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Abstract: In this paper, we study and investigate an interesting Caputo fractional derivative
and Riemann–Liouville integral boundary value problem (BVP): cDq

0+u(t) = f (t, u(t)), t ∈ [0, T],

u(k)(0) = ξk, u(T) =
m

∑
i=1

βiRL Ipi
0+u(ηi), where n − 1 < q < n, n ≥ 2, m, n ∈ N, ξk, βi ∈ R,

k = 0, 1, . . . , n− 2, i = 1, 2, . . . , m, and cDq
0+ is the Caputo fractional derivatives, f : [0, T] ×

C([0, T], E) → E, where E is the Banach space. The space E is chosen as an arbitrary Banach
space; it can also be R (with the absolute value) or C([0, T],R) with the supremum-norm. RL Ipi

0+ is the

Riemann–Liouville fractional integral of order pi > 0, ηi ∈ (0, T), and
m

∑
i=1

βiη
pi+n−1
i

Γ(n)
Γ(n + pi)

6= Tn−1.

Via the fixed point theorems of Krasnoselskii and Darbo, the authors study the existence of solutions
to this problem. An example is included to illustrate the applicability of their results.

Keywords: Caputo fractional derivative; existence of a solution; fixed point theorem; integral
boundary value problems

1. Introduction

The fractional differential equations have an important role in numerous fields of study carried
out by mathematicians, physicists, and engineers. They have used it basically to develop mathematical
modeling, many physical applications, and engineering disciplines such as viscoelasticity, control,
porous media, phenomena in electromagnetics etc. (see [1–3]). The major differences between the
fractional order differential operator and classical calculus is its nonlocal behavior, that is the feature
future state based on the fractional differential operator depends on its current and past states.
More details on the fundamental concepts of fractional calculus, fractional differential equations,
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and fractional integral equations can be found in books like A. A.Kilbas, H. M Srivastava and
J. J. Trujillo [1], K. S Miller and B. Ross [2], and J. Banas and K. Goebel [4]. Fractional integro-differential
equations involving the Caputo–Fabrizio derivative have been studied by many researchers from
different points of view (see, for example, [5–8], and the references therein). The qualitative theory
of differential equations has significant applications, and the existence of solutions and of positive
solutions of fractional differential equations, which respect the initial and boundary value, have
also received considerable attention. In order to study such a type of problem, different kinds of
techniques, such as fixed point theorems [9–11], the fixed point index [10,12], the upper and lower
solution method [13], coincidence theory [14], etc., are in vogue. For instance, in [15–17], the authors
investigated the existence of solutions of initial value problems.

cDα
0+u(t) = f (t, u(t),c Dβ

0+u(t)), t ∈ (0, 1],

u(k)(0) = ηk, k = 0, 1, ..., n− 1,
(1)

where n− 1 < β < α < n, (n ∈ N) are the real numbers and cDα
0+ and cDβ

0+ are the Caputo fractional
derivatives of order α, β, and f ∈ C([0, 1]×R).

In [18], the authors investigated the existence of solutions of the following boundary
value problems:

cDα
0+y(t) = − f (t, y(t),c Dα

0+y(t)), t ∈ (0, 1], 1 < α < 2 (2)

ay(0)− by′(0) = 0, y(1) =
∫ 1

0
k(s)g(t, y(s))ds + µ, (3)

where cDα
0+ is the Caputo fractional derivative order α, E is the Banach space, f : [0, 1]× C([0, 1], E)×

E→ E, g : [0, 1]× C([0, 1], E)→ E, k ∈ C([0, 1], E), k 6= 0.
In [19], the authors investigated the existence and uniqueness of solutions of the nonlocal fractional

integral condition.

RLDq
0+x(t) = f (t, x(t)), t ∈ [0, T], (4)

x(0) = 0, x(T) =
n

∑
i=1

αi H Ipi
0+x(ηi), (5)

where 1 < q ≤ 2, RLDq
0+ is the Riemann–Liouville fractional derivative of order q, H Ipi

0+ is the
Hadamard fractional integral of order pi > 0, ηi ∈ (0, T), f : [0, T]×R→ R, and αi ∈ R, i = 1, 2, · · · , n

are real constants such that
n

∑
i=1

αiη
q−1
i

(q− 1)pi
6= Tq−1.

Inspired by the above papers in [15–19], the objective of this paper is to derive the existence
solution of the fractional differential equations and nonlocal fractional integral conditions:

cDq
0+u(t) = f (t, u(t)), t ∈ [0, T]

u(k)(0) = ξk, u(T) =
m

∑
i=1

βiRL Ipi
0+u(ηi),

(6)

where n− 1 < q < n, n ≥ 2, m, n ∈ N, ξk, βi ∈ R, k = 0, 1, . . . , n− 2, i = 1, 2, . . . , m, and cDq
0+ is

the Caputo fractional derivatives, f : [0, T]× C([0, T], E) → E, and RL Ipi is the Riemann–Liouville

fractional integral of order pi > 0, ηi ∈ (0, T), and
m

∑
i=1

βiη
pi+n−1
i

Γ(n)
Γ(n + pi)

6= Tn−1.

The results obtained in the present paper were based on the fixed point theorems of Krasnoselskii
and Darbo. Further, we provide some examples to show the applicability of our results. The next part
of the paper is organized in the following order: We recall some notations, definitions, and preliminary
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facts about fractional differential calculus and Kuratowski’s measure of noncompactness (Kuratowski
MNC), as well as some known results in Section 2. In Section 3, based on Kransnoselskii’s fixed point
theorem and Darbo’s fixed point theorem together and the idea of the measure of noncompactness,
the main result is formulated and proven. We also show an example of the main results.

2. Background Materials

In this section, we recall some basic notations, definitions, and lemmas regarding fractional
differential equations in order to obtain our main results. See [1,3,4,17,20,21], and the references
therein. Denote by C([0, T],R) the space of all continuous functions from [0, T] into R. Endowed with
the norm:

‖u‖∞ := sup{|u(t)|: t ∈ [0, T]}, u ∈ C([0, T],R),

this space is a Banach space. Let (E, ‖·‖) be a Banach space. We also denote:

Cn([0, T], E) := {u ∈ C([0, T], E) : u(k) ∈ C([0, T], E), 0 ≤ k ≤ n}.

Equipped with the norm ‖u‖Cn :=
n

∑
k=0
‖u(k)‖C for u ∈ Cn([0, T], E), this space is a Banach space,

as well. Here, ‖u‖C := sup
0<t<T

‖u(t)‖. For measurable functions g : [0, T] → R, define the norm

‖g‖Lp([0,T],R) =
( ∫

[0,T] |g(t)|
pdt
) 1

p
, 1 ≤ p < ∞. We also denote by Lp([0, T],R) the Banach space of all

Lebesgue measurable functions g for which ‖g‖Lp([0,T],R) < ∞.

Definition 1 ([1,3]). Let u : (0, ∞)→ R be a function and q > 0. The Riemann–Liouville fractional integral
of orders q of u is defined by:

RL Iq
0+u(t) =

1
Γ(q)

∫ t

0
(t− s)q−1u(s)ds

provided that the integral exists. The Caputo fractional derivative of order q of u is defined by:

cDq
0+u(t) =

1
Γ(n− q)

∫ t

0
(t− s)n−q−1u(n)(s)ds

provided that the right side is point-wise defined on (0, ∞), where n is the smallest integer greater than or equal
to q and Γ denotes the gamma function. If q = n, then cDq

0+u(t) = u(n)(t).

Lemma 1 ([1,3]). Let n− 1 < q < n. If u ∈ Cn([a, b]), then:

RL Iq
0+(

cDq
0+u)(t) = u(t) + c0 + c1t + c2t2 + · · ·+ Cn−1tn−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the smallest integer greater than or equal to q.

For a given set V of functions v : [0, T] → E, let us denote V(t) = {v(t) : v ∈ V}, t ∈ [0, T],
and V([0, T]) = {v(t) : v ∈ V, t ∈ [0, T]}. Next, we provide the definition of the measure of
noncompactness and some auxiliary results; see for more details [11,13,15] and the references therein.

Definition 2. Let E be a Banach space and ΩE the collection of subsets of E. The Kuratowski MNC is the map

α : ΩE → [0, ∞] defined by α(X) = inf{d > 0 : X ⊆
n⋃

i=1

Xi and diam(Xi) ≤ d}, where:

diam(Xi) = sup{‖ x− y ‖: x, y ∈ Xi}.
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We also adopt some techniques from the Kuratowski MNC and the theorem of Arzela–Ascoli in
Lemma 3.

Lemma 2 ([4,20,22]). Let E be a Banach space. X and Y are bounded sets,
(a) α(X) = 0↔ X̄ is compact (X is relatively compact), where X̄ denotes the closure of X,
(b) nonsingularity: α is equal to zero on every element set,
(c) α(X) = α(X̄) = α(convX), where convX is the convex hull of X,
(d) monotonicity: X ⊂ Y → α(X) ⊂ α(Y),
(e) algebraic semi-additively: α(X + Y) ≤ α(X) + α(Y), where X + Y = {x + y : x ∈ X, y ∈ Y},
(f) semi-homogenicity: α(λX) =| λ | α(X), λ ∈ R, where λX = {λx : x ∈ X},
(g) semi-additivity: α(X ∪Y) = max{α(X), α(Y)}.
(h) invariance under translation: α(X + x0) = α(X) for any x0 ∈ E.

Lemma 3 (Ascoli–Arzela theorem). If a family F = { f (t)} in C([0, T],R) is uniformly bounded and
equicontinuous on [0, T], then F has a uniformly-convergent subsequence { fn(t)}∞

n=1. If a family F = { f (t)}
in C([0, T], E) is uniformly bounded and equicontinuous on [0, T] and for any t∗ ∈ [0, T], { f (t∗)} is relatively
compact in the Banach space E, then F has a uniformly-convergent subsequence { fn(t)}∞

n=1.

Theorem 1 (Krasnoselskii’s fixed point theorem [21]). Let N be a bounded, closed, convex, and nonempty
subset of Banach space E. Let A1, A2 : E→ E be operators with the following properties:
(a) A1x + A2y ∈ N whenever x, y ∈ N;
(b) A1 is continuous, and A1N is a compact subset of E;
(c) A2 is a contraction mapping (i.e., ‖A2x − A2y‖≤ k‖x − y‖ for some k ∈ (0, 1) and for all x, y ∈ N).
Then, there exist z ∈ N such that z = A1z + A2z.

Theorem 2 (Darbo’s fixed point theorem [23]). Let E be a Banach space, and let N be a bounded, closed,
convex, and nonempty subset of E. Suppose a continuous mapping A : N → N is such that for all closed subsets
M of N,

α(A(M)) ≤ kα(M),

where 0 ≤ k < 1. Then, A has a fixed point in N.

3. Main Result

In this section, we consider the existence of solutions of the nonlocal Riemann–Liouville fractional
integral condition and Caputo nonlinear fractional differential Equation (6).

Definition 3. A function u ∈ C([0, T], E) is said to be a solution of (6) if u satisfies the equation

cDq
0+u(t) =f(t,u(t)) on [0, T], and the fractional integral conditions u(k)(0) = ξk, u(T) =

m

∑
i=1

βi RL Ipi
0+u(ηi).

We prove the following lemma to establish the existence of a solution to Problem (6).

Lemma 4. Let the function h belong to C([0, T], E). Suppose that the function u ∈ C([0, T], E) is a solution of
the following boundary value problem (BVP):

cDq
0+u(t) =h(t), t ∈ [0, T],

u(k)(0) =ξk, u(T) =
m

∑
i=1

βi RL Ipi
0+u(ηi),
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where n− 1 < q < n, n ≥ 2, m, n ∈ N, ξk, βi ∈ R, η ∈ (0, T), k = 0, 1, . . . , n− 2, i = 1, 2, . . . , m. Here,
cDq

0+ denotes the Caputo fractional derivatives, and RL Ipi
0+ is the Riemann–Liouville non-local fractional integral

of order pi > 0. Assume that:

Λ := Tn−1 −
m

∑
i=1

βiη
pi+n−1
i

Γ(n)
Γ(n + pi)

6= 0.

Then, the solution of the above BVP has a unique solution given by:

u(t) = RL Iq
0+h(t) +

tn−1

Λ

[ m

∑
i=1

βiRL Ipi+q
0+ h(ηi) +

m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
ηpi+k

−RL Iq
0+h(T)−

n−2

∑
k=0

ξkTk

k!

]
+

n−2

∑
k=0

ξktk

k!
.

Proof. From Lemma (1), we get, for certain constant vectors c0, . . . , cn−1 belonging to E,

u(t) = RL I0+
qh(t) + c0 + c1t + c2t2 + . . . + cn−1tn−1.

From the first condition in BVP, we see,

c0 = ξ0, c1 = ξ1, c2 =
ξ2

2!
, . . . , cn−2 =

ξn−2

(n− 2)!
,

and so,

u(t) = RL Iq
0+h(t) +

n−2

∑
k=0

ξktk

k!
+ cn−1tn−1.

The substitution T = t yields,

u(T) = RL Iq
0+h(T) + cn−1Tn−1 +

n−2

∑
k=0

ξkTk

k!
,

and applying the operator RL Ipi
0+ results in:

RL Ipi
0+u(t) = (RL Ipi+q

0+ h)(t) + cn−1
Γ(n)

Γ(pi + n)
tpi+n−1 +

n−2

∑
k=0

ξkΓ(k + 1)tpi+k

k!Γ(pi + k + 1)
.

By employing the second boundary value condition, we infer:

RL Iq
0+h(T) + cn−1Tn−1 +

n−2

∑
k=0

ξkTk

k!
=

m

∑
i=1

βi

{
(RL Ipi+q

0+ h(ηi)) + cn−1
Γ(n)

Γ(pi + n)
η

pi+n−1
i

+
n−2

∑
k=0

ξkΓ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i

}
.

As a consequence, we get,

cn−1 =
1
Λ

[ m

∑
i=1

βi(RL Ipi+q
0+ h)(ηi) +

m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
η

pi+k
i

−RL Iq
0+h(T)−

n−2

∑
k=0

ξkTk

k!

]
.
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Hence, the result:

u(t) = RL Iq
0+h(t) +

tn−1

Λ

[ m

∑
i=1

βiRL Ipi+q
0+ h(ηi) +

m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
η

pi+k
i

−RL Iq
0+h(T)−

n−2

∑
k=0

ξkTk

k!

]
+

n−2

∑
k=0

ξktk

k!

follows.

Let E be the real vector space of all real-valued continuous functions defined on [0, T], that is
E = C([0, T],R). Equipped with the supremum norm ‖u‖∞:= sup

t∈[0,T]
|u(t)|, u ∈ E, the space E is a

Banach space. Define the non-linear operator A : E→ E as follows:

(Au)(t) = RL Iq
0+ f (s, u(s))(t) +

tn−1

Λ

[
− RL Iq

0+ f (s, u(s))(T) +
m

∑
i=1

βiRL Ipi+q
0+ f (s, u(s))(ηi)

+
m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
ηpi+k

]
+

n−2

∑
k=0

ξk
k!
(tk − Tktn−1

Λ
).

Then, the operator A has a fixed point if and only if Problem (6) possesses a solution. In the
next theorem, we present the existence of solutions for Problem (6) via the fixed point theorems of
Krasnoselskii and Darbo.

3.1. Existence Result Via Krasnoselskii’s Fixed Point Theorem

We begin with an existence result via the Krasnoselskii’s fixed point theorem.

Theorem 3. Let the function f : [0, T]×R→ R be a continuous function, which is Lipschitz continuous in the
second variable, that is there exists a finite constant L such that | f (t, u)− f (t, v)|≤ L|u− v| for all t ∈ [0, T]
and u, v ∈ R. Suppose that there exists a continuous function ϕ : [0, T] → R+ such that | f (t, u)|≤ ϕ(t),
for all (t, u) ∈ [0, T] × R. Then, the boundary value problem (6) has at least one solution provided that

γ := L

(
Tn+q−1

|Λ|Γ(q+1) +
Tn−1

|Λ|

m

∑
i=1

|βi|η
pi+q
i

Γ(pi + q + 1)

)
.

Proof. Besides ‖ϕ(t)‖∞= sup
t∈[0,T]

|ϕ(t)|, we write φ = Tq

Γ(q+1) +
Tn+q−1

|Λ|Γ(q+1) +
Tn−1

|Λ|

m

∑
i=1

|βi|η
pi+q
i

Γ(pi + q + 1)
,

M = Tn−1

|Λ|

m

∑
i=1

n−2

∑
k=0
|βi|

|ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i +

(
1 +

Tn−1

|Λ|

) n−2

∑
k=0

|ξk|Tk

k!
,

and choose ρ ≥ ‖ϕ‖∞φ + M. Let Bρ = {u ∈ E : ‖u‖≤ ρ} be the ball of radius ρ ≥ ‖ϕ‖∞φ + M
centered at the origin in E. In addition, introduce the operator A1 and A2 on E = C([0, T],R) by:

A1u(t) = RL Iq
0+ f (s, u(s))(t)

A2u(t) = − tn−1

Λ RL Iq
0+ f (s, u(s))(T) +

tn−1

Λ

m

∑
i=1

βiRL Ipi+q
0+ f (s, u(s))(ηi)

+
tn−1

Λ

m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
η

pi+k
i +

n−2

∑
k=0

ξk
k!
(tk − tn−1

Λ
Tk).

For any u, v ∈ Bρ, we get:
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|(A1u)(t) + (A2v)(t)| ≤ sup
t∈[0,T]

{
RL Iq

0+ | f (s, u(s))|(t) + tn−1

|Λ| RL Iq
0+ | f (s, v(s))|(T)

+
tn−1

|Λ|
m

∑
i=1
|βi|RL Ipi+q| f (s, v(s))|(ηi)

+
tn−1

|Λ|
m

∑
i=1

n−2

∑
k=0
|βi|

|ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i +

n−2

∑
k=0

|ξk|
k!

(tk +
tn−1

|Λ| Tk)
}

≤ ‖ϕ‖
{ Tq

Γ(q + 1)
+

Tn+q−1

|Λ|Γ(q + 1)

+
Tn−1

|Λ|
m

∑
i=1

|βi|η
pi+q
i

Γ(pi + q + 1)

}
+

Tn−1

|Λ|
m

∑
i=1

n−2

∑
k=0

|βiξk|Γ(k + 1)ηpi+k
i

k!Γ(pi + k + 1)
+ (1 +

Tn−1

|Λ| )
n−2

∑
k=0

|ξk|Tk

k!

= ‖ϕ‖φ + M ≤ ρ.

These inequalities show that A1u + A2v ∈ Bρ. In order to prove that A2 is a contraction, we take
u, v ∈ E and get,

|(A2u)(t)− (A2v)(t)| ≤ Tn−1

|Λ| RL
Iq
0+ | f (s, u(s))− f (s, v(s))|(T)

+
Tn−1

|Λ|
m

∑
i=1
|βi|(RL Ipi+q

0+ | f (s, u(s))− f (s, v(s))|(ηi))

≤ L|u− v|
( Tn+q−1

|Λ|Γ(q + 1)
+

Tn−1

|Λ|
m

∑
i=1

|βi|η
pi+q
i

Γ(pi + q + 1)

)
≤ γ‖u− v‖.

This implies that ‖A2u− A2v‖≤ γ‖u− v‖. Hence, A2 is a contraction. Therefore, the operator
A1 is continuous by the continuity of f . Since for u ∈ E, we have ‖A1u‖≤ ‖ϕ‖ Tq

Γ(q+1) , the operator A1

is uniformly bounded on Bρ. Next, we show that the operator A1 is compact.
We define sup

(t,u)∈[0,T]×Bρ

| f (t, u)|= θ < ∞, and for any 0 < τ1 < τ2 < T, we get:

|A1u(τ2)− A1u(τ1)| =
1

Γ(q)

∣∣∣∣∣
∫ τ1

0

[
(τ2 − s)q−1 − (τ1 − s)q−1] f (s, u(s))ds

+
∫ τ2

τ1

(τ2 − s)q−1 f (s, u(s))ds

∣∣∣∣∣
≤ θ

Γ(q + 1)
[τ

q
2 − τ

q
1 ].

A consequence of these inequalities is that {A1u : u ∈ Bρ} is a uniformly-bounded and
equicontinuous set in E. Thus, by the Arzela–Ascoli theorem, the operator A1 is compact on Bρ.
A combination of this property of the operator A1 with the inclusion property A1Bρ + A2Bρ ⊂ Bρ

implies, by Krasnoselskii’s theorem, that the problem (6) has at least one solution on [0, T].

Example 1. Consider the fractional boundary value problems:cD
3
2
0+u(t) =

(
|u(t)|
|u(t)|+1

)
cos2(3t)
(e2t+3)2 +

√
3t

2 , f or each t ∈ [0, 3],

u(0) = π, u(3) = RL I
2
5
0+(1) +

√
2RL I

3
5
0+(2) +

√
3RL I

4
5
0+(

5
2 ).

(7)
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By comparing the system (7) and (6), we obtain the following values: q = 3
2 , m = 3, T = 3,

n = 2, β1 = 1, β2 =
√

2, β3 =
√

3, p1 = 2
5 , p2 = 3

5 , p3 = 4
5 , η1 = 1, η2 = 2, η3 = 5

2 .

Here, f (t, u) =
(

u(t)
u(t)+1

)
cos2(3t)
(e2t+3)2 +

√
3t

2 .

As, ‖ f (t, u) − f (t, v)‖≤ 1
16‖u − v‖, therefore the condition of the Theorem 3 is satisfied with

L = 1
16 . Furthermore, we have γ ≈ 0.380034 < 1 and:

| f (t, u(t))|= |
( u(t)

u(t) + 1

) cos2(3t)
(e2t + 3)2 +

√
3t

2
|≤ 1

(e2t + 3)2 +

√
3t

2
.

Hence, the system (7) has at least one solution on [0, 3].

3.2. Existence Result via Darbo’s Fixed Point Theorem

In order to prove our main result, we assume the following hypotheses are satisfied:

Hypothesis 1 (H1). f : [0, T]× E→ E be a continuous function.

Hypothesis 2 (H2). There exists a constant L > 0 such that ‖ f (t, u)− f (t, v)‖≤ L‖u− v‖ for each t ∈ [0, T]
and u, v ∈ E.

Now, we prove our existence result for the problem (6) by Kuratowski MNC and Darbo’s fixed
point theorem.

Theorem 4. Suppose that (H1)–(H2) hold. If:

φL < 1

where φ = Tq

Γ(q+1) +
Tn+q−1

|Λ|Γ(q+1) +
Tn−1

|Λ|

m

∑
i=1

|βi|η
pi+q
i

Γ(pi + q + 1)
, then the problem (6) has at least one solution on [0, T].

Proof. A solution to the boundary value problem (6) can be considered as a fixed point of the operator
A : E→ E, defined by:

(Au)(t) = RL Iq
0+ f (s, u(s))(t) +

tn−1

Λ

[
− RL Iq

0+ f (s, u(s))(T) +
m

∑
i=1

βiRL Ipi+q f (s, u(s))(ηi)

+
m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
η

pi+k
i

]
+

n−2

∑
k=0

ξk
k!
(tk − Tktn−1

Λ
).

Step 1: A is continuous.
Let {un} be a sequence such that un → u in E, when n→ ∞. If t ∈ [0, T], we get:

|(Aun)(t)− (Au)(t)| ≤ RL Iq
0+ | f (s, un(s))− f (s, u(s))|(t)

+
Tn−1

|Λ| RL Iq
0+ | f (s, un(s))− f (s, u(s))|(T)

+
Tn−1

|Λ|
m

∑
i=1
|βi|RL Ipi+q

0+ | f (s, un(s))− f (s, u(s))|(ηi)

≤ Lφ‖un − u‖

which implies:
‖Aun − Au‖≤ Lφ‖un − u‖,

so that ‖Aun − Au‖→ 0, if n→ ∞.
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It follows that the operator A is continuous.
Define Br = {u ∈ C([0, T], E) : ‖u‖≤ r}, where r = Nφ+M

1−Lφ , and let sup
t∈[0,T]

| f (t, 0)|= N < ∞.

Obviously, the set Br is a closed, bounded, convex subset of the Banach space C([0, T], E).

Step 2: A(Br) ⊂ Br.

Let u belong to Br. In order to prove that Au ∈ Br, it suffices to show that |Au(t)|≤ r for t ∈ [0, T].
However, for t ∈ [0, T], we have:

|Au(t)| ≤ sup
t∈[0,T]

{
RL Iq

0+ | f (s, u(s))|(t) + tn−1

|Λ|

[ m

∑
i=1
|βi|(RL Ipi+q

0+ | f (s, u(s))|(ηi)

+
m

∑
i=1

n−2

∑
k=0
|βi|

|ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i + RL Iq

0+ | f (s, u(s))|(T) +
n−2

∑
k=0

|ξk|Tk

k!

]
+

n−2

∑
k=0

|ξk|tk

k!

}
.

Thus, we get:

|Au(t)| ≤ sup
t∈[0,T]

{
RL Iq

0+(| f (s, u(s))− f (s, 0)|+| f (s, 0)|)(t)

+
Tn−1

|Λ|

[ m

∑
i=1
|βi|(RL Ipi+q| f (s, u(s))− f (s, 0)|+| f (s, 0)|(ηi)

+
m

∑
i=1

n−2

∑
k=0
|βi|

|ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i + RL Iq

0+ |( f (s, u(s))− f (s, 0) + | f (s, 0)|)(T)

+
n−2

∑
k=0

|ξk|Tk

k!

]
+

n−2

∑
k=0

|ξk|Tk

k!

}
and therefore, we see:

|Au(t)| ≤ (L‖u‖+N)RL Iq
0+(t) + (L‖u‖+N)

Tn−1

|Λ|
m

∑
i=1
|βi|RL Ipi+q

0+ (ηi)

+
Tn−1

|Λ| (L‖u‖+N)RL Iq
0+(T) +

Tn−1

|Λ|
m

∑
i=1

n−2

∑
k=0

|βi||ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i

+(
Tn−1

|Λ| + 1)
n−2

∑
k=0
|ξk|

Tk

k!
.

This implies,

|Au(t)| ≤ (Lr + N)φ +
Tn−1

|Λ|
m

∑
i=1

n−2

∑
k=0

|βi||ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i + (

Tn−1

|Λ| + 1)
n−2

∑
k=0
|ξk|

Tk

k!

≤ r,

where,

r ≥
Nφ + Tn−1

|Λ|

m

∑
i=1

n−2

∑
k=0

|βi||ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i + (

Tn−1

|Λ| + 1)
n−2

∑
k=0
|ξk|

Tk

k!

1− Lφ
.

Thus, we get A(Br) ⊂ Br.
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Step 3: A(Br) is uniformly bounded and equicontinuous.

From Step 2, we get A(Br) = {Au : u ∈ Br} ⊂ Br. Hence, for each u ∈ Br, we get ‖Au‖≤ r, which
means that A(Br) is uniformly bounded. Let τ1, τ2 ∈ [0, T], τ1 < τ2, define sup

(t,u)∈[0,T]×Br

| f (t, u)|≤ θ < ∞,

and choose u ∈ Br. Then, we obtain,

|(Au)(τ2)− (Au)(τ1)| ≤
∣∣∣∣∣
∫ τ1

0

[
(τ2 − s)q−1 − (τ1 − s)q−1

]
f (s, x(s))

+
∫ τ2

τ1

(τ2 − s)q−1 f (s, x(s))ds

+
τn−1

2 − τn−1
1

Λ

[ m

∑
i=1

βiRL Ipi+q
0+ f (s, u(s))(ηi)

+
m

∑
i=1

n−2

∑
k=0

βiξkΓ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i + RL Iq

0+ f (s, u(s))(T)

+
n−2

∑
k=0

ξkTk

k!

]
+

n−2

∑
k=0

ξk
k!
(τk

2 − τk
1 )

∣∣∣∣∣.
This implies,

|(Au)(τ2)− (Au)(τ1)| ≤
θ

Γ(q + 1)
(τ

q
2 − τ

q
1 ) +

τn−1
2 − τn−1

1
|Λ|

[
θ

m

∑
i=1
|βi|

η
pi+q
i

Γ(pi + q + 1)

+
θTq

Γ(q + 1)
+

m

∑
i=1

n−2

∑
k=0
|βi|

|ξk|Γ(k + 1)
k!Γ(pi + k + 1)

η
pi+k
i

+
n−2

∑
k=0

|ξk|Tk

k!

]
+

n−2

∑
k=0

|ξk|
k!

(τk
2 − τk

1 ).

As τ2 → τ1, the right-hand side tends to zero. Thus, A(Br) is equicontinuous and uniformly
bounded. Hence, from the Arzela–Ascoli theorem, it follows that the set ABr is relatively compact
in Br.

Step 4: The operator A : Br → Br is a strict set contraction. For a subset V ⊂ Br and t ∈ [0, T], we have:

α(AV(t)) = α((Au)(t), u ∈ V)

≤ α

(
RL Iq

0+ f (s, u(s))(t) +
tn−1

Λ

[
m

∑
i=1

βiRL Ipi+q
0+ f (s, u(s))(ηi)

+
m

∑
i=1

n−2

∑
k=0

βi
ξkΓ(k + 1)

k!Γ(pi + k + 1)
η

pi+k
i + RL Iq

0+ f (s, u(s))(T)

−
n−2

∑
k=0

ξkTk

k!

]
+

n−2

∑
k=0

ξktk

k!
, u ∈ V

)

Lemma (2) together with the Kuratowski measure of noncompactness implies that for each
t ∈ [0, T],

α(AV(t)) ≤ α

(
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, u(s))ds +

tn−1

ΛΓ(q)

∫ T

0
(T − s)q−1 f (s, u(s))ds

+
tn−1

Λ

m

∑
i=1

βi
Γ(pi + q)

∫ ηi

0
(ηi − s)pi+q−1 f (s, u(s))ds, u ∈ V

)
.
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It follows that,

α(AV(t)) ≤ 1
Γ(q)

∫ t

0
(t− s)q−1{α( f (s, u(s))), u ∈ V}ds

+
tn−1

ΛΓ(q)

∫ T

0
(T − s)q−1{α( f (s, u(s))), u ∈ V}ds

+
tn−1

ΛΓ(pi + q)

m

∑
i=1
|βi|

∫ ni

0
(ηi − s)pi+q−1{α( f (s, u(s))), u ∈ V}ds

≤
(

1
Γ(q)

∫ t

0
(t− s)q−1ds +

tn−1

ΛΓ(q)

∫ T

0
(T − s)q−1ds

+
tn−1

ΛΓ(pi + q)

m

∑
i=1
|βi|

∫ ηi

0
(ηi − s)pi+q−1ds

)
{α( f (s, u(s))), u ∈ V}

≤ φL{α(u(s), u ∈ V)}, s ∈ [0, T]

≤ φLα(V(s)).

Hence, we obtain,

αc(AV) ≤ φLαc(V).

Therefore, the operator A is a set contraction. By Darbo’s fixed point theorem, the operator A has
a fixed point, which is a solution to the problem (6).

Example 2. Consider the fractional boundary value problems:cD
5
2
0+u(t) =

(
|u(t)|
|u(t)|+1

)
sin4(t)
(10t+9)2 +

t2

5 +
√

7
3 , f or each t ∈ [0, π],

u(0) = u′(0) = −1, u(π) = 3
2 RL I

1
2
0+(

1
2 ) +

3
4 RL I

1
3
0+(1) +

3
5 RL I

1
4
0+(2).

(8)

By comparing the systems (8) and (6), we obtain the following values: q = 5
2 , m = 3, T = π, n =

3, β1 = 3
2 , β2 = 3

4 , β3 = 3
5 , p1 = 1

2 , p2 = 1
3 , p3 = 1

4 , η1 = 1
2 , η2 = 1, η3 = 2, and f (t, u) =(

|u(t)|
|u(t)|+1

)
sin4(t)
(10t+9)2 +

t2

5 +
√

7
3 . Since ‖ f (t, u)− f (t, v)‖≤ 1

102 ‖u− v‖, the condition Lφ < 1 is satisfied with

L = 1
100 . Further, it is found that φ ≈ 47.656474 and Lφ ≈ 0.47656474 < 1. Hence, the system (8) has at

least one solution on [0, π].

4. Conclusions

In this paper, we prove the existences of solutions of nonlinear Caputo fractional derivative with
nonlocal Riemann-Liouville fractional integral condition. We obtained our results based on fractional
calculus, Krasnoselskii’s and Darbo’s fixed point theorems respectively. Finally some examples are
provided to illustrate our result.
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