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Abstract: This article proposes a wide general class of optimal eighth-order techniques for
approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight
function with an approach involving the function-to-function ratio. An extensive convergence
analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the
existing techniques are special cases of the new scheme. The algorithms are tested in several real-life
problems to check their accuracy and applicability. The results of the dynamical study confirm that
the new methods are more stable and accurate than the existing schemes.
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1. Introduction

Solving nonlinear problems is very important in numerical analysis and finds many applications
in physics, engineering, and other applied sciences [1,2]. These problems occur in a variety of areas
such as initial and boundary values, heat and fluid flow, electrostatics, or even in global positioning
systems (GPS) [3–6]. It is difficult to find analytical solutions for nonlinear problems, but numerical
techniques may be used to obtain approximate solutions. Therefore, iterative schemes provide an
attractive alternative to solve such problems. When we discuss iterative solvers for finding multiple
roots of nonlinear equations of the form f (x) = 0, where f (x) is a real function defined in a domain
D ⊆ R, we recall the classical modified Newton’s method [1,2,7] (also known as Rall’s algorithm),
given by:

xn+1 = xn −m
f (xn)

f ′(xn)
, n = 0, 1, 2, 3, . . . , (1)

where m is the multiplicity of the required solution. Given the multiplicity m ≥ 1, in advance,
the algorithm converges quadratically for multiple roots. We find one-point iterative functions in
the literature, but in the scope of the real world, they are not of practical interest because of their
theoretical limitations regarding convergence order and the efficiency index. Moreover, most of the
one-point techniques are computationally expensive and inefficient when they are tested on numerical
examples. Therefore, multipoint iterative algorithms are better candidates to qualify as efficient
solvers. The good thing about multipoint iterative schemes without memory for scalar nonlinear
equations is that we can establish a conjecture about their convergence order. According to the
Kung–Traub conjecture [1], any multipoint method without memory can reach its convergence order
of at most 2n−1 for n functional evaluations. A number of researchers proposed various optimal
fourth-order techniques (requiring three functional evaluations per iteration) [8–13] and non-optimal
approaches [14,15] for approximating multiple zeros of nonlinear functions. Nonetheless, a limited
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number of multipoint point iterative algorithms having a sixth-order of convergence were formulated.
Thukral [16] proposed the following sixth-order multipoint iteration scheme:

yn = xn −m
f (xn)

f ′(xn)
,

zn = xn −m
f (xn)

f ′(xn)

3

∑
i=1

( f (yn)

f (xn)

) i
m

,

xn+1 = zn −m
f (xn)

f ′(xn)

( f (zn)

f (xn)

) 1
m

[
3

∑
i=1

( f (yn)

f (xn)

) i
m

]2

.

(2)

Geum et al. [17] presented a non-optimal class of two-point sixth-order as follows:

yn = xn −m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −Q(un, sn)
f (yn)

f ′(yn)
, (3)

where un = m

√
f (yn)
f (xn)

, sn = m−1

√
f ′(yn)
f ′(xn)

and Q : C→ C is a holomorphic function in the neighborhood of

origin (0, 0). However, the main drawback of this algorithm is that it is not valid for simple zeros (i.e.,
for m = 1).

In 2016, Geum et al. [18] developed another non-optimal family of three-point sixth-order
techniques for multiple zeros consisting of the steps:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

wn = yn −mG(un)
f (xn)

f ′(xn)
, (4)

xn+1 = wn −mK(un, vn)
f (xn)

f ′(xn)
,

where un = m

√
f (yn)
f (xn)

and vn = m

√
f (wn)
f (xn)

. The weight functions G : C→ C and K : C2 → C are analytic

in the neighborhood of zero and (0, 0), respectively. It can be seen that (3) and (4) require four function
evaluations to achieve sixth-order convergence. Therefore, they are not optimal in the sense of the
Kung and Traub conjecture [1]. It is needless to mention that several authors have tried to develop
optimal eighth-order techniques for multiple zeros, but without success to the authors’ best knowledge.
Motivated by this fact, Behl et al. [19] introduced an optimal eighth-order iterative family for multiple
roots given by:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
,

xn+1 = zn − unvnG(hn, vn)
f (xn)

f ′(xn)
,

(5)

where Q : C → C is analytic in the neighborhood of (0) and G : C2 → C is holomorphic in the

neighborhood of (0, 0), with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
, and vn =

(
f (zn)
f (yn)

) 1
m . Moreover, a1 and a2

and free disposable real parameters.
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Zafar et al. [20] presented an optimal eighth-order family using the weight function approach
as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun H(un)
f (xn)

f ′(xn)
,

xn+1 = zn − unvn(A2 + A3un)P(vn)G(wn)
f (xn)

f ′(xn)
,

(6)

where A2 and A3 are real parameters and the weight functions H, P, G : C → C are analytic in the

neighborhood of zero, with un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (zn)
f (yn)

) 1
m , and wn =

(
f (zn)
f (xn)

) 1
m .

It is clear from the above review of the state-of-the-art that we have a very small number of
optimal eighth-order techniques that can handle the case of multiple zeros. Moreover, these types
of methods have not been discussed in depth to date. Therefore, the main motivation of the current
research work is to present a new optimal class of iterative functions having eighth-order convergence,
exploiting the weight function technique for computing multiple zeros. The new scheme requires only
four function evaluations

(
i.e., f (xn), f ′(xn), f (yn) and f (zn)

)
per iteration, which is in accordance

with the classical Kung–Traub conjecture. It is also interesting to note that the optimal eighth-order
family (5) proposed by Behl et al. [19] can be considered as a special case of (7) for some particular
values of the free parameters. In fact, the Artidiello et al. [21] family can be obtained as a special case
of (7) in the case of simple roots. Therefore, the new algorithm can be treated as a more general family
for approximating multiple zeros of nonlinear functions.

The rest of the paper is organized as follows. Section 2 presents the new eighth-order scheme and
its convergence analysis. Section 2.1 discuss some special cases based on the different choices of weight
functions employed in the second and third substeps of (7). Section 3 is devoted to the numerical
experiments and the analysis of the dynamical behavior, which illustrate the efficiency, accuracy, and
stability of (7). Section 4 presents the conclusions.

2. Construction of the Family

In this section, we develop a new optimal eighth-order scheme for multiple roots with known
multiplicity m ≥ 1. Here, we establish the main theorem describing the convergence analysis of the
proposed family with the three steps as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun
f (xn)

f ′(xn)
H(tn),

xn+1 = zn − unvn
f (xn)

f ′(xn)
G(tn, sn),

(7)

where the weight functions H and G are such that H : C→ C is analytic in the neighborhood of origin

and G : C2 → C is holomorphic in the neighborhoods of (0, 0), with un =
(

f (yn)
f (xn)

) 1
m , tn = un

b1+b2un
,

vn =
(

f (zn)
f (yn)

) 1
m , and sn = vn

b3+b4vn
, bi ∈ R (for i = 1, 2, 3, 4) being arbitrary parameters.

In the following Theorem 1, we demonstrate how to construct weight functions H and G so that
the algorithm arrives at the eighth order without requiring any additional functional evaluations.
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Theorem 1. Assume that f : C→ C is an analytic function in the region enclosing the multiple zero x = α

with multiplicity m ≥ 1. The iterative Equation (7) has eighth-order convergence when it satisfies the conditions:{
H(0) = 1, H′(0) = 2b1, G00 = m, G10 = 2mb1, G01 = mb3,

G20 = m(H′′(0) + 2b2
1), G11 = 4mb1b3, G30 = m(H(3)(0) + 6b1H′′(0)− 24b3

1 − 12b2
1b2),

(8)

where Gij =
∂i+jG
∂ti∂sj

∣∣∣
(t=0,s=0)

, i, j ∈ {0, 1, 2, 3, 4}.

Proof. Let x = α be a multiple zero of f (x). Using the Taylor series expansion of f (xn) and f ′(xn) in
the neighborhood of α, we obtain:

f (xn) =
f (m)(α)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)

)
(9)

and:

f ′(xn) =
f m(α)

m!
em−1

n

(
m + c1(m + 1)en + c2(m + 2)e2

n + c3(m + 3)e3
n + c4(m + 4)e4

n + c5(m + 5)e5
n

+ c6(m + 6)e6
n + c7(m + 7)e7

n + c8(m + 8)e8
n + O(e9

n)

)
,

(10)

respectively, where en = xn − α, ck =
1
k!

f (k)(α)
f ′(α)

, and k = 1, 2, 3, . . ..

Using the above Equations (9) and (10) in the first substep of (7), we get:

yn − α =
c1e2

n
m

+
(−(1 + m)c2

1 + 2mc2)e3
n

m2 +
5

∑
j=1

Γje
j+3
n + O(e9

n), (11)

where Γj = Γj(m, c1, c2, . . . , c8) are given in terms of m, c1, c2, c3, . . . , c8 for 1 ≤ j ≤ 5. The explicit
expressions for the first two terms Γ1 and Γ2 are given by Γ1 = 1

m3 {3m2c3 + (m + 1)2c3
1 − m(3m +

4)c2c1} and Γ2 = 1
m4 {(m + 1)3c4

1 − 2m(2m2 + 5m + 3)c2c2
1 + 2m2(2m + 3)c3c1 + 2m2(c2

2(m + 2) −
2c4m)}.

Using the Taylor series expansion again, we obtain:

f (yn) = f (m)(α)e2m
n

[ ( c1
m
) m

m!
+

(2c2m− c2
1(m + 1))

( c1
m
)m en

c1m!
+
( c1

m

)1+m 1
2m!c3

1

{
(3 + 3m + 3m2 + m3)c4

1

− 2m(2 + 3m + 2m2)c2
1c2 + 4(−1 + m)m2c2

2 + 6m2c1c3
}

e2
n +

5

∑
j=1

Γ̄je
j+3
n + O(e9

n)

] (12)

and:

un =
c1en

m
+

(2c2m− c2
1(m + 2))e2

n
m2 + γ1e3

n + γ2e4
n + γ3e5

n + O(e6
n), (13)

where:
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

γ1 =
1

2m3

[
c3

1(2m2 + 7m + 7) + 6c3m2 − 2c2c1m(3m + 7)
]
,

γ2 = − 1
6m4

[
c4

1(6m3 + 29m2 + 51m + 34)− 6c2c2
1m(4m2 + 16m + 17) + 12c3c1m2(2m + 5) + 12m2(c2

2(m + 3)

− 2c4m)
]
,

γ3 =
1

24m5

[
− 24m3(c2c3(5m + 17)− 5c5m) + 12c3c2

1m2(10m2 + 43m + 49) + 12c1m2{c2
2(10m2 + 47m + 53)

− 2c4m(5m + 13)} − 4c2c3
1m(30m3 + 163m2 + 306m + 209) + c5

1(24m4 + 146m3 + 355m2 + 418m + 209)
]
.

(14)

Now, using the above Equation (14), we get:

tn =
c1

mb1
en +

4

∑
i=1

Θje
j+1
n + O(e6

n), (15)

where Θj = Θj(b1, b2, m, c1, c2, . . . , c8) are given in terms of b1, b2, m, c1, c2, . . . , c8, and the two

coefficients Θ1 and Θ2 are written explicitly as Θ1 = − b2c2
1+b1((2+m)c2

1−2mc2)

m2b2
1

, Θ2 = 1
2m3b3

1
[2b2

2c3
1 +

4b1b2c1((2 + m)c2
1 − 2mc2) + b2

1{(7 + 7m + 2m2)c3
1 − 2m(7 + 3m)c1c2 + 6m2c3}].

Since we have tn =
un

b1 + b2un
= O(en), it suffices to expand weight function H(tn) in the

neighborhood of origin by means of Taylor expansion up to the fifth-order term, yielding:

H(tn) ≈ H(0) + H′(0)tn +
1
2!

H′′(0)t2
n +

1
3!

H(3)(0)t3
n +

1
4!

H(4)(0)t4
n +

1
5!

H(5)(0)t5
n, (16)

where H(k) represents the kth derivative. By inserting the Equations (9)–(16) in the second substep of
(7), we have:

zn − α =
(m− H(0))c1

m2 e2
n +

2m(m− H(0))b1c2 −
(

H′(0) + (m + m2 − 3H(0)−mH(0))b1
)

c2
1

m3b1
e3

n

+
5

∑
s=1

Ωses+3
n + O(e9

n),
(17)

where Ωs = Ωs(H(0), H′(0), H′′(0), H(3)(0), H(4)(0), m, b1, b2, c1, c2, . . . , c8), s = 1, 2, 3, 4, 5.
From the error Equation (17), it is clear that to obtain at least fourth-order convergence,

the coefficients of e2
n and e3

n must vanish simultaneously. This result is possible only for the following
values of H(0) and H′(0), namely:

H(0) = m, H′(0) = 2mb1, (18)

which can be calculated from the Equation (17).
Substituting the above values of H(0) and H′(0) in (17), we obtain:

zn − α =
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c3
1 − 2m2b2

1c1c2

2m4b2
1

e4
n +

4

∑
r=1

Lres+4
n + O(e9

n), (19)

where Lr = Lr(H′′(0), H(3)(0), H(4)(0), m, b1, b2, c1, c2, . . . , c8), r = 1, 2, 3, 4.
Using the Taylor series expansion again, we can write:

f (zn) = f (m)(α)e4m
n

[
2−m

m!

(
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c3
1 − 2m2b2

1c1c2

m4b2
1

)
m +

5

∑
s=1

P̄ses
n + O(e6

n)

]
, (20)
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and:

vn =
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c2
1 − 2m2b2

1c2

2m3b2
1

e2
n + ∆1e3

n + ∆2e4
n + ∆3e5

n + O(e6
n), (21)

where ∆1 = 1
3m4b3

1
[3H′′(0)b2c3

1 − 12mb2
1b2c1((3 + m)c2

1 − 2mc2) +

3b1
(
((3 + m)H′′(0)− 2mb2

2)c
3
1 − 2mH′′(0)c1c2

)
− mb3

1{(49 + 27m + 2m2)c3
1 − 6m(9 + m)c1c2 +

6m2c3}].
Now, using the above Equation (21), we obtain:

sn =
vn

b3 + b4vn
=
(−H′′(0) + (9 + m)b2

1 + 4b1b2)c2
1 − 2mb2

1c2

2m3b2
1b3

e2
n + σ1e3

n + σ2e4
n + σ3e5

n + O(e6
n), (22)

where σi = σi(m, b1, b2, b3, b4, H′′(0), H(3)(0), c1, c2, c3, c4, c5) for 1 ≤ i ≤ 3, with the explicit coefficient
σ1 written as:

σ1 =
1

6m3b3
1b3

[(
H(3)(0) +

(
98 + 54m + 4m2

)
b3

1 − 6H′′(0)b2 + 24(3 + m)b2
1b2 − 6b1

(
(3 + m)H′′(0)− 2b2

2

))
c3

1

−12mb1

(
−H′′(0) + (9 + m)b2

1 + 4b1b2

)
c1c2 + 12m2b3

1c3

)
].

From Equations (15) and (22), we conclude that tn and sn are of orders en and e2
n, respectively.

We can expand the weight function G(t, s) in the neighborhood of (0, 0) by Taylor series up to
fourth-order terms:

G(tn, sn) ≈ G00 + G10tn + G01sn +
1
2!
(
G20t2

n + 2G11tnsn + G02s2
n
)
+

1
3!
(
G30t3

n + 3G21t2
nsn + 3G12tns2

n + G03s3
n
)

+
1
4!
(
G40t4

n + 4G31t3
nsn + 6G22t2

ns2
n + 4G13tns3

n + G04s4
n
)
,

(23)

where Gij =
∂i+j

∂ti∂sj G(t, s)
∣∣∣
(t=0,s=0)

, i, j ∈ {0, 1, 2, 3, 4}.
Using the Equations (9)–(23) in (7), we have:

en+1 =
(G00 −m)c1((H′′(0)− (m + 9)b2

1 − 4b1b2)c2
1 + 2mb2

1c2)

2b2
1m4

e4
n +

4

∑
i=1

Riei+4
n + O(e9

n), (24)

where Ri = Ri(m, b1, b2, b3, b4, H(0), H′(0), H′′(0), H(3)(0), c1, c2, . . . , c8), i = 1, 2, 3, 4.
To obtain at least sixth-order convergence, we need to adopt G00 = m. Furthermore, substituting

G00 = m in R1 = 0, one obtains:
G10 = 2b1m. (25)

Inserting G00 = m and G10 = 2b1m in R2 = 0, we obtain the following relations:

G01 −mb3 = 0, G20 −mH′′(0)− 2mb2
1 = 0, (26)

which further yield:
G01 = mb3, G20 = mH′′(0) + 2mb2

1. (27)

By substituting the values of G00, G10, G01, and G20 in R3 = 0, we obtain the following two
independent equations:

G11 − 4b1b3m = 0,

3G11 H′′(0)− (G30 −mH(3)(0))b3 + 12m(7 + m)b3
1b3 − 6b1

(
2G11b2 + mH′′(0)b3

)
− 3b2

1 (G11(9 + m)− 12mb2b3) = 0,
(28)
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which further give:

G11 = 4b1b3m, G30 = m(H(3)(0) + 6b1H′′(0)− 24mb3
1 − 12mb2

1b2). (29)

Now, in order to obtain eighth-order convergence of the proposed scheme (7), the coefficients
of e4

n, R1, R2, R3 defined in (24) must be equal to zero. Therefore, using the value of G00 = m and
substituting the values of Rs

i (i = 1, 2, 3) from Relations (25)–(29) in (7), one gets the following error
equation:

en+1 =
1

48m8b5
1b2

3

[
c1(4b2c2

1 + b1((9 + m)c2
1 − 2mc2)

][
− 24G21b1b2b3c4

1 + (−G40 + mH(4)(0))b2
3c4

1 − 24b3
1b2c2

1((
G02(9 + m)−m(23 + 3m)b2

3 − 2m(9 + m)b3b4
)

c2
1 + 2m

(
− G02 + 3mb2

3 + 2mb3b4

)
c2

)
− 6b2

1

(
4b2

2

(
2G02

− 3mb2
3 − 4mb3b4

)
c4

1 + G21b3c2
1

(
(9 + m)c2

1 − 2mc2

))
+ b4

1

((
− 3G02(9 + m)2 + 2m

(
431 + 102m + 7m2

)
b2

3

+ 6m(9 + m)2b3b4

)
c4

1 − 12m
(
− G02(9 + m) + 2m(17 + 2m)b2

3 + 2m(9 + m)b3b4

)
c2

1c2 + 12m2
(
− G02

+ 2mb2
3 + 2mb3b4

)
c2

2 + 24m3b2
3c1c3

)]
e8

n + O(e9
n).

(30)

The consequence of the above error analysis is that (7) acquires eighth-order convergence using
only four functional evaluations (viz. f (xn), f ′(xn), f (yn) and f (zn)) per full iteration. This completes
the proof.

2.1. Some Special Cases of the Proposed Class

In this section, we discuss some interesting special cases of the new class (7) by assigning different
forms of weight functions H(tn) and G(tn, sn) employed in the second and third steps, respectively.

1. Let us consider the following optimal class of eighth-order methods for multiple roots, with the
weight functions chosen directly from Theorem 1:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun
f (xn)

f ′(xn)

[
1 + 2tnb1 +

1
2

t2
n H′′(0) +

1
3!

t3
n H(3)(0) +

1
4!

t4
n H(4)(0) +

1
5!

t5
n H(5)(0)

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
m + 2mb1tn + mb3sn +

1
2!

(
(H′′(0)m + 2mb2

1)t
2
n + 8mb1b3tnsn + G02s2

n

)
+

1
3!

{
(H(3)(0) + 6H′′(0)b1 − 24b3

1 − 12b2
1b2)mt3

n + 3G21t2
nsn + 3G12tns2

n + G03s3
n

}
+

1
4!

(
G40t4

n + 4G31t3
nsn + 6G22t2

ns2
n + 4G13tns3

n + G04s4
n

)]
,

(31)

where bi (i = 1, 2, 3, 4), H′′(0), H(3)(0), H(4)(0), H(5)(0), G02, G12, G21, G03, G40, G31, G22, G13 and
G04 are free parameters.

Subcases of the given scheme (31):

(a) Let us consider H′′(0) = H(3)(0) = H(4)(0) = H(5)(0) = G02 = G12 = G21 = G03 =

G31 = G22 = G13 = G04 = 0 in Equation (31). Then, we obtain:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
m + msnb3 + 2tnmb1(1 + 2snb3)− 4t3

nmb3
1 + t2

nmb2
1(1− 2tnb2) +

G40t4
n

24

]
.

(32)
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2. Considering H′′(0) = H(3)(0) = H(4)(0) = H(5)(0) = G12 = G03 = G31 = G22 = G13 = G04 = 0
and G21 = 2m in Equation (31), one gets:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
msnt2

n +
G02

2
s2

n + m
(

1− 4b3
1t3

n + b2
1

(
t2
n − 2b2t3

n

)
+ b3sn + 2b1(tn + 2b3tnsn)

)]
.

(33)

3. A combination of polynomial and rational functions produces another optimal eighth-order
scheme as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
k1t2

n + k2sn +
k3t2

n + k4tn + k5sn + k6
k7tn + sn + 1

]
,

(34)

where: 

k1 =
m
(
−24b3

1 + 6b2
1(−2b2 + k7)

)
6k7

,

k2 =
m (b1(2 + 4b3) + b3k7)

k7
,

k3 =
m
(
24b3

1 + 12b2
1b2 + 12b1k2

7
)

6k7
,

k4 = m (2b1 + k7) ,

k5 =
m (−2b1(1 + 2b3) + k7)

k7
,

k6 = m.

(35)

Remark 1. It is important to note that the weight functions H(tn) and G(tn, sn) play a significant role in the
construction of eighth-order techniques. Therefore, it is usual to display different choices of weight functions,
provided they satisfy all the conditions of Theorem 1. Hence, we discussed above some special cases (32), (33),
and (35) having simple body structures along with optimal eight-order convergence so that they can be easily
implemented in numerical experiments.

Remark 2. The family (5) proposed by Behl et al. [19] can be obtained as a special case of (7) by selecting
suitable values of free parameters as, namely, b1 = a1, b2 = a2, b3 = 1, and b4 = 0.

3. Numerical Experiments

In this section, we analyze the computational aspects of the following cases: Equation (32) for
(b1 = 1, b2 = −2, b3 = 1, b4 = −2, G40 = 0) (MM1), Family (33) for (b1 = 1, b2 = −2, b3 = 1, b4 =

−2, G02 = 0) (MM2), and Equation (35) for (b1 = 1, b2 = −2, b3 = 1, b4 = −2, k7 = − 3
10 ) (MM3).

Additionally, we compare the results with those of other techniques.
In this regard, we considered several test functions coming from real-life problems and linear

algebra that represent Examples 1–7 in the follow-up. We compared them with the optimal
eighth-order scheme (5) given by Behl et al. [19] for Q(hn) = m(1 + 2hn + 3h2

n) and G(hn, tn) =

m
(

1+2tn+3h2
n+hn(2+6tn+hn)

1+tn

)
and the approach (6) of Zafar et al. [20] taking H(un) = 6u3

n− u2
n + 2un + 1,

P(vn) = 1 + vn, and G(wn) = 2wn+1
A2P0

for (A2 = P0 = 1) denoted by (OM) and (ZM), respectively.
Furthermore, we compared them with the family of two-point sixth-order methods proposed by
Geum et al. in [17], choosing out of them Case 2A, given by:
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yn = xn −m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −
[

m + b1un

1 + a1un + a2sn + a3snun

]
f (yn)

f ′(yn)
,

(36)

where a1 = − 2m(m−2)
(m−1) , b1 = 2m

(m−1) , a2 = 2(m− 1), and a3 = 3.
Finally, we compared them with the non-optimal family of sixth-order methods based on the

weight function approach presented by Geum et al. [18]; out of them, we considered Case 5YD, which
is defined as follows:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

wn = xn −m
[
(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f (xn)

f ′(xn)
,

xn+1 = xn −m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f (xn)

f ′(xn)
.

(37)

We denote Equations (36) and (37) by (GK1) and (GK2), respectively.
The numerical results listed in Tables 1–7, compare our techniques with the four ones described

previously. Tables 1–7, include the number of iteration indices n, approximated zeros xn, absolute
residual error of the corresponding function | f (xn)|, error in the consecutive iterations |xn+1 − xn|, the
computational order of convergence ρ ≈ log | f (xn+1)/ f (xn)|

log | f (xn)/ f (xn−1)|
with n ≥ 2 (the details of this formula can be

seen in [22]), the ratio of two consecutive iterations based on the order of convergence
∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣
(where p is either six or eight, corresponding to the chosen iterative method), and the estimation of

asymptotic error constant η ≈ lim
n→∞

∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣ at the last iteration. We considered 4096 significant

digits of minimum precision to minimize the round off error.
We calculated the values of all the constants and functional residuals up to several significant

digits, but we display the value of the approximated zero xn up to 25 significant digits (although
a minimum of 4096 significant digits were available). The absolute residual error in the function
| f (xn)| and the error in two consecutive iterations |xn+1 − xn| are displayed up to two significant
digits with exponent power. The computational order of convergence is reported with five significant

digits, while
∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣ and η are displayed up to 10 significant digits. From Tables 1–7, it can be

observed that a smaller asymptotic error constant implies that the corresponding method converged
faster than the other ones. Nonetheless, it may happen in some cases that the method not only had
smaller residual errors and smaller error differences between two consecutive iterations, but also larger
asymptotic error.

All computations in the numerical experiments were carried out with the Mathematica 10.4
programming package using multiple precision arithmetic. Furthermore, the notation a(±b) means
a× 10(±b).

We observed that all methods converged only if the initial guess was chosen sufficiently close to
the desired root. Therefore, going a step further, we decided to investigate the dynamical behavior
of the test functions fi(x), i = 1, 2, . . . , 7, in the complex plane. In other words, we numerically
approximated the domain of attraction of the zeros as a qualitative measure of how the methods
depend on the choice of the initial approximation of the root. To answer this important question on the
behavior of the algorithms, we discussed the complex dynamics of the iterative maps (32), (33), and
(35) and compared them with the schemes (36), (37), (5), and (6), respectively.

From the dynamical and graphical point of view [23,24], we took a 600× 600 grid of the square
[−3, 3]× [−3, 3] ∈ C and assigned orange color to those points whose orbits converged to the multiple
root. We represent a given point as black if the orbit converges to strange fixed points or diverges after
at most 25 iterations using a tolerance of 10−3. Note that the black color denotes lack of convergence
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of the algorithm to any of the roots. This happened, in particular, when the method converged to a
strange fixed point (fixed points that were not roots of the nonlinear function), ended in a periodic
cycle, or went to infinity.

Table 8 depicts the measures of convergence of different iterative methods in terms of the average
number of iterations per point. The column I/P shows the average number of iterations per point
until the algorithm decided that a root had been reached, otherwise it indicates that the point was
non-convergent. The column NC(%) shows the percentage of non-convergent points, indicated as
black zones in the fractal pictures represented in Figures 1–14. It is clear that the non-convergent
points had a considerable influence on the values of I/P since these points contributed always with
the maximum number of 25 allowed iterations. In contrast, convergent points were reached usually
very quickly because we were working with multipoint iterative methods of higher order. Therefore,
to minimize the effect of non-convergent points, we included the column IC/C, which shows the
average number of iterations per convergent point.

Example 1. We considered the van der Waals equation of state [25]:(
P +

an2

V2

)
(V − nb) = nRT,

where a and b explain the behavior of a real gas by introducing in the ideal equations two parameters, a and b
(known as van der Waals constants), specific for each case. The determination of the volume V of the gas in terms
of the remaining parameters required the solution of a nonlinear equation in V:

PV3 − (nbP + nRT)V2 + an2V − abn2 = 0.

Given the constants a and b that characterize a particular gas, one can find values for n, P, and T, such
that this equation has three roots. By using the particular values, we obtained the following nonlinear function
(see [26] for more details)

f1(x) = x3 − 5.22x2 + 9.0825x− 5.2675,

having three zeros, so that one is x = 1.75, of multiplicity of two, and the other x = 1.72. However, our desired
root was x = 1.75.

The numerical results shown in Table 1 reveal that the new methods MM1, MM2, and MM3 had
better performance than the others in terms of precision in the calculation of the multiple roots of
f1(x) = 0. On the other hand, the dynamical planes of different iterative methods for this problem are
given in Figures 1 and 2. One can see that the new methods had a larger stable (area marked in orange)
than the methods GK1, GK2, OM, and ZM. It can also be verified from Table 8 that the three new
methods required a smaller average number of iterations per point (I/P) and a smaller percentage
of non-convergent points (NC(%)). Furthermore, we found that MM1 used the smallest number of
iterations per point (I/P =5.95 on average), while GK1 required the highest number of iterations per
point (I/P =14.82).
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Table 1. Convergence behavior of seven different iterative methods on the test function f1(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 1.8 2.0(−4) 4.9(−2)
1 1.750895258580091535641280 2.5(−8) 9.0(−4) 6.385691220(+4) 3.536522620(+7)
2 1.750000000014299761415271 6.1(−24) 1.4(−11) 2.777396484(+7)
3 1.750000000000000000000000 2.7(−117) 3.0(−58) 5.9816 3.536522620(+7)

GK2

0 1.8 2.0(−4) 5.0(−2)
1 1.750388172793891559741273 4.6(−9) 3.9(−4) 2.603237303(+4) 3.215020576(+6)
2 1.750000000000010343224637 3.2(−30) 1.0(−14) 3.023468138(+6)
3 1.750000000000000000000000 4.6(−157) 3.9(−78) 5.9959 3.215020576(+6)

OM

0 1.8 2.0(−4) 4.9(−2)
1 1.750388172319823575363680 9.9(−9) 5.7(−4) 1.599594295(+7) 1.462834362(+11)
2 1.750000000000001356336629 5.5(−32) 1.4(−15) 3.750857339(+11)
3 1.750000000000000000000000 8.4(−218) 1.7(−108) 7.9903 1.462834362(+11)

ZM

0 1.8 2.0(−4) 5.0(−2)
1 1.750388172319823575363680 4.6(−9) 3.9(−4) 1.057651892(+7) 1.178394347(+11)
2 1.750000000000000051608567 8.0(−35) 5.2(−17) 1.001210273(+11)
3 1.750000000000000000000000 1.1(−240) 5.9(−120) 7.9928 1.178394347(+11)

MM1

0 1.8 2.0(−4) 5.0(−2)
1 1.750083046950291853331587 2.1(−10) 8.3(−5) 2.154463519(+6) 2.545224623(+9)
2 1.750000000000000000000006 9.5(−49) 5.6(−24) 2.493663476(+9)
3 1.750000000000000000000000 2.0(−355) 2.6(−177) 7.9993 2.545224623(+9)

MM2

0 1.8 2.0(−4) 5.0(−2)
1 1.750071038018750802896248 1.5(−10) 7.1(−5) 1.639376116(+6) 1.741469479(+9)
2 1.750000000000000000000001 3.7(−50) 1.1(−24) 1.712046103(+9)
3 1.750000000000000000000000 4.9(−367) 4.0(−183) 7.9994 1.741469479(+9)

MM3

0 1.8 2.0(−4) 4.9(−2)
1 1.750570071950781672220702 1.5(−8) 7.0(−4) 2.002134740(+7) 2.569337277(+10)
2 1.750000000000001356336629 4.6(−32) 1.2(−15) 2.174278591(+10)
3 1.750000000000000000000000 5.9(−220) 1.4(−109) 7.9904 2.569337277(+10)
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Figure 1. Dynamical plane of the methods GK1, GK2, OM, and ZM on f1(x).
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Figure 2. Dynamical plane of the methods MM1, MM2, and MM3 on f1(x).

Example 2. Fractional conversion in a chemical reactor:
Let us consider the following equation (see [27,28] for more details):

f2(x) =
x

1− x
− 5 log

[
0.4(1− x)
0.4− 0.5x

]
+ 4.45977. (38)

In the above equation, x represents the fractional conversion of Species A in a chemical reactor. There is no
physical meaning of Equation (38) if x is less than zero or greater than one, since x is bounded in the region
0 ≤ x ≤ 1. The required zero (that is simple) to this problem is x ≈ 0.757396246253753879459641297929.
Nonetheless, the above equation is undefined in the region 0.8 ≤ x ≤ 1, which is very close to the desired zero.
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Furthermore, there are some other properties of this function that make the solution more difficult to obtain.
In fact, the derivative of the above equation is very close to zero in the region 0 ≤ x ≤ 0.5, and there is an
infeasible solution for x = 1.098.

From Figures 3 and 4, we verified that the basin of attraction of the searched root (orange color)
was very small, or does not exist in most of the methods. The number of non-convergent points that
corresponds to the black area was very large for all the considered methods (see Table 8). Moreover,
an almost symmetric orange-colored area appeared in some cases, which corresponds to the solution
without physical sense, that is an attracting fixed point. Except for GK1 (not applicable for simple
roots), all other methods converged to the multiple roost only if the initial guess was chosen sufficiently
close to the required root, although the basins of attraction were quite small in all cases. The numerical
results presented in Table 2 are compatible with the dynamical results in Figures 3 and 4. We can see
that the new methods revealed smaller residual error and a smaller difference between the consecutive
approximations in comparison to the existing ones. Moreover, the numerical estimation of the order of
convergence coincided with the theoretical one in all cases. In Table 2, the symbol ∗means that the
corresponding method does not converge to the desired root.
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Figure 3. Dynamical plane of the methods GK1, GK2, OM, and ZM on f2(x).
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Table 2. Convergence behavior of seven different iterative methods on the test function f2(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 0.76 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗

GK2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962460753336221899798 1.4(−8) 1.8(−10) 5.725910242(+5) 5.257130496(+5)
2 0.7573962462537538794596413 1.4(−51) 1.7(−53) 5.257130467(+5)
3 0.7573962462537538794596413 1.0(−309) 1.3(−311) 6.0000 5.257130496(+5)

OM

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962463137703385994168 4.8(−9) 6.0(−11) 2.840999693(+10) 3.013467463(+10)
2 0.7573962462537538794596413 4.0(−70) 5.1(−72) 3.013467461(+10)
3 0.7573962462537538794596413 1.1(−558) 1.3(−560) 8.0000 3.013467463(+10)

ZM

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962463048948508621891 4.1(−9) 5.1(−11) 2.420860580(+10) 3.421344786(+10)
2 0.7573962462537538794596413 1.3(−70) 1.6(−72) 3.421344762(+10)
3 0.7573962462537538794596413 1.2(−562) 1.5(−564) 8.0000 3.421344786(+10)

MM1

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962462537574111428461 2.8(−13) 3.5(−15) 1.671792904(+6) 1.186467025(+6)
2 0.7573962462537538794596413 2.3(−108) 2.9(−110) 1.186467025(+6)
3 0.7573962462537538794596413 4.4(−869) 5.5(−871) 8.0000 1.186467025(+6)

MM2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962462537553703375248 1.2(−13) 1.5(−15) 7.057368744(+5) 4.421886626(+5)
2 0.7573962462537538794596413 8.6(−112) 1.1(−113) 4.421886626(+5)
3 0.7573962462537538794596413 6.5(−897) 8.1(−899) 8.0000 4.421886626(+5)

MM3

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962462537526002632867 1.0(−13) 1.3(−15) 6.055331876(+5) 5.153221799(+5)
2 0.7573962462537538794596413 2.9(−112) 3.7(−114) 5.153221799(+5)
3 0.7573962462537538794596413 1.4(−900) 1.8(−902) 8.0000 5.153221799(+5)

(* means: the corresponding method does not work.)
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Figure 4. Dynamical plane of the methods MM1, MM2, and MM3 on f2(x).

Example 3. Continuous stirred tank reactor (CSTR) [20,29]:

In this third example, we considered the isothermal continuous stirred tank reactor (CSTR) problem.
The following reaction scheme develops in the reactor (see [30] for more details):

A + R→ B

B + R→ C

C + R→ D

C + R→ E,

(39)

where components A and R are fed to the reactor at rates of Q and q−Q, respectively. The problem was analyzed
in detail by Douglas [31] in order to design simple feedback control systems. In the modeling study, the following
equation for the transfer function of the reactor was given:

KC
2.98(x + 2.25)

(s + 1.45)(s + 2.85)2(s + 4.35)
= −1, (40)

where KC is the gain of the proportional controller. The control system is stable for values of KC, which yields
roots of the transfer function having a negative real part. If we choose KC = 0, then we get the poles of the
open-loop transfer function as roots of the nonlinear equation:

f3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0 (41)

such as x = −1.45, −2.85, −2.85, −4.35. Therefore, we see that there is one root x = −2.85 with
multiplicity two.

The numerical results for this example are listed in Table 3. The dynamical planes for this example
are plotted in Figures 5 and 6. For methods GK1, GK2, and ZM, the black region of divergence was
very large, which means that the methods would not converge if the initial point was located inside
this region. This effect can also be observed from Table 8, where the average number of iterations per
point and percentage of non-convergent points are high for methods GK1 (I/P = 13.71 on average),
GK2 (I/P = 12.18 on average), and ZM (I/P = 12.50 on average), while the new methods have a
comparatively smaller number of iterations per point. The results of method OM closely follow the
new methods with an average number of 7.29 iterations per point.
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Figure 5. Dynamical plane of the methods GK1, GK2, OM, and ZM on f3(x).
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Table 3. Convergence behavior of seven different iterative methods on the test function f3(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 −3.0 4.7(−2) 1.5(−1)
1 −2.850032149435759899649078 2.2(−9) 3.2(−5) 2.826079363(+0) 4.198827967(−5)
2 −2.850000000000000000000000 4.5(−63) 4.6(−32) 4.191188565(−5)
3 −2.850000000000000000000000 3.6(−385) 4.1(−193) 6.0000 4.198827967(−5)

GK2

0 −3.0 4.7(−2) 1.5(−1)
1 −2.845530536829933778640841 4.2(−5) 4.5(−3) 3.291554609(+2) 1.360955722(−3)
2 −2.850002074441970615144759 9.0(−12) 2.1(−6) 2.595135041(+8)
3 −2.850000000000000000000000 2.5(−74) 1.1(−37) 9.3846 1.360955722(−3)

OM

0 −3.0 4.7(−2) 1.6(−1)
1 −2.844042602118935658056506 7.5(−5) 6.0(−3) 1.703635813(+4) 6.783289282(−4)
2 −2.850005050121091781574571 5.4(−11) 5.1(−6) 3.161585672(+12)
3 −2.850000000000000000000000 1.7(−91) 2.9(−46) 13.102 6.783289282(−4)

ZM

0 −3.0 4.7(−2) 1.6(−1)
1 −2.840827596075196247341513 1.8(−4) 9.2(−3) 2.230697732(+4) 3.402776481(−4)
2 −2.850019022777759525868734 7.6(−10) 1.9(−5) 3.734311208(+11)
3 −2.850000000000000000000000 7.1(−83) 5.8(−42) 13.609 3.402776481(−4)

MM1

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847075767557386926817015 1.8(−5) 2.9(−3) 9.778827612(+3) 3.201998473(−4)
2 −2.850000574904908612754099 6.9(−13) 5.7(−7) 1.073539173(+14)
3 −2.850000000000000000000000 3.1(−107) 3.8(−54) 12.729 3.201998473(−4)

MM2

0 −3.0 4.7(−2) 1.5(−1)
1 2.847075846659888868138671 1.8(−5) 2.9(−3) 9.778603498(+3) 3.209704581(−4)
2 −2.850000574872938822686310 6.9(−13) 5.7(−7) 1.073711858(+14)
3 −2.850000000000000000000000 3.1(−107) 3.8(−54) 12.728 3.209704581(−4)

MM3

0 −3.0 4.7(−2) 9.4(−2)
1 −2.905607206926252789906690 6.5(−3) 5.5(−2) 8.756793722(+6) 6.122326772(−3)
2 −2.850417788760620872669269 3.7(−7) 4.2(−4) 4.854116866(+6)
3 −2.850000000000000000000000 6.8(−59) 5.7(−30) 12.176 6.122326772(−3)
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Example 4. Let us consider another nonlinear test function from [2], as follows:

f4(x) = ((x− 1)3 − 1)50.

The above function has a multiple zero at x = 2 of multiplicity 50.

Table 4 shows the numerical results for this example. It can be observed that the results were
very good for all the cases, the residuals being lower for the newly-proposed methods. Moreover,
the asymptotic error constant (η) displayed in the last column of Table 4 was large for the methods
OM and ZM in comparison to the other schemes. Based on the dynamical planes in Figures 7 and
8, it is observed that in all schemes, except GK1, the black region of divergence was very large. This
is also justified from the observations of Table 8. We verified that ZM required the highest average
number of iterations per point (I/P = 17.74), while GK1 required the smallest number of iterations
per point (I/P =6.78). All other methods required an average number of iterations per point in the
range of 15.64–16.67. Furthermore, we observed that the percentage of non-convergent points NC(%)

was very high for ZM (56.04%) followed by GK2 (45.88%). Furthermore, it can also be seen that the
average number of iterations per convergent point (IC/C) for the methods GK1, GK2, OM, and ZM
was 6.55, 8.47, 9.58, and 8.52, respectively. On the other hand, the proposed methods MM1, MM2, and
MM3 required 9.63, 9.67, and 10.13, respectively.
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Figure 7. Dynamical plane of the methods GK1, GK2, OM, and ZM on f4(x).
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Table 4. Convergence behavior of seven different iterative methods on the test function f4(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 2.1 9.8(−25) 1.0(−1)
1 2.000002777374011867781357 1.1(−254) 2.8(−6) 2.777836885(+00) 5.504789671(+00)
2 2.000000000000000000000000 9.6(−1607) 2.5(−33) 5.504677538(+00)
3 2.000000000000000000000000 4.5(−9719) 1.4(−195) 6.0000 5.504789671(+00)

GK2

0 2.1 9.8(−25) 1.0(−1)
1 2.000000200989638086020762 1.0(−311) 2.0(−7) 2.009920619(−1) 2.777777778(−1)
2 2.000000000000000000000000 9.8(−2014) 1.8(−41) 2.777775861(−1)
3 2.000000000000000000000000 7.3(−12226) 1.0(−245) 6.0000 2.777777778(−1)

OM

0 2.1 9.8(−25) 1.0(−1)
1 2.000000785189010712446522 4.0(−282) 7.9(−7) 7.852383342(+1) 2.269259259(+2)
2 2.000000000000000000000000 4.4(−2301) 3.3(−47) 2.269242109(+2)
3 2.000000000000000000000000 8.3(−18453) 3.0(−370) 8.0000 2.269259259(+2)

ZM

0 2.1 9.8(−25) 1.0(−1)
1 2.000000477890417235498042 6.6(−293) 4.8(−7) 4.779086880(+1) 2.084074074(+2)
2 2.000000000000000000000000 3.4(−2389) 5.7(−49) 2.084057463(+2)
3 2.000000000000000000000000 1.6(−19159) 2.2(−384) 8.0000 2.084074074(+2)

MM1

0 2.1 9.8(−25) 1.0(−1)
1 2.000000007342778263970301 1.4(−383) 7.3(−9) 7.342782577(−1) 1.259259259(+00)
2 2.000000000000000000000000 1.6(−3225) 1.1(−65) 1.259259209(+00)
3 2.000000000000000000000000 4.6(−25961) 2.1(−520) 8.0000 1.259259259(+00)

MM2

0 2.1 9.8(−25) 1.0(−1)
1 2.000000004907980605841013 2.5(−392) 4.9(−9) 4.907982533(−1) 8.148148148(−1)
2 2.000000000000000000000000 5.9(−3305) 2.7(−67) 8.148147946(−1)
3 2.000000000000000000000000 5.3(−26606) 2.6(−533) 8.0000 8.148148148(−1)

MM3

0 2.1 9.8(−25) 1.0(−1)
1 2.000000037492911964195190 3.6(−348) 3.7(−8) 3.749302442(+00) 6.651851852(+00)
2 2.000000000000000000000000 3.8(−2906) 2.6(−59) 6.651850415(+00)
3 2.000000000000000000000000 6.6(−23370) 1.4(−468) 8.0000 6.651851852(+00)



Symmetry 2019, 11, 837 20 of 30

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-3.

Re(z)

Im
(

(a) MM1

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-3.

Re(z)
Im

(

(b) MM2

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-3.

Re(z)

Im

(c) MM3

Figure 8. Dynamical plane of the methods MM1, MM2, and MM3 on f4(x).

Example 5. Planck’s radiation law problem [32]:

We considered the following Planck’s radiation law problem that calculates the energy density within an
isothermal blackbody and is given by [33]:

Ψ(λ) =
8πchλ−5

e
ch

λBT − 1
, (42)

where λ represents the wavelength of the radiation, T stands for the absolute temperature of the blackbody,
B is the Boltzmann constant, h denotes Planck’s constant, and c is the speed of light. We were interested in
determining the wavelength λ that corresponds to the maximum energy density Ψ(λ).

The condition Ψ′(λ) = 0 implies that the maximum value of Ψ occurs when:

ch
λBT e

ch
λBT

e
ch

λBT − 1
= 5. (43)

If x = ch
λBT , then (43) is satisfied when:

f5(x) = e−x +
x
5
− 1 = 0. (44)

Therefore, the solutions of f5(x) = 0 give the maximum wavelength of radiation λ by means of the
following formula:

λ ≈ ch
αBT

, (45)

where α is a solution of (44). The desired root is x = 4.9651142317442 with multiplicity m = 1.

The numerical results for the test equation f5(x) = 0 are displayed in Table 5. It can be
observed that MM1 and MM2 had small values of residual errors and asymptotic error constants
(η), in comparison to the other methods, when the accuracy was tested in multi-precision arithmetic.
Furthermore, the basins of attraction for all the methods are represented in Figures 9 and 10. One can
see that the fractal plot of the method GK1 was completely black because the multiplicity of the desired
root was unity in this case. On the other hand, method GK2 had the most reduced black area in
Figure 9b, which is further justified in Table 8. The method GK2 had a minimum average number
of iterations per point (I/P = 2.54) and the smallest percentage of non-convergent points (1.40%),
while ZM had the highest percentage of non-convergent points (15.36%). For the other methods,
the average number of iterations per point was in the range from 4.55–5.22 and the percentage of
non-convergent points lies between 12.32 and 12.62.
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Figure 9. Dynamical plane of the methods GK1, GK2, OM, and ZM on f5(x).
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Figure 10. Dynamical plane of the methods MM1, MM2, and MM3 on f5(x).
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Table 5. Convergence behavior of seven different iterative methods on the test function f5(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 5.0 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗

GK2

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744277568317118 2.4(−16) 1.3(−15) 7.015679382(−7) 7.468020979(−7)
2 4.965114231744276303698759 5.9(−97) 3.1(−96) 7.468020979(−7)
3 4.965114231744276303698759 1.2(−580) 6.1(−580) 6.0000 7.468020979(−7)

OM

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744276303744811 8.9(−21) 4.6(−20) 2.099233812(−8) 2.312146664(−8)
2 4.965114231744276303698759 9.0(−164) 4.7(−163) 2.312146664(−8)
3 4.965114231744276303698759 1.0(−1307) 5.3(−1307) 8.0000 2.312146664(−8)

ZM

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744276303727319 5.5(−21) 2.9(−20) 1.301869270(−8) 1.435568470(−8)
2 4.965114231744276303698759 1.2(−165) 6.4(−165) 1.435568470(−8)
3 4.965114231744276303698759 7.4(−1323) 3.8(−1322) 8.0000 1.435568470(−8)

MM1

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744276303698037 1.4(−22) 7.2(−22) 3.292330246(−10) 3.271194020(−10)
2 4.965114231744276303698759 4.7(−180) 2.4(−179) 3.271194020(−10)
3 4.965114231744276303698759 7.5(−1440) 3.9(−1439) 8.0000 3.271194020(−10)

MM2

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744276303697570 2.3(−22) 1.2(−21) 5.422796069(−10) 5.652515383(−10)
2 4.965114231744276303698759 4.4(−178) 2.3(−177) 5.652515383(−10)
3 4.965114231744276303698759 7.6(−1424) 3.9(−1423) 8.0000 5.652515383(−10)

MM3

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231744276303884580 3.6(−20) 1.9(−19) 8.470476959(−8) 9.198872232(−8)
2 4.965114231744276303698759 2.5(−158) 1.3(−157) 9.198872232(−8)
3 4.965114231744276303698759 1.5(−1263) 7.9(−1263) 8.0000 9.198872232(−8)

(* means: the corresponding method does not work.)
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Example 6. Consider the following 5× 5 matrix [29]:

B =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3

 .

The corresponding characteristic polynomial of this matrix is as follows:

f6(x) = (x− 2)4(x + 1). (46)

The characteristic equation has one root at x = 2 of multiplicity four.

Table 6 shows the numerical results for this example. It can be observed in Figures 11 and 12 that
the orange areas dominate the plot. In fact, they correspond to the basin of attraction of the searched
zero. This means that the method converges if the initial estimation was located inside this orange
region. All schemes had a negligible black portion, as can be observed in Figures 11 and 12. Moreover,
the numerical tests for this nonlinear function showed that MM1, MM2, and MM3 had the best results
in terms of accuracy and estimation of the order of convergence. Consulting Table 8, we note that
the average number of iterations per point (I/P) was almost identical for all methods (ranging from
3.25–3.52).
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Figure 11. Dynamical plane of the methods GK1, GK2, OM, and ZM on f6(x).
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Table 6. Convergence behavior of seven different iterative methods on the test function f6(x).

Methods n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 2.5 2.2(−1) 5.0(−1)

1 2.000000762961482937437254 1.0(−24) 7.6(−7) 4.882998197(−5) 1.120047678(−4)

2 2.000000000000000000000000 7.1(−163) 2.2(−41) 1.120046114(−4)

3 2.000000000000000000000000 8.6(−992) 1.3(−248) 6.0000 1.120047678(−4)

GK2

0 2.5 2.2(−1) 5.0(−1)

1 2.000000228864153793460042 8.2(−27) 2.3(−7) 1.464734607(−5) 2.813143004(−5)

2 2.000000000000000000000000 8.0(−178) 4.0(−45) 2.813142103(−5)

3 2.000000000000000000000000 6.8(−1084) 1.2(−271) 6.0000 2.813143004(−5)

OM

0 2.5 2.2(−1) 5.0(−1)

1 2.000000024064327301586022 1.0(−30) 2.4(−8) 6.160470161(−6) 2.026132759(−5)

2 2.000000000000000000000000 8.1(−263) 2.3(−66) 2.026132634(−5)

3 2.000000000000000000000000 1.4(−2119) 1.5(−530) 8.0000 2.026132759(−5)

ZM

0 2.5 2.2(−1) 5.0(−1)

1 2.000000015545259122950984 1.8(−31) 1.6(−8 3.979587325(−6) 1.501808114(−5)

2 2.000000000000000000000000 2.1(−269) 5.1(−68) 1.501808045(−5)

3 2.000000000000000000000000 7.7(−2173) 7.1(−544) 8.0000 1.501808114(−5)

MM1

0 2.5 2.2(−1) 5.0(−1)

1 2.000000000897064386120835 1.9(−36) 9.0(−10) 2.296484861(−7) 6.104911033(−7)

2 2.000000000000000000000000 1.3(−314) 2.6(−79) 6.104911022(−7)

3 2.000000000000000000000000 4.8(−2540) 1.1(−635) 8.0000 6.104911033(−7)

MM2

0 2.5 2.2(−1) 5.0(−1)

1 2.000000000657603174893603 5.6(−37) 6.6(−10) 1.683464145(−7) 4.360650738(−7)

2 2.000000000000000000000000 1.6(−319) 1.5(−80) 4.360650732(−10)

3 2.000000000000000000000000 7.9(−2580) 1.3(−645) 8.0000 4.360650738(−7)

MM3

0 2.5 2.2(−1) 5.0(−1)

1 2.000000013818852989402478 1.1(−31) 1.4(−8) 3.537627147(−6) 9.122481344(−6)

2 2.000000000000000000000000 6.5(−272) 1.2(−68) 9.122481086(−6)

3 2.000000000000000000000000 1.0(−2193) 4.3(−549) 8.0000 9.122481344(−6)
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Figure 12. Dynamical plane of the methods MM1, MM2, and MM3 on f6(x).

Example 7. Global CO2 model by McHugh et al. [34] in ocean chemistry:
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In this example, we discuss the global CO2 model by McHugh et al. [34] in ocean chemistry (please see [35]
for more details). This problem leads to the numerical solution of a nonlinear fourth-order polynomial in the
calculation of pH of the ocean. The effect of atmospheric CO2 is very complex and varies with the location.
Therefore, Babajee [35] considered a simplified approach based on the following assumptions:

1. Only the ocean upper layer is considered (not the deep layer),
2. Neglecting the spatial variations, an approximation of the ocean upper layer carbon distribution by perfect

mixing is considered.

As the CO2 dissolves in ocean water, it undergoes a series of chemical changes that ultimately lead to
increased hydrogen ion concentration, denoted as [H+], and thus acidification. The problem was analyzed by
Babajee [35] in order to find the solution of the following nonlinear function:

p([H+]) =
4

∑
n=0

δn[H+]n, (47)

so that: 

δ0 = 2N0N1N2PtNB,

δ1 = N0N1PtNB + 2N0N1N2Pt + NW NB,

δ2 = N0N1Pt + BNB + NW − ANB,

δ3 = −NB − A,

δ4 = −1.

(48)

where N0, N1, N2, NW , and NB are equilibrium constants. The parameter A represents the alkalinity, which
expresses the neutrality of the ocean water, and Pt is the gas phase CO2 partial pressure. We assume the values
of A = 2.050 and B = 0.409 taken by Sarmiento and Gruyber [36] and Bacastow and Keeling [37], respectively.
Furthermore, choosing the values of N0, N1, N2, NW , NB and Pt given by Babajee [35], we obtain the following
nonlinear equation:

f7(x) = x4 − 2309x3

250
− 65226608163x2

500000
+

425064009069x
25000

− 10954808368405209
62500000

= 0. (49)

The roots of f7(x) = 0 are given by x = −411.452, 11.286, 140.771, 268.332. Hereafter, we pursue the
root −411.452 having multiplicity m = 1.

The numerical experiments of this example are given in Table 7. The methods MM1, MM2, and
MM3 had small residual errors and asymptotic error constants when compared to the other schemes.
The computational order of convergence for all methods coincided with the theoretical ones in seven
cases. Figures 13 and 14 show the dynamical planes of all the methods on test function f7(x). It can be
observed that all methods showed stable behavior, except GK1, as can also be confirmed in Table 8.
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Table 7. Convergence behavior of seven different iterative methods on the test function f7(x).

Cases n xn | f (xn)| |xn+1− xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 −412 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗

GK2

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660545671537300 9.6(−5) 6.1(−13) 1.636932403(−12) 1.668249119(−12)
2 −411.1521869660539592549395 1.3(−77) 8.4(−86) 1.668249119(−12)
3 −411.1521869660539592549395 9.4(−515) 5.9(−523) 6.0000 1.668249119(−12)

OM

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660539699457729 1.7(−6) 1.1(−14) 4.005076808(−14) 4.198566741(−14)
2 −411.1521869660539592549395 1.1(−117) 7.2(−126) 4.198566741(−14)
3 −411.1521869660539592549395 4.6(−1007) 2.9(−1015) 8.0000 4.198566741(−14)

ZM

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660539687486432 1.5(−6) 9.5(−15) 3.556599499(−14) 3.852323642(−14)
2 −411.1521869660539592549395 4.0(−118) 2.5(−126) 3.852323642(−14)
3 −411.1521869660539592549395 1.1(−1010) 6.7(−1019) 8.0000 3.852323642(−14)

MM1

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660539593175727 9.9(−9) 6.3(−17) 2.346410356(−16) 6.104911033(−16)
2 −411.1521869660539592549395 9.0(−138) 5.7(−146) 2.411235469(−16)
3 −411.1521869660539592549395 4.3(−1170) 2.7(−1178) 8.0000 2.411235469(−16)

MM2

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660539592959876 6.5(−9) 4.1(−17) 1.537771590(−16) 1.577812528(−16)
2 −411.1521869660539592549395 2.0(−139) 1.3(−147) 1.577812528(−16)
3 −411.1521869660539592549395 1.7(−1183) 1.1(−1191) 8.0000 1.577812528(−16)

MM3

0 −412 1.3(+8) 8.5(−1)
1 −411.1521869660539595822845 5.2(−8) 3.3(−16) 1.226323165(−15) 1.263010316(−15)
2 −411.1521869660539592549395 2.6(−131) 1.7(−139) 1.263010316(−15)
3 −411.1521869660539592549395 1.2(−1117) 7.5(−1126) 8.0000 1.263010316(−15)

(* means: the corresponding method does not work.)
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Table 8. Measures of convergence of the seven iterative methods for test functions fi(x) = 0,
i = 1, . . . , 7.

f (x) Methods I/P NC (%) IC /C f (x) Methods I/P NC (%) IC /C
f1(x) GK1 14.82 38.57 8.43 f5(x) GK1 0.99 99.99 0.00

GK2 12.06 36.09 4.75 GK2 2.54 1.40 2.30
OM 6.79 0.12 6.77 OM 4.86 12.32 2.84
ZM 11.08 9.15 9.67 ZM 4.55 15.36 2.58

MM1 5.95 0.04 5.95 MM1 5.17 12.41 2.92
MM2 5.99 0.03 5.99 MM2 5.19 12.62 2.90
MM3 6.60 0.04 6.59 MM3 5.22 12.50 2.98

f2(x) GK1 1.00 100 6.32 f6(x) GK1 3.48 0.00 3.48
GK2 8.93 99.58 1.6 GK2 3.52 0.00 3.52
OM 11.05 99.99 1.6 OM 3.25 0.00 3.25
ZM 10.23 99.98 2.15 ZM 3.52 0.01 3.53

MM1 11.72 99.99 1.6 MM1 3.32 0.00 3.32
MM2 11.87 99.99 1.6 MM2 3.32 0.00 3.32
MM3 11.82 99.99 1.6 MM3 3.32 0.00 3.32

f3(x) GK1 13.71 42.03 5.52 f7(x) GK1 1 100 ∗∗
GK2 12.18 38.63 4.11 GK2 1 0 1
OM 7.29 1.13 7.09 OM 1 0 1
ZM 12.50 22.31 8.91 ZM 1 0 1

MM1 6.97 0.71 6.84 MM1 1 0 1
MM2 6.99 0.63 6.88 MM2 1 0 1
MM3 6.84 0.62 6.73 MM3 1 0 1

f4(x) GK1 6.78 1.25 6.55
GK2 16.05 45.88 8.47
OM 15.77 40.18 9.58
ZM 17.74 56.04 8.52

MM1 15.64 39.12 9.63
MM2 15.67 39.16 9.67
MM3 16.41 42.22 10.13

** stands for indeterminate.

4. Conclusions

This paper developed a wide general three-step class of methods for approximating multiple zeros
of nonlinear functions numerically. Optimal iteration schemes having eighth order for multiple zeros
have been seldom considered in the literature. Therefore, the presented methods may be regarded as a
further step in this area. Weight functions based on function-to-function ratios and free parameters
were employed in the second and third steps of the family. This strategy allowed us to achieve the
desired convergence order of eight. In the numerical section, we considered a large variety of real-life
problems. The seven examples confirmed the efficiency of the proposed technique in comparison
to the existing robust methods. From the computational results, we found that the new methods
showed superior performance in terms of precision, the average number of iterations per point, and
the percentage of non-convergent points for the considered seven test functions. The straightforward
structure and high convergence order of the proposed class make it relevant both from the theoretical
and practical points of view.

Author Contributions: All the authors made equal contributions to this paper.

Funding: This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under Grant No. D-247-248-1440. The authors, therefore, gratefully acknowledge the DSR for technical
and financial support.

Acknowledgments: We would like to express our gratitude to the anonymous reviewers for their constructive
suggestions, which improved the readability of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.



Symmetry 2019, 11, 837 29 of 30
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