
symmetryS S

Article

Total Weak Roman Domination in Graphs

Abel Cabrera Martínez 1,*, Luis P. Montejano 2 and Juan A. Rodríguez-Velázquez 1

1 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26,
43007 Tarragona, Spain; juanalberto.rodriguez@urv.cat

2 CONACYT Research Fellow—Centro de Investigación en Matemáticas, 36023 Guanajuato, GTO, Mexico;
luis.montejano@cimat.mx

* Correspondence: abel.cabrera@urv.cat

Received: 17 May 2019; Accepted: 19 June 2019; Published: 24 June 2019
����������
�������

Abstract: Given a graph G = (V, E), a function f : V → {0, 1, 2, . . . } is said to be a total dominating
function if ∑u∈N(v) f (u) > 0 for every v ∈ V, where N(v) denotes the open neighbourhood of
v. Let Vi = {x ∈ V : f (x) = i}. We say that a function f : V → {0, 1, 2} is a total weak
Roman dominating function if f is a total dominating function and for every vertex v ∈ V0 there
exists u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1, f ′(u) = f (u)− 1 and
f ′(x) = f (x) whenever x ∈ V \ {u, v}, is a total dominating function as well. The weight of a function
f is defined to be w( f ) = ∑v∈V f (v). In this article, we introduce the study of the total weak Roman
domination number of a graph G, denoted by γtr(G), which is defined to be the minimum weight
among all total weak Roman dominating functions on G. We show the close relationship that exists
between this novel parameter and other domination parameters of a graph. Furthermore, we obtain
general bounds on γtr(G) and, for some particular families of graphs, we obtain closed formulae.
Finally, we show that the problem of computing the total weak Roman domination number of a
graph is NP-hard.

Keywords: weak Roman domination; total Roman domination; secure total domination; total
domination; NP-hard problem

1. Introduction

The theory of domination in (finite) graphs can be developed using functions f : V(G) → A,
where V(G) is the vertex set of a graph G and A is a set of nonegative numbers. With this approach,
the different types of domination are obtained by imposing certain restrictions on f . To begin with,
let us consider the two simplest cases: f is said to be a dominating function if for every vertex v such
that f (v) = 0, there exists a vertex u, adjacent to v, such that f (u) > 0; furthermore, f is said to be
a total dominating function (TDF) if for every vertex v, there exists a vertex u, adjacent to v, such that
f (u) > 0. Analogously, a set X ⊆ V(G) is a (total) dominating set if there exists a (total) dominating
function f such that f (x) > 0 if and only if x ∈ X. The (total) domination number of G, denoted by
(γt(G)) γ(G), is the minimum cardinality among all (total) dominating sets. These two parameters
have been extensively studied. While the use of functions is not necessary to reach the concept of
(total) domination number, later we will see that this idea helps us to easily introduce other more
elaborate concepts.

From now on, we restrict ourselves to the case of functions f : V(G)→ {0, 1, 2}, which are related
to the following approach to protection of a graph described by Cockayne et al. [1]. Suppose that one
or more entities are stationed at some of the vertices of a simple graph G and that an entity at a vertex
can deal with a problem at any vertex in its closed neighbourhood. In this context, an entity could
consist of a robot, an observer, a guard, a legion, and so on. Consider a function f : V(G)→ {0, 1, 2}
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where f (v) denotes the number of entities stationed at v, and let Vi = {v ∈ V(G) : f (v) = i} for
every i ∈ {0, 1, 2}. We will identify the function f with the partition of V(G) induced by f and write
f (V0, V1, V2). The weight of f is defined to be ω( f ) = f (V(G)) = ∑v∈V(G) f (v) = ∑i i|Vi|. Informally,
we say that G is protected under the function f if there exists at least one entity available to handle
a problem at any vertex. We now define some particular subclasses of protected graphs considered
in [1] and introduce a new one. The functions in each subclass protect the graph according to a
certain strategy.

A Roman dominating function (RDF) is a function f (V0, V1, V2) such that for every vertex v ∈ V0

there exists a vertex u ∈ V2 which is adjacent to v. The Roman domination number, denoted by γR(G), is
the minimum weight among all RDFs on G. This concept of protection has historical motivation [2]
and was formally proposed by Cockayne et al. in [3]. A Roman dominating function with minimum
weight γR(G) on G is called a γR(G)-function. A similar agreement will be assumed when referring to
optimal functions (and sets) associated to other parameters used in the article.

A total Roman dominating function (TRDF) on a graph G is a RDF on G with the additional
condition of being a TDF. The total Roman domination number of G, denoted by γtR(G), was defined by
Liu and Chang [4] as the minimum weight among all TRDFs on G. For recent results on total Roman
domination in graphs we cite [5].

The remaining domination parameters considered in this paper are directly related to the following
idea of protection of a vertex. A vertex v ∈ V0 is said to be (totally) protected under f (V0, V1, V2) if
there exists a vertex u ∈ V1 ∪ V2, adjacent to v, such that the function f ′, defined by f ′(v) = 1,
f ′(u) = f (u) − 1 and f ′(x) = f (x) whenever x ∈ V(G) \ {u, v}, is a (total) dominating function.
In such a case, if it is necessary to emphasize the role of u, then we will say that v is (totally) protected
by u under f .

A weak Roman dominating function (WRDF) is a function f (V0, V1, V2) such that every vertex in V0

is protected under f . The weak Roman domination number, denoted by γr(G), is the minimum weight
among all WRDFs on G. This concept of protection was introduced by Henning and Hedetniemi [6]
and studied further in [7–9].

A secure dominating function is a WRDF function f (V0, V1, V2) in which V2 = ∅. In this case, it
is convenient to define this concept of protection by the properties of V1. Obviously f (V0, V1, ∅) is a
secure dominating function if and only if V1 is a dominating set and for every v ∈ V0 there exists u ∈ V1

which is adjacent to v and (V1 \ {u}) ∪ {v} is a dominating set as well. In such a case, V1 is said to be
a secure dominating set. The secure domination number, denoted by γs(G), is the minimum cardinality
among all secure dominating sets. This concept of protection was introduced by Cockayne et al. in [1],
and studied further in [7,8,10–13].

A set X ⊆ V(G) is said to be a secure total dominating set of G if it is a total dominating set and for
every vertex v /∈ X there exists u ∈ X which is adjacent to v and (X \ {u}) ∪ {v} is a total dominating
set as well. The secure total domination number, denoted by γst(G), is the minimum cardinality among
all secure total dominating sets. This concept of protection was introduced by Benecke et al. in [14].

In this article we introduce the study of total weak Roman domination in graphs. We define a
total weak Roman dominating function (TWRDF) to be a TDF f (V0, V1, V2) such that every vertex in V0 is
totally protected under f . The total weak Roman domination number, denoted by γtr(G), is the minimum
weight among all TWRDFs on G. In particular, we can define a secure total dominating function (STDF)
to be a TWRDF f (V0, V1, V2) in which V2 = ∅. Obviously f (V0, V1, ∅) is a STDF if and only if V1 is a
secure total dominating set.

Figure 1 shows a graph G satisfying γt(G) < γR(G) < γtr(G) < γtR(G) and γr(G) < γR(G) <

γtr(G) < γst(G).
The remainder of this paper is structured as follows. Section 2 will briefly cover some notation

and terminology which have not been stated yet. Section 3 introduces basic results which show the
close relationship that exists between the total weak Roman domination number and other domination
parameters. In Section 4 we obtain general bounds and discuss the extreme cases, while in Section 5
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we restrict ourselves to the case of rooted product graphs. Finally, we show that the problem of finding
the total weak Roman domination number of a graph is NP-hard.
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Figure 1. Graph G which satisfies γt(G) = 4 (a), γr(G) = 5 (b), γR(G) = 6 (c), γtr(G) = 7 (d),
γtR(G) = 8 (e) and γst(G) = 9 (f).

2. Notation

Throughout the paper, we will use the following notation. We consider finite, undirected, and
simple graphs G with vertex set V(G) and edge set E(G). Given a vertex v of G, N(v) will denote the
open neighbourhood of v in G, while the closed neighbourhood will be denoted by N[v]. We say that a
vertex v ∈ V(G) is universal if N[v] = V(G).

We denote the minimum degree of G by δ(G) = minv∈V(G){|N(v)|} and the maximum degree by
∆(G) = maxv∈V(G){|N(v)|}. For a set S ⊆ V(G), its open neighbourhood is the set N(S) = ∪v∈SN(v),
and its closed neighbourhood is the set N[S] = N(S) ∪ S.

The graph obtained from G by removing all the vertices in S ⊆ V(G) and all the edges incident
with a vertex in S will be denoted by G− S. Analogously, the graph obtained from G by removing all
the edges in U ⊆ E(G) will be denoted by G−U. If H is a graph, then we say that G is H-free if G
does not contain a copy of H as an induced subgraph.

Given a set S ⊆ V(G) and a vertex v ∈ S, the external private neighbourhood of v with respect to S is
defined to be epn(v, S) = {u ∈ V(G) \ S : N(u) ∩ S = {v}}.

The set of leaves, support vertices and strong support vertices of a graph G, will be denoted by
L(G), S(G) and Ss(G), respectively.

We will use the notation Nn, Kn, K1,n−1, Pn, Cn, and Kr,n−r for empty graphs, complete graphs, star
graphs, path graphs, cycle graphs and complete bipartite graphs of order n, respectively. A subdivided
star graph, denoted by K∗1,(n−1)/2, is a graph of order n (odd) obtained from a star graph K1,(n−1)/2 by
subdividing every edge exactly once.

Let G and H be two graphs, respectively. The corona product G � H is defined as the graph
obtained from G and H by taking one copy of G and |V(G)| copies of H and joining by an edge each
vertex from the ith-copy of H with the ith-vertex of G.

From now on, definitions will be introduced whenever a concept is needed.

3. General Results

We begin with two inequality chains relating several domination parameters.

Proposition 1. The following inequalities hold for any graph G with no isolated vertex.

(i) γ(G) ≤ γr(G) ≤ γtr(G) ≤ γtR(G) ≤ 2γt(G).
(ii) γt(G) ≤ γtr(G) ≤ γst(G).
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Proof. It was shown in [5] that γtR(G) ≤ 2γt(G), and in [6] that γ(G) ≤ γr(G). To conclude the proof
of (i), we only need to observe that any TWRDF is a WRDF, which implies that γr(G) ≤ γtr(G), and
any TRDF is a TWRDF, which implies that γtr(G) ≤ γtR(G).

Now, to prove (ii), we only need to observe that any TWRDF is a TDF, which implies that
γt(G) ≤ γtr(G), and any STDF is a TWRDF, which implies that γtr(G) ≤ γst(G).

From Proposition 1 we immediately derive the following problem.

Problem 1. In each of the following cases, characterize the graphs satisfying the equality.

(i) γtr(G) = γt(G).
(ii) γtr(G) = γr(G).
(iii) γtr(G) = γst(G).
(iv) γtr(G) = γtR(G).

The solution of Problem 1 (i) can be found in Theorem 20. While we will give some examples of
graphs satisfying the remaining equalities, these problems remain open.

Theorem 1. Let G be a graph. The following statements are equivalent.

(a) γtr(G) = γr(G).
(b) There exists a γr(G)-function f (V0, V1, V2) such that V1 = ∅ and V2 is a total dominating set.
(c) γr(G) = 2γt(G).

Proof. Suppose that γtr(G) = γr(G) and let f (V0, V1, V2) be a γtr(G)-function. Notice that f is a
γr(G)-function and V1 ∪V2 is a total dominating set. Now, suppose that there exists u ∈ V1. Since every
vertex in V0 has at least one neighbour in V2 or at least two neighbours in V1, we can conclude that
the function g, defined by g(u) = 0 and g(x) = f (x) whenever x ∈ V(G) \ {u}, is a WRDF of weight
ω(g) = ω( f )− 1 = γr(G)− 1, which is a contradiction. Thus, V1 = ∅ and consequently V2 is a total
dominating set.

Now, if there exists a γr(G)-function f (V0, V1, V2) such that V1 = ∅ and V2 is a total dominating
set, then 2γt(G) ≤ 2|V2| = γr(G), and Proposition 1 (i) leads to γr(G) = 2γt(G).

Finally, if γr(G) = 2γt(G), then for any γt(G)-set A, there exists a γr(G)-function f ′(V′0, V′1, V′2)
such that V′1 = ∅ and V′2 = A, which is a TWRDF. Hence, γtr(G) ≤ ω( f ′) = γr(G) and Proposition 1
(i) leads to γtr(G) = γr(G).

From the theorem above and Proposition 1 we deduce the following result.

Theorem 2. For any graph G with no isolated vertex,

γtr(G) ≥ γ(G) + 1.

The bound above is tight. For instance, if G is a graph having two universal vertices,
then γtr(G) = γ(G) + 1 = 2. Another example is shown in Figure 2.

1 1 1

Figure 2. A graph G with γtr(G) = γ(G) + 1.
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Theorem 3. The following statements are equivalent.

(i) γtr(G) = γ(G) + 1.
(ii) γst(G) = γ(G) + 1.

Proof. First, suppose that (i) holds. Let f (V0, V1, V2) be a γtr(G)-function. Since V1 ∪ V2 is a total
dominating set, |V1| + 2|V2| = γtr(G) = γ(G) + 1 ≤ γt(G) + 1 ≤ |V1| + |V2| + 1. Thus, |V2| ≤ 1.
Suppose that V2 = {u} and let v ∈ N(u)∩V1. Notice that in this case V1 ∪V2 is a γ(G)-set. Now, since
v does not have external private neighbours with respect to V1 ∪V2, we have that (V1 ∪V2) \ {v} is
a dominating set, which is a contradiction. Hence, V2 = ∅ and so f is a γst(G)-function. Therefore,
γst(G) = ω( f ) = γ(G) + 1 and (ii) follows.

Conversely, if (ii) holds, then by Proposition 1 and Theorem 2 we have that
γ(G) + 1 = γst(G) ≥ γtr(G) ≥ γ(G) + 1. Therefore, γtr(G) = γ(G) + 1 and (i) follows.

We continue our analysis by showing another family of graphs satisfying that γtr(G) = γst(G),
where K1,3 + e is the graph obtained by adding an edge to K1,3.

Theorem 4. For any {K1,3, K1,3 + e}-free graph G with no isolated vertex,

γtr(G) = γst(G).

Proof. Let f (V0, V1, V2) be a γtr(G)-function such that |V2| is minimum. We suppose that
γtr(G) < γst(G). In such a case, V2 6= ∅ and we fix a vertex v ∈ V2. Notice that there exist
y ∈ N(v) ∩V0 and z ∈ N(v) ∩ (V1 ∪V2). We consider the function f ′(V′0, V′1, V′2) defined by f ′(v) = 1,
f ′(y) = 1 and f ′(x) = f (x) whenever x ∈ V(G) \ {v, y}. We claim that f ′ is a TWRDF on G. First,
we observe that, by construction, f ′ is a TDF on G. Now, let w ∈ V′0 ⊆ V0 and consider the following
two cases.

Case 1. w is not adjacent to v. Since f is a TWRDF on G, w is totally protected under f and, since
w 6∈ N(v), w is also totally protected under f ′.

Case 2. w is adjacent to v. Notice that w 6= y. In order to show that w is totally protected under f ′,
we define f

′′
(V
′′
0 , V

′′
1 , V

′′
2 ) by f

′′
(v) = 0, f

′′
(w) = 1 and f

′′
(x) = f ′(x) whenever x ∈ V(G) \ {v, w}.

Clearly, every vertex x ∈ V(G) \ N(v) is adjacent to some vertex in V
′′
1 ∪ V

′′
2 . Now, we fix u ∈

N(v) and let D be the set of vertices formed by v, u and two vertices in {w, y, z} \ {u}. As G is a
{K1,3, K1,3 + e}-free graph, it follows that at least one vertex in D \ {v} is adjacent to the another
two vertices in D. Since w, y, z ∈ V

′′
1 ∪ V

′′
2 , we have that u ∈ N(V

′′
1 ∪ V

′′
2 ) and so f

′′
is a TDF on G,

as desired.

Thus f ′ is a TWRDF on G with ω( f ′) = ω( f ) and |V′2| < |V2|, which is a contradiction.
Consequently, we conclude that γtr(G) = γst(G).

We would emphasize that the equality γtr(G) = γst(G) is not restrictive to {K1,3, K1,3 + e}-free
graphs. To see this, we can take G ∼= C3�P3 (see Figure 4).

As a direct consequence of the result above we have that any graph G obtained as the disjoin
union of paths and/or cycles satisfies that γtr(G) = γst(G).

Corollary 1. For any graph G with no isolated vertex and maximum degree ∆(G) ≤ 2,

γtr(G) = γst(G).

From Corollary 1 and the values of γst(Pn) and γst(Cn) obtained in [14], we derive the
following result.
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Remark 1. For any path Pn and any cycle Cn,

(i) γtr(Pn) = γst(Pn)
[14]
=
⌈

5(n−2)
7

⌉
+ 2.

(ii) γtr(Cn) = γst(Cn)
[14]
=
⌈ 5n

7
⌉
.

Our next result will become a useful tool to study the total weak Roman domination number.

Proposition 2. If H is a spanning subgraph (with no isolated vertex) of a graph G, then

γtr(G) ≤ γtr(H).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of H. Let H0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and Hi = G − Xi. Since any TWRDF on Hi is a
TWRDF on Hi−1, we can conclude that γtr(Hi−1) ≤ γtr(Hi). Hence, γtr(G) = γtr(H0) ≤ γtr(H1) ≤
· · · ≤ γtr(Hk) = γtr(H).

From Remark 1 and Proposition 2 we obtain the following result.

Corollary 2. Let G be a graph of order n.

• If G is a Hamiltonian graph, then γtr(G) ≤
⌈ 5n

7
⌉

.
• If G has a Hamiltonian path, then γtr(G) ≤

⌈
5(n−2)

7

⌉
+ 2.

The bounds above are tight, as they are achieved for Cn and Pn, respectively.
A 2-packing of a graph G is a set X ⊆ V(G) such that N[u] ∩ N[v] = ∅ for every pair of

different vertices u, v ∈ X. The 2-packing number ρ(G) is defined as the maximum cardinality among
all 2-packings of G. It is well known that for any graph G, γ(G) ≥ ρ(G) (see for instance [15]).
Furthermore, Meir and Moon [16] showed in 1975 that γ(T) = ρ(T) for every tree T.

Theorem 5. For any graph G with no isolated vertex,

γtr(G) ≥ 2ρ(G).

Furthermore, for any tree T,
γtr(T) ≥ 2γ(T).

Proof. Let f be a γtr(G)-function and S a ρ(G)-set. Since f (N[v]) ≥ 2 for every vertex v ∈ V(G),
and N[x] ∩ N[y] = ∅ for every pair of different vertices x, y ∈ S,

γtr(G) ≥ ∑
v∈S

f (N[v]) ≥ 2|S| = 2ρ(G).

Therefore, the result follows.

To show that the bound above is tight we can consider the case of corona graphs (see Theorem 30).

Theorem 6. For any graph G with no isolated vertex,

γtr(G) ≤ γt(G) + γ(G).

Proof. Let D be a γt(G)-set and S a γ(G)-set. We define the function f (V0, V1, V2) on G,
where V2 = D ∩ S and V1 = (D ∪ S) \ V2. We claim that f is a TWRDF on G. First, notice that
f is a TDF on G. Now, let v ∈ V0. If v has a neighbour in V2, then v is totally protected under
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f . If v has no neighbour in V2, then v has a neighbour x ∈ D \ V2 and a neighbour y ∈ S \ V2.
Consider the function f ′ defined by f ′(v) = 1, f ′(y) = 0, and f ′(x) = f (x) whenever x ∈ V(G) \ {v, y}.
Since D is a total dominating set of G, f ′ is a TDF on G. Hence, f is a TWRDF on G of weight
ω( f ) = 2|V2|+ |V1| = |D|+ |S| = γt(G) + γ(G). Therefore, the result follows.

Notice that for any graph G of order n, minimum degree δ(G) ≥ 1 and maximum degree
∆(G) ≥ n− 2, we have that γt(G) = 2. Therefore, Theorem 6 leads to the following result.

Corollary 3. For any graph G of order n, minimum degree δ(G) ≥ 1 and maximum degree ∆(G) ≥ n− 2,

γtr(G) ≤ 4.

It is not difficult to check that the bound above is achieved for any graph G constructed by joining
with an edge the vertex of a trivial graph N1 and a leaf of a star graph K1,n−2, where n ≥ 4.

If a graph G has diameter two, then for any vertex v ∈ V(G) the open neighbourhood N(v) is a
dominating set and the closed neighbourhood N[v] is a total dominating set. Hence, the following
result is derived from Theorem 6.

Corollary 4. If G is a graph of diameter two and minimum degree δ(G), then

γtr(G) ≤ 2δ(G) + 1.

The bound above is tight. For instance, it is achieved for any star graph K1,n−1 with n ≥ 3.
As shown in [17], if G is a planar graph of diameter two, then γt(G) ≤ 3, and γ(G) ≤ 2 or G is

the graph shown in Figure 3. Hence, from these inequalities and Theorem 6 we derive the following
tight bound.

Theorem 7. If G is a planar graph of diameter two, then γtr(G) ≤ 5.

1

1

1

1

1

Figure 3. A planar graph of diameter two with γtr(G) = 5.

We already know that γtr(G) ≤ 2γt(G) (Proposition 1 (i)). Hence, as a direct consequence of this
inequality and Theorems 1 and 6 we deduce the following result.

Theorem 8. Let G be a graph. If γtr(G) = γr(G), then γt(G) = γ(G).

In general, γt(G) = γ(G) does not imply that γtr(G) = γr(G). For instance, see the graph shown
in Figure 4.

1

1

1

1

1

Figure 4. The graph C3�P3 satisifies γtr(C3�P3) = 5 > 3 = γr(C3�P3),
while γt(C3�P3) = γ(C3�P3) = 3.
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Theorem 9 ([5]). If G is a graph with no isolated vertex, then γtR(G) ≤ 3γ(G). Furthermore, if
γtR(G) = 3γ(G), then every γ(G)-set is a 2-packing of G.

The following result is a direct consequence of combining Proposition 1 (i) and Theorems 6 and 9.

Theorem 10. For any graph G with no isolated vertex,

γtr(G) ≤ 3γ(G).

Furthermore, if γtr(G) = 3γ(G) then γt(G) = 2γ(G) and every γ(G)-set is a 2-packing of G.

Notice that the inequality γtr(G) ≤ 3γ(G) can be also deduced from the following result.

Theorem 11. For any graph G with no isolated vertex,

γtr(G) ≤ γr(G) + γ(G).

Proof. Let f (V0, V1, V2) be a γr(G)-function such that |V2| is maximum among all γr(G)-functions and
let S be a γ(G)-set. Now, we consider the function f ′(V′0, V′1, V′2) defined as follows.

(a) For every x ∈ V2 ∩ S, choose a vertex u ∈ (V0 ∩ N(x)) \ S if it exists, and label it as f ′(u) = 1.
(b) For every x ∈ V1 ∩ S, choose a vertex u ∈ epn(x, V1 ∪V2) \ S if it exists, otherwise choose a vertex

u ∈ (V0 ∩ N(x)) \ S (if exists) and label it as f ′(u) = 1.
(c) For every vertex x ∈ V0 ∩ S, f ′(x) = 1.
(d) For any other vertex u not previously labelled, f ′(u) = f (u).

We claim that f ′ is a TWRDF on G. Firstly, observe that f ′ is a TDF on G. Let v ∈ V′0 ⊆ V0.
If there exists a vertex u ∈ N(v) ∩ V2 ⊆ V′2, then v is totally protected under f ′. Now, suppose that
N(v) ∩ V2 = ∅ and let u ∈ N(v) ∩ V1 ⊆ V′1 such that v is protected by u under f . In order to show
that v is totally protected under f ′, we consider the function f ′′(V′′0 , V′′1 , V′′2 ) defined by f ′′(v) = 1,
f ′′(u) = 0 and f ′′(x) = f ′(x) whenever x ∈ V(G) \ {v, u}. We only need to show that f ′′ is a TDF
on G. By definition of f ′′, every vertex in V(G) \ N(u) is adjacent to some vertex in V′′1 ∪V′′2 . Hence,
we differentiate the following cases for any w ∈ N(u).

Case 1. w ∈ (V1 ∪ V2) \ {u}. If w has degree one, then f (w) = f (u) = 1 and we can construct a
γr(G)-function where the number of vertices with label two is greater than |V2|, which is a contradiction.
Hence, N(w)∩ (V1 ∪V2) \ {u} 6= ∅ or N(w)∩V0 6= ∅. In the first case, we conclude that w is adjacent
to some vertex in (V1 ∪ V2) \ {u} ⊆ V′′1 ∪ V′′2 . If this case does not occur, then by (b) and (c) in the
definition of f ′, there exists y ∈ N(w) ∩V0 satisfying that y ∈ V′1 \ {u} ⊆ V′′1 .

Case 2. w ∈ V0. If w 6∈ epn(u, V1 ∪V2) then it is adjacent to some vertex in (V1 ∪V2) \ {u} ⊆ V′′1 ∪V′′2 .
From now on, suppose that w ∈ epn(u, V1 ∪V2). If v 6= w, then w must be adjacent to v ∈ V′′1 , as v is
protected by u under f . Now, if v = w and u 6∈ S, then w is adjacent to some vertex in S ⊆ V′′1 ∪V′′2 .
Finally, if v = w and u ∈ S, then by (b) in the definition of f ′ we have that f ′(v) = 1, which is
a contradiction.

From the two cases above we can conclude that f ′′ is a TDF on G, as required. Therefore, f ′ is a
TWRDF and, as a consequence, γtr(G) ≤ ω( f ′) ≤ γr(G) + γ(G).

Corollary 5. For any graph G with no isolated vertex,

γtr(G) ≤ 2γr(G).

Furthermore, if γr(G) > γ(G), then γtr(G) ≤ 2γr(G)− 1.
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In order to derive another consequence of Theorem 11 we need to state the following result.

Theorem 12 ([12]). For any connected graph G 6∼= C5 of order n and minimum degree δ(G) ≥ 2,

γs(G) ≤
⌊n

2

⌋
.

Since γr(G) ≤ γs(G), from Theorems 11 and 12 we immediately have the next theorem.

Theorem 13. For any connected graph G of order n and minimum degree δ(G) ≥ 2,

γtr(G) ≤
⌊n

2

⌋
+ γ(G).

The bound above is tight. It is achieved for the graph C5.

Theorem 14. Let G be a graph with no isolated vertex. For any γr(G)-function f (V0, V1, V2),

γtr(G) ≤ 2γr(G)− |V2|.

Proof. Let g(V0, V1, V2) be a γr(G)-function such that |V2| is maximum, and consider the function
g′(V′0, V′1, V′2) defined on G as follows.

(a) For every x ∈ V2, choose a vertex u ∈ V0 ∩ N(x) and label it as g′(u) = 1.
(b) For every x ∈ V1, choose a vertex u ∈ epn(x, V1 ∪ V2) if it exists, otherwise choose a vertex

u ∈ V0 ∩ N(x) (if exists) and label it as g′(u) = 1.
(c) For any other vertex u not previously labelled, g′(u) = g(u).

We claim that g′ is a TWRDF on G. Firstly, observe that g′ is a TDF on G. Let v ∈ V′0 ⊆ V0. If there
exists a vertex u ∈ N(v) ∩V2, then v is totally protected under g′. Now, suppose that N(v) ∩V2 = ∅
and let u ∈ N(v) ∩V1 such that v is protected by u under f . In order to show that v is totally protected
under g′, we consider the function g∗(V∗0 , V∗1 , V∗2 ) defined by g∗(v) = 1, g∗(u) = 0 and g∗(x) = g′(x)
if x ∈ V(G) \ {v, u}. We only need to show that g∗ is a TDF on G.

By definition of g∗, every vertex in V(G) \ N(u) is adjacent to some vertex in V∗1 ∪ V∗2 . Hence,
we differentiate the following two cases for any w ∈ N(u).

Case 1. w ∈ (V1 ∪ V2) \ {u}. If w has degree one, then we can construct a γr(G)-function where
the number of vertices with label two is greater than |V2|, which is a contradiction. Hence, N(w) ∩
(V1 ∪ V2) \ {u} 6= ∅ or N(w) ∩ V0 6= ∅. In the first case, we conclude that w is adjacent to some
vertex in (V1 ∪V2) \ {u} ⊆ V∗1 ∪V∗2 . If this case does not occur, then by definition of g′ there exists
y ∈ N(w) ∩V0 satisfying that y ∈ V′1 \ {u} ⊆ V∗1 .

Case 2. w ∈ V0. If w /∈ epn(u, V1 ∪V2) then it is adjacent to some vertex in (V1 ∪V2) \ {u} ⊆ V∗1 ∪V∗2 .
From now on, we suppose that w ∈ epn(u, V1 ∪V2). If w 6= v, then w must be adjacent to v ∈ V∗1 , as
v is protected by u under f . Now, if w = v, then by (b) in the definition of g′ and the fact that v is
protected by u under f we have that there exists y ∈ V′1 ∩ epn(u, V1 ∪V2) ∩ N(v).

From the two cases above we can conclude that, g∗ is a TDF on G. Thus, g′ is a TWRDF and, as
a consequence, γtr(G) ≤ ω(g′) = |V′1|+ 2|V′2| ≤ |V1|+ 2|V2|+ |V1|+ |V2| = 2γr(G)− |V2|. Finally,
since |V2| is maximum among all γtr(G)-functions, the result follows.

We now proceed to construct a family of graphs Gp,q with γr(Gp,q) = p+ 1 and γtr(Gp,q) = 2p+ 1,
where q ≥ p ≥ 2 are integers. The graph Gp,q is constructed from the complete bipartite graph Kp,q and
the empty graph Np by adding p new edges which form a matching between the vertices of Np and
the vertices of degree q in Kp,q. Notice that there exists a γr(Gp,q)-function g(V0, V1, V2) with |V2| = 1.
Therefore, γtr(Gp,q) = 2p + 1 = 2(p + 1)− 1 = 2γr(Gp,q)− 1 = 2γr(Gp,q)− |V2|.
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Figure 5 shows the graph G3,4 and a γtr(G3,4)-function g(V0, V1, V2), obtained by using the
construction of the proof of Theorem 14. One can check that γtr(G3,4) = 7, γr(G3,4) = 4 and |V2| = 1,
concluding that γtr(G3,4) = 2γr(G3,4)− |V2|.

1

1

1

1

1

2

Figure 5. The graph G3,4.

If γr(G) < γs(G), then there exists a γr(G)-function f (V0, V1, V2) such that V2 6= ∅. Therefore,
the following result is a direct consequence of Theorem 14.

Corollary 6. Let G be a graph with no isolated vertex. If γr(G) < γs(G), then

γtr(G) ≤ 2γr(G)− 1.

We continue with a result that provides a new relationship between the total weak Roman
domination number and the Roman domination number. To this end, we need to state the following
known result.

Theorem 15 ([5]). If G is a graph of order n with no isolated vertex, then γtR(G) ≤ 2γR(G)− 1. Furthermore,
γtR(G) = 2γR(G)− 1 if and only if ∆(G) = n− 1.

Theorem 16. For any graph G of order n with no isolated vertex,

γtr(G) ≤ 2γR(G)− 1.

Furthermore, γtr(G) = 2γR(G)− 1 if and only if γtr(G) = 3 and ∆(G) = n− 1.

Proof. By Proposition 1 (i) and Theorem 15, the inequality holds. Furthermore, if γtr(G) = 2γR(G)− 1
then, again by Proposition 1 and Theorem 15, γtR(G) = 2γR(G)− 1 and this implies that ∆(G) = n− 1.
Thus, γR(G) = 2, and so γtr(G) = 3. Conversely, if γtr(G) = 3 and ∆(G) = n− 1, then γR(G) = 2
and γtr(G) = 2γR(G)− 1.

4. General Bounds

Our next two results provide bounds in terms of the order, the minimum degree and the maximum
degree of G.

Theorem 17. For any graph G of order n with δ(G) ≥ 1,⌈
2n

∆(G) + 1

⌉
≤ γtr(G) ≤ n− δ(G) + 1.

Proof. Let f (V0, V1, V2) be a γtr(G)-function and let V2
0 = {x ∈ V0 : N(x)∩V2 6= ∅} and V1

0 = V0 \V2
0 .

Since every vertex in V2 can have at most ∆(G)−1 neighbours in V2
0 , we obtain that |V2

0 | ≤ (∆(G)−1)|V2|.
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Furthermore, since every vertex in V1
0 has at least two neighbours in V1 and every vertex in V1 has at most

∆(G)− 1 neighbours in V1
0 , we deduce that 2|V1

0 | ≤ (∆(G)− 1)|V1|. Hence,

n = |V1
0 |+ |V2

0 |+ |V1|+ |V2|
≤ (∆(G)− 1)|V1|/2 + (∆(G)− 1)|V2|+ |V1|+ |V2| = (∆(G) + 1)|V1|/2 + ∆(G)|V2|
≤ (∆(G) + 1)|V1|/2 + ∆(G)|V2|+ |V2|
≤ (∆(G) + 1)(|V1|/2 + |V2|) = (∆(G) + 1)γtr(G)/2.

Therefore, γtr(G) ≥
⌈

2n
∆(G)+1

⌉
.

The upper bound follows for δ(G) = 1, so we assume that δ(G) ≥ 2. Let v ∈ V(G) be a vertex of
degree δ(G) and u ∈ N(v). It is readily seen that the function g, defined by g(x) = 0 for every x ∈
N(v) \ {u} and g(x) = 1 otherwise, is a TWRDF on G. Therefore, γtr(G) ≤ ω(g) = n− δ(G) + 1.

The bounds above are tight. For instance, they are achieved for any complete nontrivial graph
and for the cycles Cn with n ≤ 5. Furthermore, the wheel graph K1 + C4 achieves the upper bound and
any corona graph K2 � H achieves the lower bound, where |V(H)| ≥ 3. Notice that γtr(K2 � H) = 4.
The limit cases γtr(G) = 2 and γtr(G) = n will be discussed in Theorem 20.

Theorem 18 ([14]). Let G be a graph of order n. Then γst(G) = n if and only if V(G) \ (L(G) ∪ S(G)) is an
independent set.

Theorem 19 ([13]). If G is a connected graph, then the following statements are equivalent.

• γst(G) = γt(G).
• γst(G) = 2.
• G has two universal vertices.

We now proceed to characterize all graphs achieving the limit cases of the trivial bounds
2 ≤ γtr(G) ≤ n.

Theorem 20. Given a connected graph G of order n, the following statements hold.

(i) The following statements are equivalent.

(a) γtr(G) = 2.
(b) γtr(G) = γt(G).
(c) γst(G) = γt(G).
(d) G has two universal vertices.

(ii) γtr(G) = n if and only if G is K∗1,(n−1)/2 or H � N1 for some connected graph H.

Proof. We first proceed to prove (i). Notice that (a) directly implies (b), as 2 ≤ γt(G) ≤ γtr(G).
Now, suppose that (b) holds and let f (V0, V1, V2) be a γtr(G)-function. Since f is a TDF,
γt(G) ≤ |V1 ∪ V2| = |V1| + |V2| ≤ |V1| + 2|V2| = γtr(G) = γt(G), so V2 = ∅ and, as a
consequence, f is a STDF of weight γt(G). Hence, (c) holds. On the other hand, by Theorem 19,
(c) implies (d). Finally, it is straightforward that (d) implies (a).

We now proceed to prove (ii). If G is K∗1,(n−1)/2 or H � N1 for some connected graph H, then
is straightforward that γtr(G) = n. From now on we assume that G is a connected graph such
that γtr(G) = n. Since γtr(G) ≤ γst(G) ≤ n, we have that γst(G) = n and so, by Theorem 18,
V(G) = L(G) ∪ S(G) ∪ I, where I is an independent set. Moreover, notice that if n = 2 then
G ∼= P2 ∼= N1 � N1, and if |S(G)| = 1 then G ∼= P3 ∼= K∗1,1. So, we assume that n ≥ 4 and |S(G)| ≥ 2.

Suppose that v ∈ Ss(G) and let h1 and h2 be two leaves adjacent to v. We consider the function g
defined by g(h1) = g(h2) = 0, g(v) = 2 and g(x) = 1 if x ∈ V(G) \ {v, h1, h2}. Hence, g is a TWRDF
on G and ω(g) = n− 1, which is a contradiction. Thus Ss(G) = ∅. We now differentiate two cases.
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Case 1. I = ∅. In this case, V(G) = L(G) ∪ S(G) and, since G is connected, the subgraph H induced
by S(G) is connected. Furthermore, since Ss(G) = ∅, we have that G ∼= H � N1.

Case 2. I 6= ∅. Suppose that S(G) is not an independent set. Notice that there exist two adjacent
support vertices v, w and a third vertex s ∈ N(v) ∩ I. Let h ∈ N(v) ∩ L(G) and consider the function g
defined by g(v) = 2, g(h) = g(s) = 0 and g(x) = 1 if x ∈ V(G) \ {v, h, s}. Notice that g is a TWRDF
on G and ω(g) = n − 1, which is a contradiction, so S(G) is an independent set. Now, suppose
that |I| ≥ 2 and let s1, s2 ∈ I be two vertices at the shortest possible distance. Since S(G) and I are
independent sets, s1 and s2 are at distance two. Let v ∈ S(G) ∩ N(s1) ∩ N(s2), let h ∈ N(v) ∩ L(G)

and let g′ be a function defined by g′(v) = 2, g′(s1) = g′(h) = 0, and g′(x) = 1 if x ∈ V(G) \ {v, s1, h}.
Observe that g′ is a TWRDF on G and ω(g′) = n− 1, which is a contradiction. Thus, |I| = 1. Therefore,
since Ss(G) = ∅, S(G) is an independent set and |I| = 1, we conclude that G is the subdivided star
K∗1,(n−1)/2 and this completes the proof.

To conclude this section, we proceed to characterize all graphs with γtr(G) = 3.

Theorem 21. Let G be a graph and let G be the family of graphs H of order n ≥ 3 such that the subgraph
induced by three vertices of H contains a path P3 and the remaining n− 3 vertices have degree two and they
form an independent set. Then γtr(G) = 3 if and only if there exists H ∈ G ∪ {K1,n−1} which is a spanning
subgraph of G and G has at most one universal vertex.

Proof. We first suppose that γtr(G) = 3. Let f (V0, V1, V2) be a γtr(G)-function. By Theorem 20 (i),
G has at most one universal vertex. If |V2| = 1, then |V1| = 1. In such a case, let V1 = {v} and
V2 = {u}. Notice that u and v are adjacent vertices. Since f is a TWRDF on G, any vertex must be
adjacent to u, concluding that K1,n−1 is a spanning subgraph of G. Now, if |V2| = 0, then |V1| = 3.
With this assumption, let V1 = {u, v, w} and notice that the subgraph of G induced by V1 contains a
path P3, as V1 is a total dominating set of G. We may suppose that v is adjacent to u and w. Since f is
a TWRDF on G, we observe that |N(z) ∩V1| ≥ 2 for every z ∈ V0. Hence, in this case, G contains a
spanning subgraph belonging to G.

Conversely, since G has at most one universal vertex, by Theorem 20 (i) we have that γtr(G) ≥ 3.
Moreover, it is readily seen that γtr(K1,n−1) = 3 and γtr(H) ≤ 3 for any H ∈ G. Hence,
if H ∈ G ∪ {K1,n−1} is a spanning subgraph of G, by Proposition 2 it follows that γtr(G) ≤ 3.
Therefore, γtr(G) = 3.

5. Rooted Product Graphs and Computational Complexity

Let G and H be two graphs and let v ∈ V(H). The rooted product graph G ◦v H is defined to be
the graph obtained from G and H by taking one copy of G and |V(G)| copies of H and identifying the
ith-vertex of G with vertex v in the ith-copy of H for every i ∈ {1, . . . , |V(G)|}.

For every x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction of any
γtr(G ◦v H)-function f to V(Hx) will be denoted by fx, and the restriction to V(Hx − {x}) will be
denoted by f−x . Notice that V(G ◦v H) = ∪x∈V(G)V(Hx) and so

γtr(G ◦v H) = ω( f ) = ∑
x∈V(G)

ω( fx) = ∑
x∈V(G)

ω( f−x ) + ∑
x∈V(G)

f (x).

Lemma 1. Let f (V0, V1, V2) be a γtr(G ◦v H)-function. For any x ∈ V(G), ω( fx) ≥ γtr(H) − 2.
Furthermore, if ω( fx) = γtr(H)− 2, then f (x) = 0 and N(x) ∩V(Hx) ⊆ V0.

Proof. Let x ∈ V(G). Notice that every vertex in V0 ∩ V(Hx) \ {x} is totally protected under fx.
Now, suppose that ω( fx) ≤ γtr(H) − 3 and let y ∈ N(x) ∩ V(Hx). Observe that the function g,
defined by g(y) = 2 and g(u) = fx(u) whenever u ∈ V(Hx) \ {y}, is a TWRDF on Hx of weight
ω(g) ≤ γtr(H)− 1, which is a contradiction as Hx ∼= H. Hence, ω( fx) ≥ γtr(H)− 2.
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Now, suppose that ω( fx) = γtr(H) − 2. If f (x) > 0 then given a vertex y ∈ N(x) ∩ V(Hx),
the function h, defined by h(y) = min{ fx(y) + 1, 2} and h(u) = fx(u) whenever u ∈ V(Hx) \ {y}, is a
TWRDF on Hx of weight ω(h) ≤ γtr(H)− 1, which is a contradiction. Hence, f (x) = 0. Now, if there
exists a vertex y ∈ N(x) ∩ V(Hx) ∩ (V1 ∪ V2), then from fx we may define a TWRDF f ′ on Hx with
the only difference that f ′(y) = 2, having weight at most γtr(H)− 1, which is a contradiction again.
Therefore, N(x) ∩V(Hx) ⊆ V0.

Lemma 2. Let H be a graph with no isolated vertex. For any v ∈ V(H) \ S(H),

γtr(H − {v}) ≥ γtr(H)− 2.

Furthermore, if γtr(H − {v}) = γtr(H)− 2, then the following statements hold.

(i) f (N(v)) = 0 for every γtr(H − {v})-function f .
(ii) There exists a γtr(H)-function h0 such that h0(v) = 0.
(iii) There exists a γtr(H)-function h1 such that h1(v) = 1.

Proof. Let f be a γtr(H − {v})-function and suppose that ω( f ) ≤ γtr(H) − 3. Let y ∈ N(v).
Observe that the function g, defined by g(y) = min{ f (y) + 1, 2}, g(v) = 1 and g(u) = f (u) whenever
u ∈ V(H) \ {v, y}, is a TWRDF on H of weight ω(g) ≤ γtr(H)− 1, which is a contradiction. Hence,
ω( f ) ≥ γtr(H)− 2.

Now, assume that ω( f ) = γtr(H) − 2. If there exists a vertex y ∈ N(v) such that f (y) > 0,
then the function f ′, defined by f ′(v) = 0, f ′(y) = 2 and f ′(u) = f (u) whenever u ∈ V(H) \ {v, y}, is
a TWRDF on H of weight at most γtr(H)− 1, which is a contradiction again. Therefore, f (N(v)) = 0.

Furthermore, for any y ∈ N(v), the function h0, defined by h0(v) = 0, h0(y) = 2 and h0(u) = f (u)
whenever u ∈ V(H) \ {v, y}, is a γtr(H)-function. Analogously, the function h1, defined by h1(v) = 1,
h1(y) = 1 and h1(u) = f (u) whenever u ∈ V(H) \ {v, y}, is a γtr(H)-function as well. Therefore,
the result follows.

Corollary 7. Let H be a graph with no isolated vertex and v ∈ V(H) \ S(H). Then the following
statements hold.

(i) If g(v) = 0 for every γtr(H)-function g, then γtr(H − {v}) ∈ {γtr(H), γtr(H)− 1}.
(ii) If h(v) > 0 for every γtr(H)-function h, then γtr(H − {v}) ≥ γtr(H)− 1.

From Lemma 1 we deduce that any γtr(G ◦v H)-function f induces a partition {A f ,B f , C f } of
V(G) as follows.

A f = {x ∈ V(G) : ω( fx) ≥ γtr(H)},

B f = {x ∈ V(G) : ω( fx) = γtr(H)− 1},

C f = {x ∈ V(G) : ω( fx) = γtr(H)− 2}.

Proposition 3. Let f be a γtr(G ◦v H)-function. If C f 6= ∅, then γtr(H − {v}) = γtr(H)− 2.

Proof. By Lemma 1, if x ∈ C f , then f (x) = 0 and f (y) = 0 for every y ∈ N(x) ∩ V(Hx),
which implies that f−x is a TWRDF on Hx − {x} of weight w( f−x ) = γtr(H) − 2. Hence,
γtr(H − {v}) = γtr(Hx − {x}) ≤ γtr(H)− 2, and by Lemma 2 we conclude the proof.

We will show through Theorem 23 that if γtr(G) < n, then the converse of Proposition 3 holds.
An example of graphs where it does not hold is the case of G ∼= K2 and H ∼= P3 � N1, where v is a leaf
adjacent to a support vertex of degree two.

By Lemma 1 and Proposition 3 we deduce the following result.
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Theorem 22. Let G and H be two graphs with isolated vertex and let v ∈ V(H).
If γtr(H − {v}) ≥ γtr(H) − 1, then γtr(G ◦v H) ≥ n(γtr(H)− 1).

The inequality above is achieved, for instance, for any graph G with no isolated vertex and
H ∼= C5.

It is readily seen that from any γtr(G)-function and any γtr(H − {v})-function we can construct
a TWRDF on G ◦v H of weight γtr(G) + n(γtr(H − {v})). Therefore, we can state the following
useful result.

Proposition 4. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ V(H) \ S(H), then

γtr(G ◦v H) ≤ γtr(G) + nγtr(H − {v}).

Theorem 23. Let G and H be two graphs with no isolated vertex and let v ∈ V(H). If γtr(G) < n, then the
following statements are equivalent.

(a) C f 6= ∅ for any γtr(G ◦v H)-function f .
(b) γtr(H − {v}) = γtr(H)− 2.

Proof. Let f be a γtr(G ◦v H)-function such that x ∈ C f . By Proposition 3, γtr(H − {v}) = γtr(H)− 2.
Conversely, assume that γtr(H − {v}) = γtr(H)− 2 and suppose that C f ′ = ∅ for some γtr(G ◦v

H)-function f ′. By Lemma 1 and Proposition 4 we deduce that n(γtr(H)− 1) ≤ γtr(G ◦v H) ≤ γtr(G)+

n(γtr(H)− 2), which is a contradiction whenever γtr(G) < n. Therefore, the result follows.

The following result states the intervals in which the total weak Roman domination number of a
rooted product graph can be found.

Theorem 24. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ V(H), then one of
the following statements holds.

(i) γtr(G ◦v H) = nγtr(H).
(ii) n(γtr(H)− 1) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 1).
(iii) 2γ(G) + n(γtr(H)− 2) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).
(iv) γt(G) + n(γtr(H)− 2) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).

Proof. Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G)

defined above. We differentiate the following four cases.

Case 1. B f ∪ C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γtr(H) and, as a
consequence, γtr(G ◦v H) ≥ nγtr(H). On the other hand, we can extend any γtr(H)-function to a
TWRDF on G ◦v H of weight nγtr(H). Therefore, (i) follows.

Case 2. B f 6= ∅ and C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γtr(H)− 1 and, as a
result, γtr(G ◦v H) ≥ n(γtr(H)− 1).

We now proceed to show that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H) − 1). From f , some vertex
x′ ∈ B f and any γtr(G)-function h, we define a function g on G ◦v H as follows. For every x ∈ V(G),
the restriction of g to V(Hx) \ {x} is induced by f−x′ and we set g(x) = min{ f (x) + h(x), 2}. It is
readily seen that g is a TWRDF on G ◦v H of weight at most γtr(G) + n(γtr(H)− 1), concluding that
γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 1).

Case 3. B f = ∅ and C f 6= ∅. From Lemma 1 we deduce that A f is a dominating set of G. Therefore,
γtr(G ◦v H) ≥ 2|A f |+ n(γtr(H)− 2) ≥ 2γ(G) + n(γtr(H)− 2).

On the other hand, by Proposition 3, γtr(H − {v}) = γtr(H) − 2, and by Proposition 4 we
conclude that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).
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Case 4. C f 6= ∅. By Propositions 3 and 4 we conclude that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).

In order to conclude the proof of (iv), let us define a function g on G as follows. If x ∈ A f then we
set g(x) = 1 and choose one vertex u ∈ N(x) ∩V(G) and label it as g(u) = 1. For the another vertices
not previously labelled, if x ∈ B f then we set g(x) = 1, and if x ∈ C f then we set g(x) = 0. We will
prove that g is a TDF on G. Notice that by construction of g, if x ∈ A f then x is dominated by some
vertex y ∈ V(G) such that g(y) = 1. Now, by Lemma 1, if x ∈ C f then x is totally protected under f by
a vertex w ∈ V(G). Furthermore, since f (w) > 0, we have that g(w) = 1, as required. If x ∈ B f , then
it must be adjacent to some vertex z ∈ V(G) such that f (z) > 0, otherwise fx is a TWRDF on Hx and
ω( fx) = γtr(H)− 1, which is a contradiction. Hence, g(z) = 1, as required. Therefore, g is a TDF on G
and, as a consequence,

γtr(G ◦v H) = ∑
x∈V(G)

ω( fx)

= ∑
x∈A f

ω( fx) + ∑
x∈B f

ω( fx) + ∑
x∈C f

ω( fx)

≥ ∑
x∈A f

(γtr(H)− 2 + g(x)) + ∑
x∈B f

(γtr(H)− 2 + g(x)) + ∑
x∈C f

(γtr(H)− 2 + g(x))

≥ ∑
x∈V(G)

g(x) + ∑
x∈V(G)

(γtr(H)− 2)

= ω(g) + n(γtr(H)− 2)

≥ γt(G) + n(γtr(H)− 2).

Therefore, (iv) follows.

We now consider some particular cases in which we impose some additional restrictions on G
and H. To begin with, we consider the case in which v is a support vertex of H.

Theorem 25. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ S(H), then

γtr(G ◦v H) ∈ {n(γtr(H)− 1), nγtr(H)}.

Furthermore, if v ∈ S(H) ∩ N(S(H)), then

γtr(G ◦v H) = nγtr(H).

Proof. Let f be a γtr(G ◦v H)-function and x ∈ V(G). Since x ∈ S(G ◦v H), we have that
f (x) > 0, so that Lemma 1 leads to C f = ∅, and, again by Lemma 1, ω( fx) ≥ γtr(H)− 1. Hence,
γtr(G ◦v H) ≥ n(γtr(H)− 1).

If B f = ∅, then by Case 1 of the proof of Theorem 24, γtr(G ◦v H) = nγtr(H). Now, suppose that
x ∈ B f . From f , we define a function h on G ◦v H as follows. For every z ∈ V(G), the restriction of h
to V(Hz) is induced from fx. It is readily seen that h is a TWRDF on G ◦v H of weight n(γtr(H)− 1),
which implies that γtr(G ◦v H) = n(γtr(H)− 1).

From now on, suppose that v ∈ S(H) ∩ N(S(H)) and let u ∈ N(x) ∩ S(Hx) for some x ∈ V(G).
To conclude the proof we only need to show that γtr(G ◦v H) ≥ nγtr(H). We can assume that
f (V0, V1, V2) is a γtr(G ◦v H)-function satisfying that |V2| is maximum. As x and u are adjacent,
and hey are support vertices, f (x) = f (u) = 2, so that fx is a TWRDF on Hx and, as a consequence,
ω( fx) ≥ γtr(H). Therefore, γtr(G ◦v H) ≥ nγtr(H), as required.

We now proceed to discuss some cases in which v is not a support vertex of H.
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Theorem 26. If γtr(H − {v}) = γtr(H)− 2 and γtr(G) = γt(G), then

γtr(G ◦v H) = 2 + n(γtr(H)− 2).

Proof. By Theorem 24, we have that γtr(G ◦v H) ≥ γt(G) + n(γtr(H)− 2). Now, if γtr(G) = γt(G),
then Theorem 20 leads to γtr(G) = 2, and so γtr(G ◦v H) ≥ 2 + n(γtr(H)− 2).

On the other hand, if γtr(H − {v}) = γtr(H) − 2, then from Proposition 4 we conclude that
γtr(G ◦v H) ≤ 2 + n(γtr(H)− 2).

Notice that in Theorem 26 we have the hypothesis γtr(H − {v}) = γtr(H)− 2 and the conclusion
γtr(G ◦v H) = γtr(G) + n(γtr(H) − 2). On the other hand, we would emphasize that in all the
examples in which we have observed that the left hand side inequalities of Theorem 24 (iii) or (iv)
are achieved, we have that γtr(G) = 2γ(G) or γtr(G) = γt(G), respectively. Hence, in these cases,
γtr(G ◦v H) = γtr(G) + n(γtr(H)− 2). After numerous attempts, we have not been able to prove the
following conjecture.

Conjecture. Let G and H be two graphs with no isolated vertex. For any v ∈ V(H),

γtr(G ◦v H) ≥ γtr(G) + n(γtr(H)− 2),

where n is the order of G. Furthermore, γtr(G ◦v H) = γtr(G) + n(γtr(H)− 2) if and only if γtr(H−{v}) =
γtr(H)− 2.

In order to study the computational complexity of the problem of computing the total weak
Roman domination number of a graph, we need to state the following result.

Theorem 27. Let G and H be two graphs with no isolated vertex. Let n be the order of G and v, u ∈ V(H)

such that u ∈ L(H) \ {v} and N(v) ∩ N(u) 6= ∅. If γtr(H − {v}) = γtr(H)− 1, then

γtr(G ◦v H) = γ(G) + n(γtr(H)− 1),

otherwise
γtr(G ◦v H) = nγtr(H).

Proof. If v ∈ S(H), then Theorem 25 leads to γtr(G ◦v H) = nγtr(H). Hence, from now on we assume
that v 6∈ S(H). Let y ∈ N(v) ∩ N(u). Since u is a leaf in H − {v} and y its support vertex, for any
γtr(H − {v})-function g we have that g(y) > 0. Hence, if γtr(H − {v}) = γtr(H)− 2, then from any
γtr(H − {v})-function we can construct a TWRDF on H of weight at most γtr(H)− 1 by assigning
weight 1 to v, which is a contradiction. Hence, γtr(H − {v}) ≥ γtr(H)− 1.

Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G) defined
previously. Notice that, for any x ∈ V(G) there exist ux ∈ L(Hx) \ {x} and yx ∈ N(x) ∩ N(ux). With
these tools in mind, we now proceed to study the structure of A f , B f and C f . Since ux is a leaf of
G ◦v H and yx its support vertex, we have that f (yx) > 0, and since yx ∈ N(x), Lemma 1 leads to
C f = ∅. We now differentiate two cases.

Case 1. γtr(H − {v}) = γtr(H)− 1. Suppose that there exists x ∈ B f with f (x) > 0. Since yx is a
support vertex, either f (yx) = 2 or f (yx) = 1 and no vertex in V(Hx) is totally protected by yx under
f . In any case, we can conclude that fx is a TWRDF on Hx of weight ω( fx) = γtr(H)− 1, which is a
contradiction. Hence, B f ⊆ V0.
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Now, since (V1 ∪V2) ∩V(G) ⊆ A f , if there exists x ∈ B f such that N(x) ∩A f = ∅, then fx must
be a TWRDF on Hx, which is a contradiction, as ω( fx) = γtr(H)− 1. Thus, A f is a dominating set
and so,

γtr(G ◦v H) = ∑
x∈A f∪B f

ω( fx)

≥|A f |γtr(H) + |B f |(γtr(H)− 1)

=|A f |+ n(γtr(H)− 1)

≥γ(G) + n(γtr(H)− 1).

On the other hand, since v is adjacent to a support vertex, from any γtr(H − {v})-function and any
γ(G)-function we can construct a TWRDF on G ◦v H of weight γ(G) + n(γtr(H) − 1). Therefore,
γtr(G ◦v H) = γ(G) + n(γtr(H)− 1).

Case 2. γtr(H − {v}) ≥ γtr(H). If there exists x ∈ B f with f (x) > 0, then fx is a TWRDF on Hx

of weight ω( fx) = γtr(H)− 1, which is a contradiction. Now, if x ∈ B f and f (x) = 0, then f−x is a
TWRDF on Hx − {x} of weight ω( f−x ) = γtr(H)− 1, which is a contradiction again. Hence, x ∈ A f ,
and so γtr(G ◦v H) ≥ nγtr(H). Therefore, by Theorem 24 we conclude that γtr(G ◦v H) = nγtr(H).

Recent works have shown that graph operations are useful tools to study problems of
computational complexity.

For instance, the authors of [18,19] have shown that results on the (local) metric dimension of
corona product graphs enables us to deduce NP-hardness results for the (local) adjacency dimension;
while the authors of [20] have shown that the study of lexicographic product graphs is useful to
infer an NP-hardness result for the super domination number, based on a well-known result for the
independence number. Our next result shows that we can use rooted product graphs to study the
problem of finding the total weak Roman domination number of a graph. In this case, the key result is
Theorem 27 which involves the domination number. It is well known that the dominating set problem
is an NP-complete decision problem [21], i.e., given a positive integer k and a graph G, the problem of
deciding if G has a dominating set D of cardinality |D| ≤ k is NP-complete. Hence, the optimization
problem of computing the domination number of a graph is NP-hard.

Corollary 8. The problem of computing the total weak Roman domination number of a graph is NP-hard.

Proof. Let G be a graph with no isolated vertex and construct the graph G ◦v P3, where v is a leaf
of P3. By Theorem 27, it follows that γtr(G ◦v P3) = γ(G) + 2|V(G)|. Therefore, the problem
of computing the total weak Roman domination has the same computational complexity as the
domination number problem.

Theorem 28. Let G and H be two graphs with no isolated vertex and |V(G)| = n. Then the following
statements hold for every v ∈ V(H) such that γtr(H − {v}) 6= γtr(H)− 1.

(i) If g(v) = 0 for every γtr(H)-function g, then γtr(G ◦v H) = nγtr(H).
(ii) If g(v) > 0 for every γtr(H)-function g, then γtr(G ◦v H) ∈ {nγtr(H), n(γtr(H)− 1)}.

Proof. Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G)

previously defined.
With the assumptions of (i) or (ii), Lemma 2 and Proposition 3 lead to C f = ∅. Moreover, if B f = ∅,

then by analogy to Case 1 in the proof of Theorem 24 we deduce that γtr(G ◦v H) = nγtr(H).
From now on suppose that x ∈ B f . If f (x) = 0, then f−x is a TWRDF on Hx − {x}, so that
γtr(H − {v}) = γtr(Hx − {x}) ≤ ω( f−x ) = ω( fx) = γtr(H)− 1. From the hypothesis of (i) and (ii)
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and Lemma 2 we deduce that γtr(H − {v}) = γtr(H)− 1. Thus, if γtr(H − {v}) 6= γtr(H)− 1, then
f (x) > 0.

We now assume the hypothesis of (i) and take a vertex u ∈ N(x) ∩V(Hx). If f (u) = 2, then fx

is a TWRDF on Hx of weight ω( fx) = γtr(H)− 1, which is a contradiction. Hence, f (u) ≤ 1 and we
can define a function g as g(u) = f (u) + 1 and g(w) = f (w) for every w ∈ V(Hx) \ {u}. Notice that g
is a TWRDF on Hx of weight γtr(H), so g is a γtr(H)-function and satisfies that g(v) > 0, which is a
contradiction. Hence, B f = ∅ and we are done.

We now assume the hypothesis of (ii). By analogy to Case 2 in the proof of Theorem 24 we
deduce that γtr(G ◦v H) ≥ n(γtr(H)− 1). Now, we proceed to show that γtr(G ◦v H) ≤ n(γtr(H)− 1).
From f , we define a function h on G ◦v H as follows. For every z ∈ V(G), the restriction of h to V(Hz)

is induced from fx. It is readily seen that h is a TWRDF on G ◦v H of weight n(γtr(H)− 1), which
completes the proof.

As a particular case of Theorem 28 (i) we have the following result.

Corollary 9. Let G and H be two graphs with no isolated vertex. Let n be the order of G, v ∈ L(H) and
u, u′ ∈ S(H). If u′, v ∈ N(u) and |N(u) ∩ L(H)| ≥ 3, then γtr(G ◦v H) = nγtr(H).

Theorem 29. If G is a graph of order n with δ(G) ≥ 1, then for every graph H having a universal vertex
v ∈ V(H),

γtr(G ◦v H) = 2n.

Proof. The upper bound γtr(G ◦v H) ≤ 2n is straightforward, as the function f , defined by f (x) = 2
for every vertex x ∈ V(G) and f (x) = 0 for every x ∈ V(G ◦v H) \V(G), is a TWRDF on G ◦v H.

On the other hand, let f be a γtr(G ◦v H)-function and suppose that there exists x ∈ V(G) such
that ω( fx) ≤ 1. In such a case, f (N[y]) ≤ 1 for every y ∈ V(Hx) \ {x}, which is a contradiction.
Therefore γtr(G ◦v H) = ω( f ) ≥ 2n.

Since any corona graph G� G′ is a rooted product graph G ◦v H where H ∼= K1 + G′ and v is the
vertex of K1, the result above is equivalent to the following theorem.

Theorem 30. If G is a graph of order n with no isolated vertex, then for every graph G′,

γtr(G� G′) = 2n.

To conclude the analysis, we consider the extreme case in which γtr(H) = 2.

Theorem 31. If G is a graph of order n and H is a graph with γtr(H) = 2, then for any v ∈ V(H),

γtr(G ◦v H) = 2n.

Proof. By Theorem 24, γtr(G ◦v H) ≤ 2n. Now, if γtr(G ◦v H) ≤ 2n − 1, then for any
γtr(G ◦v H)-function f , there exists x ∈ V(G) such that ω( fx) ≤ 1. Hence, f (N[y]) ≤ 1 for every
y ∈ V(Hx) \ {x}, which is a contradiction.

6. Conclusions and Open Problems

This article is a contribution to the theory of total protection of graphs. In particular, we introduced
the study of the total weak Roman domination number of a graph. We studied the properties of this
novel parameter in order to obtain its exact value or general bounds. Among the main contributions
we emphasize the following.

• The work proved several new theorems, thanks to which we have shown the close relationship that
exists between the total weak Roman domination number and other domination parameters such
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as the (total) domination number, secure (total) domination number, weak Roman domination
number, (total) Roman domination number and 2-packing number.

• We obtained general bounds and discussed some extreme cases.
• In a specific section of the paper, we focused on the case of rooted product graphs and we obtained

closed formulas and tight bounds for the total weak Roman domination number of these graphs.
• Through the results obtained on rooted product graphs, we have shown that the problem of

finding the total weak Roman domination number of a graph is NP-hard.

Among the open problems arising from the analysis, the following should be highlighted.

(a) We have shown that if G is a {K1,3, K1,3 + e}-free graph with no isolated vertex,
then γtr(G) = γst(G). We conjecture that these two parameters also coincide for lexicographic
product graphs, and we propose the general problem of characterizing all graphs for which the
equality holds.

(b) We have shown that γtr(G) = γ(G) + 1 if and only if γst(G) = γ(G) + 1. Therefore, the problem
of characterizing all graphs with γst(G) = γ(G) + 1 is an open problem, which is a particular
case of problem (a).

(c) We have shown that γtr(G) ≤ γt(G) + γ(G) and γtr(G) ≤ γr(G) + γ(G). We propose the
problem of characterizing all graphs for which these equalities hold; or providing necessary or
sufficient conditions for achieving them.

(d) Since the problem of finding γtr(G) is NP-hard, we consider the following question. Is there a
polynomial-time algorithm for finding γtr(T) for any tree T of order n?

Author Contributions: The results presented in this paper were obtained as a result of collective work sessions
involving all authors. The process was organized and led by J.A.R.-V.

Funding: This work has been partially supported by the Spanish Ministry of Economy, Industry and
Competitiveness, under the grants MTM2016-78227-C2-1-P and MTM2017-90584-REDT, and by the Mexican
National Council on Science and Technology (Cátedras-CONACYT).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cockayne, E.J.; Grobler, P.J.P.; Gründlingh, W.R.; Munganga, J.; van Vuuren, J.H. Protection of a graph.
Util. Math. 2005, 67, 19–32.

2. Stewart, I. Defend the Roman Empire! Sci. Am. 1999, 281, 136–138. [CrossRef]
3. Cockayne, E.J.; Dreyer, P.A., Jr.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discret.

Math. 2004, 278, 11–22. [CrossRef]
4. Liu, C.-H.; Chang, G.J. Roman domination on strongly chordal graphs. J. Comb. Optim. 2013, 26, 608–619.

[CrossRef]
5. Abdollahzadeh Ahangar, H.; Henning, M.A; Samodivkin, V.; Yero, I.G. Total roman domination in graphs.

Appl. Anal. Discret. Math. 2016, 10, 501–517. [CrossRef]
6. Henning, M.A.; Hedetniemi, S.T. Defending the Roman Empire—A new strategy. Discret. Math. 2003, 266,

239–251. [CrossRef]
7. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T. Bounds on weak roman and 2-rainbow domination numbers.

Discret. Appl. Math. 2014, 178, 27–32. [CrossRef]
8. Cockayne, E.J.; Favaron, O.; Mynhardt, C.M. Secure domination, weak Roman domination and forbidden

subgraphs. Bull. Inst. Combin. Appl. 2003, 39, 87–100.
9. Valveny, M.; Pérez-Rosés, H.; Rodríguez-Velázquez, J.A. On the weak Roman domination number of

lexicographic product graphs. Discret. Appl. Math. 2019, 263, 257–270. [CrossRef]
10. Valveny, M.; Rodríguez-Velázquez, J.A. Protection of graphs with emphasis on cartesian product graphs.

Filomat 2019, 33, 319–333.
11. Boumediene Merouane, H.; Chellali, M. On secure domination in graphs. Inform. Process. Lett. 2015, 115,

786–790. [CrossRef]

http://dx.doi.org/10.1038/scientificamerican1299-136
http://dx.doi.org/10.1016/j.disc.2003.06.004
http://dx.doi.org/10.1007/s10878-012-9482-y
http://dx.doi.org/10.2298/AADM160802017A
http://dx.doi.org/10.1016/S0012-365X(02)00811-7
http://dx.doi.org/10.1016/j.dam.2014.06.016
http://dx.doi.org/10.1016/j.dam.2018.03.039
http://dx.doi.org/10.1016/j.ipl.2015.05.006


Symmetry 2019, 11, 831 20 of 20

12. Burger, A.P.; Henning, M.A.; van Vuuren, J.H. Vertex covers and secure domination in graphs. Quaest. Math.
2008, 31, 163–171. [CrossRef]

13. Klostermeyer, W.F.; Mynhardt, C.M. Secure domination and secure total domination in graphs. Discuss. Math.
Graph Theory 2008, 28, 267–284. [CrossRef]

14. Benecke, S; Cockayne, E.J.; Mynhardt, C.M. Secure total domination in graphs. Util. Math. 2007, 74, 247–259.
15. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Chapman and Hall/CRC

Pure and Applied Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.
16. Meir, A.; Moon, J.W. Relations between packing and covering numbers of a tree. Pacific J. Math. 1975, 61,

225–233. [CrossRef]
17. Goddard, W.; Henning, M.A. Domination in planar graphs with small diameter. J. Graph Theory 2002, 40, 1–25.

[CrossRef]
18. Fernau, H.; Rodríguez Velázquez, J.A. On the (adjacency) metric dimension of corona and strong

product graphs and their local variants: Combinatorial and computational results. Discret. Appl. Math.
2018, 236, 183–202. [CrossRef]

19. Fernau, H.; Rodríguez-Velázquez, J.A. Notions of Metric Dimension of Corona Products: Combinatorial and
Computational Results; Springer International Publishing: Cham, Switzerland, 2014; pp. 153–166.

20. Dettlaff, M.; Lemańska, M.; Rodríguez-Velázquez, J.A.; Zuazua, R. On the super domination number of
lexicographic product graphs. Discret. Appl. Math. 2019, 263, 118–129. [CrossRef]

21. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness;
W. H. Freeman & Co.: New York, NY, USA, 1979.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2989/QM.2008.31.2.5.477
http://dx.doi.org/10.7151/dmgt.1405
http://dx.doi.org/10.2140/pjm.1975.61.225
http://dx.doi.org/10.1002/jgt.10027
http://dx.doi.org/10.1016/j.dam.2017.11.019
http://dx.doi.org/10.1016/j.dam.2018.03.082
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation
	General Results
	General Bounds
	Rooted Product Graphs and Computational Complexity
	Conclusions and Open Problems
	References

