws admitted by any evolution equation.
Many papers have been published in the last few years using this method [11–19].

The paper is organized as follows: In Section 2 we determine the Lie point symmetries of Equation
(1). Then, in Section 3 we use the Lie point symmetries admitted by Equation (1) to obtain an optimal
system of one-dimensional subalgebras. Afterwards, in Section 4 we find symmetry reductions for the
one-dimensional subalgebras calculated previously. These reductions allow us to transform Equation
(1) into an ODE. In Section 5 we derive the conservation laws of Equation (1) by applying the multiplier
method. Finally, in Section 6 some conclusions are presented.

2. Lie Point Symmetries

A one-parameter group of infinitesimal transformations in (x, t, u) is given by

x∗ = x + ε ξ(x, t, u) +O(ε2),

t∗ = t + ε τ(x, t, u) +O(ε2),

u∗ = u + ε φ(x, t, u) +O(ε2),

where ε is the group parameter and ξ(x, t, u), τ(x, t, u), and φ(x, t, u) are the infinitesimals.

Definition 1. A vector field

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
, (2)

where ξ(x, t, u), τ(x, t, u), and φ(x, t, u) are the infinitesimals, is a generator of a Lie point symmetry of
Equation (1) if

X(3)(utt − (C(x) f (u)x)x − (B(x) utx)x) = 0, (3)

where X(3) is the third prolongation of the vector field (2) defined by

X(3) = X + ζx
∂

∂ux
+ ζt

∂

∂ut
+ ζxx

∂

∂uxx
+ ζxt

∂

∂uxt
+ ζtt

∂

∂utt
+ ζxxt

∂

∂uxxt
,
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where the coefficients ζx, ζt, ζxx, ζxt, ζtt, ζxxt are given by

ζx = Dxφ− utDxτ − uxDxξ,

ζt = Dtφ− utDtτ − uxDtξ,

ζxx = Dx(ζx)− uxtDxτ − uxxDxξ,

ζxt = Dt(ζx)− uxtDxτ − uxxDtξ,

ζtt = Dt(ζt)− uttDtτ − uxtDtξ,

ζxxt = Dx(ζxt)− uttxDxτ − uxxtDxξ.

Here Di stands for the total derivative operator.

Theorem 1. The Lie point symmetries of the generalization of the Kelvin-Voigt Equation (1), with f (u)
non-linear function, and C(x) 6= 0, B(x) 6= 0 arbitrary functions, are generated by the operator

X1 = ∂t.

For some particular functions of f (u), C(x), B(x), there are additional generators given below.

1. If f (u) is an arbitrary function, C(x) = c1 and B(x) = b1, with c1, b1 arbitrary constants,

X1
2 = ∂x.

2. If f (u) is an arbitrary function, C(x) = c1 and B(x) = b1x + b2, with c1, b1 6= 0, b2 arbitrary constants,

X2
2 = (b1x + b2)∂x + b1t ∂t.

3. If f (u) is an arbitrary function, C(x) = 4
(nx+c1)2 and B(x) = b1, with c1, b1 arbitrary constants, and n

a positive integer,
X3

2 = (nx + c1)∂x + 2nt ∂t.

4. If f (u) is an arbitrary function, C(x) = c2(c1 − x)n and B(x) =
(−c1+x)c1

√
(c1−x)nc2

n , with c1, c2

arbitrary constants, and n a positive integer,

X4
2 = (c1 − x)∂x +

1
2
(n− 2)t ∂t.

5. If f (u) =
f 2
0 e
−kek

ek−1

(
(ek−1)u

f0
+

f1ek− f1
f0

) ek

ek−1
+1

+2 f2ek− f2

2ek−1
, C(x) = c1 and B(x) = b1, with k a positive integer,

f0, f1, f2 positive constants, and c1, b1 arbitrary constants, besides X5
2 = X1

2 ,

X5
3 = x∂x + 2t ∂t + 2(−1 + e−k)(u + f1)∂u.

6. If f (u) =
f 2
1 e
− f0e f0

e f0−1

(
(e f0−1)u

f1
+

f2e f0− f2
f1

) e f0
e f0−1

+1

(e f0−1)
(

e f0

e f0−1
+1
) + f3, C(x) = c2(c1 − x)n and B(x) = b1, with f0, f1, f2,

f3 positive constants, c1, c2, b1 arbitrary constants, and n a positive integer,

X6
2 = (c1 − x)∂x − 2t ∂t − (1 + e− f0)(u + f2)(n + 2)∂u.
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7. If f (u) =
f0e
−kek

ek−1

(
(ek−1)(u+ f1)

f0

) 2ek−1
ek−1 +2 f2ek− f2

2ek−1
, C(x) = c2(b2 − x)−m and B(x) = b3(b2 − x)n, with k a

positive integer, f0, f1, f2 positive constants, b2, b3 arbitrary constants, and n, m positive integers,

X7
2 = (b2 − x)∂x + t(n− 2)∂t + (−1 + e−k)(u + f1)(m + 2n− 2)∂u.

Proof of Theorem 1. Expanding (3), we obtain an overdetermined system satisfying the determining
equations for the symmetry group. From B2 (τu) = 0 and B2 (τx) = 0, we find that τ depends only
on t. The equations B2 (ξt) = 0 and B2 (ξu) = 0 reveal that ξ is a function of x alone. The remaining
determining equations are

B2 (ξuu) = 0, B2 (ξtu) = 0, B2 (τuu) = 0, B (τuu) = 0, B2 (τuuu) = 0, B2 (ξuuu) = 0, = 0,

B (2 (τux) B− ξu) = 0,

B (2 (τuux) B− ξuu) = 0,

B ((τux) B + ξu) = 0,

B ((τuxx) B + φuu − 2 (τtu)) = 0,

B ((ξu) ( fuu)C− (ξuu) ( fu)C− (ξtuu) B) = 0,

B ( fu (φxx)C + (φtxx) B− φtt) = 0,

B ((τu) ( fu)C + (φuu) B− (τtu) B− 2 (ξux) B) = 0,

B ((τu) ( fu)C− (φuu) B + (τtu) B + 2 (ξux) B) = 0,

B ((τuu) ( fu)C− (φuuu) B + (τtuu) B + 2 (ξuux) B) = 0,

ξ
(

B′
)
− (τxx) B2 + (τt) B− 2 (ξxB) = 0,

B (2 (τx) ( fu)C− 2 (φux) B + 2 (τtx) B + (ξxx) B− 2 (ξt)) = 0,

B ((τxx) ( fu)C− (φuxx) B + (τtxx) B + 2 (φtu)− τtt) = 0,

ξ( fu)B
(
C′
)
− ξ fu

(
B′
)

C + (( fuu)) φBC + (τt) ( fu)BC + (φtu) B2 − 2 (ξtx) B2 = 0,

B (2 (τx) ( fuu)C + 2 (τux) ( fu)C− 2 (φuux) B + 2 (τtux) B + (ξuxx) B− 2 (ξtu)) = 0,

B (2( fuu) (φx)C + 2 fu (φux)C− (ξxx) ( fu)C + 2 (φtux) B− (ξtxx) B + ξtt) = 0,

ξ( fuu)B
(
C′
)
− ξ( fuu)

(
B′
)

C + fu (φuu) BC + ( fuu) (φu) BC + (( fuuu)) φBC + (τt) ( fuu)BC

−2 (ξux) ( fu)BC + (φtuu) B2 − 2 (ξtux) B2 = 0.

Solving this system of equations we find the infinitesimals ξ, τ and φ of (2).

3. Optimal Systems

It is important to classify invariant solutions according to the classification of the associated
symmetry generators. Then, one generator from each class is used to determine the desired set of
invariant solutions. An optimal system of generators is defined as a set consisting of exactly one
generator from each class [20].

The problem of obtaining an optimal system of subgroups is equivalent to that of obtaining an
optimal system of subalgebras, and so we concentrate on the latter. For one-dimensional subalgebras,
this classification problem is essentially equal to classifying the orbits of the adjoint representation [5].

The most important operator on vector fields is their Lie bracket or commutator. If Xi and Xj are
vector fields, then their Lie bracket

[
Xi, Xj

]
is the unique vector field satisfying[

Xi, Xj
]
= Xi(Xj)− Xj(Xi).

The commutator table for the Lie algebra of Case 5 of Theorem (1) is shown in Table 1. The (i, j)-th
entry of the table expresses the Lie bracket

[
Xi, Xj

]
, for i, j = 1, 2, 3.
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Table 1. The commutator table for Case 5 of Theorem (1).[
Xi, Xj

]
X1 X5

2 X5
3

X1 0 0 2X1
X5

2 0 0 X5
2

X5
3 −2X1 −X5

2 0

The adjoint representation can be constructed by summing the Lie series

Ad(exp(ε Xi))Xj =
∞

∑
n=0

εn

n!
(ad Xi)

n(Xj),

= Xj − ε[Xi, Xj] +
ε2

2
[Xi, [Xi, Xj]]− · · · . (4)

To compute the adjoint representation, we use the Lie series (4) in conjunction with the commutator
table in Table 1. The adjoint table of this Lie algebra is shown in Table 2, with the (i, j)-th entry indicating
Ad(exp(ε Xi))Xj.

Table 2. The adjoint table for Case 5 of Theorem (1).

Ad(exp(ε Xi))Xj X1 X5
2 X5

3
X1 X1 X5

2 X5
3 − 2εX1

X5
2 X1 X5

2 X5
3 − εX5

2
X5

3 e2εX1 eεX5
2 X5

3

Theorem 2. A one-dimensional optimal system for the generalization of the Kelvin-Voigt Equation (1) is
given by

λX1 + µX1
2 , X2

2 , X3
2 , X4

2 , X5
3 , X6

2 , X7
2 ,

where λ and µ are arbitrary constants.

Proof of Theorem 2. Let G be the symmetry algebra of Equation (1), with the adjoint representation
for Case 5 in Theorem (1) determined in Table 2. Let v = a1v1 + a2v2 + a3v3 be a non-zero vector field
of G. For each case, we simplify the coefficients ai, i = 1, 2, 3, as much as possible through proper
adjoints applications on v.

4. Symmetry Reductions

In this section, we use the optimal system of one-dimensional subalgebras of Theorem (2) to
determine the symmetry reductions of Equation (1).

The symmetry variables are found by solving the invariant surface condition

Φ ≡ ξ∂x + τ∂t − φ = 0.

Reduction 1. From λX1 + µX1
2 , we obtain the travelling wave reduction

z = µx− λt, u = h(z),

where h(z) satisfies

λ µ2 b1 h′′′ − µ2 c1 f ′ h′′ + λ2 h′′ − µ2 c1 f ′′
(
h′
)2

= 0.

Reduction 2. From X2
2 , we obtain the invariant solution

z =
b1x + b2

t
, u = h(z),
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where h(z) satisfies
b2

1 h′′′ z2 + h′′ z2 + 3 b2
1 h′′ z + 2 h′ z + b2

1 h′ = 0.

Reduction 3. From X3
2 , we obtain the invariant solution

z =
nx + c1√

t
, u = h(z),

where h(z) satisfies
2 b1 h′′′ n2 z + h′′ z2 + 4 b1 h′′ n2 + 3 h′ z = 0.

Reduction 4. From X4
2 , we obtain the invariant solution

z = −t
2

n−2 (c1 − x), u = h(z),

where h(z) satisfies

2 c1
√

c2 h′′′ n (−z)
n
2 z2 − 4 c1

√
c2 h′′′ (−z)

n
2 z2 − 4 h′′ n z2 + c1

√
c2 h′′ n2 (−z)

n
2 z

+ 4 c1
√

c2 h′′ n (−z)
n
2 z− 12 c1

√
c2 h′′ (−z)

n
2 z + 2 h′ n2 z− 8 h′ n z + c1

√
c2 h′ n2 (−z)

n
2

− 4 c1
√

c2 h′ (−z)
n
2 = 0.

Reduction 5. From X5
3 , we obtain the invariant solution

z =
x√

t
, u =

t−1+e−k

h(z)
− f1,

where h(z) must satisfy a non-autonomous equation.
Reduction 6. From X6

2 , we obtain the invariant solution

z = −(c1 − x)
√

t, u =
t
(−1+e− f0 )(n+2)

2

h(z)
− f2,

where h(z) must satisfy a non-autonomous equation.
Reduction 7. From X7

2 , we obtain the invariant solution

z = − (b2 − x)

t
1

n−2
, u =

t
−(−1+e−k)(m+2n−2)

n−2

h(z)
− f1,

where h(z) must satisfy a non-autonomous equation.

The expressions of the reduced equations for X5
3 , X6

2 , and X7
2 are omitted here to save space.

5. Conservation Laws

A local conservation law for the generalization of the Kelvin-Voigt viscoelasticity Equation (1) is a
continuity equation

DtT + DxX = 0,

holding for all solutions of Equation (1), where the conserved density T and the spatial flux X are
functions of x, t, u, and derivatives of u. Here Dt and Dx denote total derivatives with respect to t and
x, respectively. The pair (T, X) is called a conserved current.

Two local conservation laws are considered to be locally equivalent [5,21] if they differ by a locally
trivial conservation law T = DxΘ, X = −DtΘ, where T and X are evaluated on the set of solutions of
Equation (1) and Θ is a function of x, t, u, and derivatives of u.
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A non-trivial conservation law can be written in a general form as

d
dt

∫
Ω

T dx = −X
∣∣∣
∂Ω

,

where Ω ⊆ R is any fixed spatial domain.
Any local conservation law can be stated by using the characteristic form arising from a divergence

identity
DtT̃ + DxX̃ = (utt − (C(x) f (u)x)x − (B(x) utx)x)Q, (5)

where T̃ = T + DxΘ and X̃ = X− DtΘ are locally equivalent to T and X. The function Q is called a
multiplier. It satisfies

Q = Eu(T̃),

where Eu represents the Euler operator with respect to u [5], that is

Eu = ∂u − Dx∂ux − Dt∂ut + DxDt∂uxt + D2
x∂uxx + · · · .

For evolution equations, there is a one-to-one relationship between non-zero multipliers
and non-trivial conserved current vectors up to local equivalence [5,9]. In general, a function
Q(x, t, u, ut, ux, . . . ) is a multiplier if it verifies that (utt − (C(x) f (u)x)x − (B(x) utx)x) Q is a
divergence expression for all function u(x, t). Given a multiplier Q, the conserved density can be
determined by

T =
∫ 1

0
u Q(x, t, λu, λux, λuxx, . . . )dλ.

The divergence condition yields to the determining equation

Eu

(
(utt − (C(x) f (u)x)x − (B(x) utx)x) Q

)
= 0. (6)

In order to give a complete classification of multipliers, we write and split the determining
Equation (6) with respect to the variables utt, uttt, uttx, utxx, uxxx, utttx, uttxx, utxxx, uxxxx. Thus, we get a
linear determining system for Q(x, t, u, ut, ux, . . . ). The multipliers are found by solving the system
with the same algorithmic method used for the determining equations for infinitesimal symmetries.
Then, integrating the characteristic Equation (5) for each multiplier, we find the conserved current.

Theorem 3. The multipliers admitted by the generalization of the Kelvin-Voigt Equation (1), with f (u) a
smooth enough non-linear function, and C(x) 6= 0, B(x) 6= 0 smooth enough arbitrary functions, are given by

Q1 = 1, Q2 = t, Q3 =
∫ 1

C(x)
dx.

Theorem 4. All non-trivial local conservation laws admitted by the generalization of the Kelvin-Voigt Equation
(1), with f (u) a smooth enough non-linear function, and C(x) 6= 0, B(x) 6= 0 smooth enough arbitrary
functions, are given by

1. For the multiplier Q1 = 1, the conserved density and the spatial flux are

T1 = ut,

X1 = −B(x) utx − C(x) f (u)x.

2. For the multiplier Q2 = t, the conserved density and the spatial flux are

T2 = t ut − u,

X2 = −t B(x) utx − t C(x) f (u)x.
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3. For the multiplier Q3 =
∫ 1

C(x)dx, the conserved density and the spatial flux are

T3 =

(∫ 1
C(x)

dx
)

ut +

(
B(x)C′(x)

C(x)2 − B′(x)
C(x)

)
u,

X3 = −
(∫ 1

C(x)
dx
)

B(x) utx −
(∫ 1

C(x)
dx
)

C(x) f (u)x +
B(x) ut

C(x)
+ f (u).

6. Conclusions

In this paper, we studied a generalization of the Kelvin-Voigt viscoelasticity equation given by the
partial differential Equation (1). Firstly, we determined a complete Lie group classification. Then, we
constructed the optimal system of one-dimensional subalgebras. These one-dimensional subalgebras
have been used to find the symmetry reductions, allowing us to transform the partial differential
equation into an ordinary differential equation. Moreover, we analysed all conservation laws for this
equation by applying the multiplier method.
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