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Abstract: In this paper, a kind of nonlinear Schrödinger (NLS) equation, called an NLS-like equation,
is Riemann–Hilbert investigated. We construct a 2× 2 Lax pair associated with the NLS equation
and combine the spectral analysis to formulate the Riemann–Hilbert (R–H) problem. Then, we
mainly use the symmetry relationship of potential matrix Q to analyze the zeros of det P+ and det P−;
the N-soliton solutions of the NLS-like equation are expressed explicitly by a particular R–H problem
with an unit jump matrix. In addition, the single-soliton solution and collisions of two solitons are
analyzed, and the dynamic behaviors of the single-soliton solution and two-soliton solutions are
shown graphically. Furthermore, on the basis of the R–H problem, the evolution equation of the R–H
data with the perturbation is derived.
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1. Introduction

It is known that soliton theory plays an important role in many fields. There are many methods
to study soliton equations, of which the inverse scattering method [1–3] and the Riemann–Hilbert
(R–H) method [4–7] are two important techniques. The former uses the nonlinear Fourier method
[8], in which the calculation procedure is extremely complicated. Conversely, the latter can
provide an equivalent and more direct method to solve integrable equations, especially for soliton
solutions. Thus, this method has been constantly developed [9–15]. Furthermore, there are many
techniques and transformations for finding exact solutions for soliton equations, such as the Darboux
transformation method [16–18], the Bäcklund transformation method [19,20], the Hirota bilinear
method [21–23], the homogeneous balance method [24,25], Frobenius integrable decompositions
[26–28], and Wronskian technology [29,30]. These methods have greatly promoted the development of
soliton theory. From the specific limit of the general soliton solution, lump solutions [31–34], periodic
solutions [35,36], and complex solutions [37,38] can be obtained. In recent years, the initial value
problem of integrable equations on the half-line and finite interval [39–41] have also been discussed by
formulating an associated R–H problem.

As we all know, the soliton solutions of soliton equations with important physical backgrounds
have been widely studied. Among them, the nonlinear Schrödinger (NLS) equation is a very significant
integrable model in Mathematical physics, which describes water wave theory, nonlinear optics, plasma
physics, and so on. It has the following form:

iqt + qxx ± 2q|q|2 = 0. (1)
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On the basis of this, an NLS-like equation

iqt + qxx − 2q|q|2 + 2a(|q|2)xq = 0, a ∈ R (2)

is derived as follows. We consider a soliton equation which has the following Lax pair:

Φx = MΦ, M =

(
−iλ2 q

r iλ2

)
, (3)

Φt = N0Φ, N0 =

(
A B
C −A

)
, (4)

where Φ(x, t, λ) is a matrix function, A, B, C contain the spectral parameter λ and function q, r and its
derivatives. The related stationary zero curvature equation is

N0x = [M, N0]. (5)

Then the Equation (5) becomes

Ax = qC− Br,

Bx = −2iλ2B− 2Aq,

Cx = 2iλ2C + 2Ar.

(6)

Let us take A, B, C as the six polynomial of λ,

A =
6

∑
j=0

ajλ
j, B =

6

∑
j=0

bjλ
j, C =

6

∑
j=0

cjλ
j. (7)

Therefore, the Equation (6) has following equivalence relation:

b6 = c6 = 0, a6x = 0,

ajx = qcj − bjr, (j = 0, 1, 2, 3, 4, 5)

bj−2 =
i
2

bjx + iajq,

cj−2 = − i
2

cjx + iajr.

We choose a6 = α = const, and have

b4 =
i
2

b6x + ia6q = iαq,

c4 = − i
2

c6x + ia6r = iαr,

a4x = qc4 − b4r = iqαr− iqαr = 0.
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The following equations can be obtained by setting a4 = β = const:

b2 =
i
2

b4x + ia4q =
i
2
(iαq)x + iβq = −α

2
qx + iβq,

c2 = − i
2

c4x + ia4r = − i
2
(iαr)x + iβr =

α

2
rx + iβr,

a2x = qc2 − b2r = q(
α

2
rx + iβr)− (−α

2
qx + iβq)r

=
α

2
(qrx + qxr) =

α

2
(qr)x.

In addition, we can get a2 = α
2 qr + a20 (a20 = const) and

b0 =
i
2

b2x + ia2q =
i
4

α(−qxx + 2q2r)− 1
2

βqx + iqa20,

c0 = − i
2

c2x + ia2r =
i
4

α(−rxx + 2qr2) +
1
2

βrx + ira20,

a0x = qc0 − b0r = − i
4

α(qrx − rqx)x +
1
2

β(qr)x.

Similarly, a0 = − i
4 α(qrx − rqx) +

1
2 βqr + a00, (a00 = const) can be obtained. We also choose

b5 = c5 = 0, through the same steps as above and have a5 = 0, b3 = b1 = 0, c3 = c1 = 0. Thus,

A = a6λ6 + a5λ5 + a4λ4 + a3λ3 + a2λ2 + a1λ1 + a0λ0

= − i
4

α(qrx − rqx) +
1
2

βqr + a00

+ (
α

2
qr + a20)λ

2 + βλ4 + αλ6,

B = b6λ6 + b5λ5 + b4λ4 + b3λ3 + b2λ2 + b1λ1 + b0λ0

=
i
4

α(−qxx + 2q2r)− 1
2

βqx + iqa20

+ (−α

2
qx + iβq)λ2 + (iαq)λ4,

C = c6λ6 + c5λ5 + c4λ4 + c3λ3 + c2λ2 + c1λ1 + c0λ0

=
i
4

α(−rxx + 2qr2) +
1
2

βrx + ira20

+ (
α

2
rx + iβr)λ2 + (iαr)λ4.

The matrix spectral problem can be obtained by taking α = a00 = a20 = 0, β = −2i, r = −q,

M =

(
−iλ2 q
−q iλ2

)
,

N0 =

(
−2iλ4 + i|q|2 iqx + 2λ2q

iqx − 2λ2q 2iλ4 − i|q|2

)
.

A direct calculation shows qt − iqxx − 2iq|q|2 = 0. Notice that the term −2iq|q|2 is independent of
λ, thus, it can become positive as we assume

N1 =

(
−2iλ4 − i|q|2 iqx + 2λ2q

iqx − 2λ2q 2iλ4 + i|q|2

)
,
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and using the same method as above, we have

N =

(
−2iλ4 − i|q|2 + A1 iqx + 2λ2q + B1

iqx − 2λ2q + C1 2iλ4 + i|q|2 − A1

)
.

The corresponding zero curvature equation is Mt − Nx + [M, N] = 0, and we get{
qt − iqxx − B1x + 2iq|q|2 − 2A1q− 2iλ2B1 = 0,

− qt − iqxx − C1x + 2iq|q|2 − 2A1q + 2iλ2C1 = 0.

Taking B1 = C1 = 0, A1 = ia(|q|2)x , the 2× 2 Lax pair can be obtained:

Φx = MΦ,

M =

(
−iλ2 q
−q iλ2

)
,

(8)

Φt = NΦ,

N =

(
−2iλ4 + ia|q|2x − i|q|2 iqx + 2λ2q

iqx − 2λ2q 2iλ4 − ia|q|2x + i|q|2

)
,

(9)

where the symbol “− ” represents complex conjugation. In our analysis, we assume the potential q
is smooth enough and decays rapidly to zero when x → ±∞. Furthermore, at any later time t, we
look for solution q(x, t) with the initial condition q(x, 0). When setting a = 0, Equation (2) becomes
a classical nonlinear Schrödinger Equation (1).

In this paper, we study the perturbation theory of the NLS-like equation. Obviously, small
perturbations of integrable conditions can be regarded as perturbations of integrable models. Our
formalism is in view of the R–H problem related to the NLS-like equation. The main advantage of
the proposed method is its algebraic property, which is different from the method using the Gel’Fand
Leviaon integral equation [42]. The R–H problem has many applications in dealing with disturbed
soliton dynamics [43]. Modern versions of perturbation theory for the R–H problem have been
published in a series of papers [44–47]. The direct perturbation theory is another form of soliton
perturbation theory, which develops on the basis of the perturbation solution expansion into the square
eigenfunction of the linearized soliton equation [48].

The main structure of this article is as follows. In Section 2, we give the Lax pair of the NLS-like
equation. Then, the properties of the equivalent space matrix spectral problem of matrix eigenfunctions
are analyzed, and the R–H problem related to the newly introduced space matrix spectral problem
is formulated. In Section 3, through the special reductive R–H problem, in which the jump matrix is
a unit matrix, the explicit expressions of the N-soliton solutions are obtained. In addition, the single
soliton solution and collisions of the two-soliton solutions are analyzed. The perturbation theory based
on Section 2 and the evolution equation of R–H data with perturbation are given in Section 4. Finally,
the paper is summarized and further questions are given in Section 5.

2. The Riemann–Hilbert Problem

In what follows, we set a = 1, and constructed a R–H formulation for Equation (2) with scattering
and inverse scattering methods.

Let T = (t1, t2)
T be a solution of Lax pair (8) and (9) and the following relation can be obtained

by defining µ = t1/t2:
(ln t2)x = iλ2 − qµ, (10)

(ln t2)t = (2iλ4 − i|q|2x + i|q|2) + (iqx − 2λ2q)µ. (11)
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By taking the derivative of the right-hand side of these two equations with respect to t and x, we
get

(iλ2 − qµ)t = [(2iλ4 − i|q|2x + i|q|2) + (iqx − 2λ2q)µ]x. (12)

Throughout this work, we consider Φ in (8)–(9) to be a fundamental matrix. In addition, q→ 0 as
x → ±∞ and we get Φ ∝ e−iλ2σ3x−2iλ4σ3t, where σ3 is a diagonal constant matrix,

σ3 = diag(1,−1). (13)

It is convenient to introduce a new matrix spectral function J = J(x, t; λ), which can be defined as

Φ = Je−iλ2σ3x−2iλ4σ3t. (14)

Hence, the variable x and t in the new matrix J are independent at infinity. By inserting Equation
(14) into (8)–(9), the original Lax pair (8)–(9) can be rewritten as

Jx = −iλ2[σ3, J] + QJ, (15)

Jt = −2iλ4[σ3, J] + V J, (16)

with

Q =

(
0 q
−q 0

)
,

V = 2λ2Q +

(
i|q|2x − i|q|2 iqx

iqx −i|q|2x + i|q|2

)
.

(17)

and [σ3, J] = σ3 J − Jσ3. From Equation (17), it can be seen that tr(Q) = tr(V) = 0, and

Q† = −Q, V† = −V, (18)

where the superscript “ † ” represents the Hermitian of a matrix. In the scattering process, we start
from the x-part of the Lax pair and regard t as a parameter and omit it.

Let us first introduce the Jost solutions, which have the following asymptotic properties:

J±(x, λ)→ I, x → ±∞, (19)

where I is a 2× 2 identity matrix, and the subscript of J± indicates that the boundary conditions are at
±∞, respectively. By using the large-x asymptotic condition (19), the x part of Equation (15) can be
transformed into the Volterra integral equation of J±

J−(x, λ) = I+
∫ x

−∞
eiλ2σ3(y−x)Q(y)J−(y, λ)eiλ2σ3(x−y)dy, (20)

J+(x, λ) = I−
∫ ∞

x
eiλ2σ3(y−x)Q(y)J−(y, λ)eiλ2σ3(x−y)dy. (21)

Through the direct analysis of Equations (20) and (21), because of the structure of the potential Q
in Equation (17), it can be seen that the first column of J− contains only the exponential factor eiλ2(x−y),
as λ ∈ C+ = {λ| arg λ ∈ (0, π

2 ) ∪ (π, 3π
2 )}, since y < x, eiλ2(x−y) decays. In addition, the second

column of J+ includes only exponential factor eiλ2(y−x) , as λ ∈ C+, since y > x, eiλ2(y−x) also decays.
Thus, we believe these two columns can be analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪R∪ iR.
By using a similar analysis, the second column of J− as well as the first column of J+ can also be
analytic for λ ∈ C− = {λ| arg λ ∈ (π

2 , π) ∪ ( 3π
2 , 2π)} and continuous for λ ∈ C− ∪R∪ iR.
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Remark 1. The implementation of the inverse scattering transform of the NLS-like equation is different to the
implementation of the derivative NLS equation. The differences are shown below:
(i) One needs to see the continuity of λ2 differently;
(ii) It is necessary to distinguish between the upper half plane and the lower half plane of λ2.

Able’s formula tells us that

det Φ(x) = det Φ(x0)e
∫ x

x0
trA(ζ)dζ , (22)

and applying this identity to the Equation (8) and using relation (14), we see that no matter what
the value of x is, det J(x, λ) is a constant. Then, we obtain det J±(x, λ) = 1 by utilizing the boundary
conditions (19). Thus, denoting

E(x, λ) = e−iλ2σ3x, (23)

and
ϕ ≡ J−E, Ψ ≡ J+E. (24)

In fact, two solutions of the Equation (8), ϕ(x, λ) and Ψ(x, λ), are linearly related. Their
relationship can be stated as follows:

ϕ(x, λ) = Ψ(x, λ)S(λ), λ ∈ R∪ iR. (25)

That is,
J−E = J+ES(λ), λ ∈ R∪ iR, (26)

where,

S(λ) =

(
s11 s12

s21 s22

)
, (27)

which is called the scattering matrix. In view of Equation (26) and det J±(x, λ) = 1, we notice that the
scattering matrix S(λ) satisfies

det(S(λ)) = 1. (28)

Thus, defining (ϕ, Ψ) as a collection of columns, which can be read as

ϕ = (ϕ1, ϕ2), Ψ = (ψ1, ψ2). (29)

In addition, when the Jost solutions are

P+ = (ϕ1, ψ2)eiλ2σ3x = J+ES+E−1

= J−ES−E−1 = J−H1 + J+H2,
(30)

which are analytic in λ ∈ C+, where the matrices S±,

S+(λ) =

(
s11 0
s21 1

)
, S−(λ) =

(
1 s∗21
0 s∗22

)
,

and H1 = diag(1, 0), H2 = diag(0, 1). The matrices S± provide a factorization of the scattering matrix
SS− = S+. In addition, when the Jost solutions are

(ψ1, ϕ2)eiλ2σ3x = J+H1 + J−H2, (31)
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which are analytic in λ ∈ C−. Furthermore, using the Volterra integral Equations (20)–(21),
the asymptotic properties of these analytic functions at large-λ can be obtained:

P+(x, λ)→ I, λ ∈ C+ → ∞, (32)

and
(ψ1, ϕ2)eiλ2σ3x → I, λ ∈ C− → ∞. (33)

In order to get the corresponding analysis of P+ in C−, the adjoint equation of Equation (15)
is introduced:

Kx = −iλ2[σ3, K]− KQ. (34)

As a result of the relationship

(J J−1)x = 0 = Jx J−1 + J(J−1)x, (35)

and the scattering Equation (15), we have

(J−1)x = −iλ2[σ3, J−1]− J−1Q, (36)

so that J−1
± satisfies the adjoint scattering Equation (34). Using the same technique as above, the

collection of rows ϕ−1 and Ψ−1 can be expressed as

ϕ−1 =

(
ϕ̃1

ϕ̃2

)
, Ψ−1 =

(
ψ̃1

ψ̃2

)
. (37)

It can be seen that the adjoint Jost solutions are

P− = e−iλ2σ3x

(
ϕ̃1

ψ̃2

)
= ET+E−1 J−1

+

= ET−E−1 J−1
− = H1 J−1

− + H2 J−1
+ ,

(38)

which are analytic in λ ∈ C−, where

T+(λ) =

(
s∗11 s∗21
0 1

)
, T−(λ) =

(
1 0

s21 s22

)
.

The matrices T± also provide a factorization of the scattering matrix: T+S = T−. In addition,
when the adjoint Jost solutions are

e−iλ2σ3x

(
ψ̃1

ϕ̃2

)
= H1 J−1

+ + H2 J−1
− , (39)

which are analytic in λ ∈ C+. Taking the Volterra integral equation again, we have

P−(x, λ)→ I, λ ∈ C− → ∞ (40)

and

e−iλ2σ3x

(
ψ̃1

ϕ̃2

)
→ I, λ ∈ C+ → ∞. (41)

The analytical properties of the above Jost solutions are summarized below:

ϕ = (ϕ+
1 , ϕ−2 ), Ψ = (ψ−1 , ψ+

2 ), (42)
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ϕ−1 = (ϕ̃−1 , ϕ̃+
2 )

T , Ψ−1 = (ψ̃+
1 , ψ̃−2 )T . (43)

Here, the superscript “±” represents that the basic quantity is analyzed in C±. Obviously, we
know the analytic properties of the Jost solutions, hence the analytic properties of the scattering matrix
S(λ) can be easily analyzed. Because of the relation

S = Ψ−1 ϕ =

(
ψ̃+

1
ψ̃−2

)
(ϕ+

1 , ϕ−2 ), (44)

and

S−1 = ϕ−1Ψ =

(
ϕ̃−1
ϕ̃+

2

)
(ψ−1 , ψ+

2 ), (45)

the analysis structure of the scattering matrices S and S−1 can be obtained, which is expressed as

S =

(
s+11 s12

s21 s−22

)
, S−1 =

(
s̃−11 s̃12

s̃21 s̃+22

)
. (46)

According to the relationship between S−1 and S, the following equations are obtained:

s̃11 = s22, s̃22 = s11, s̃12 = −s12, s̃21 = −s21. (47)

So far, the matrix functions P+(x, λ) and P−(x, λ) are constructed, which are analytic in C+ and
C−, respectively. By defining

G+(x, λ) = lim
µ∈C+ ,µ→λ

P+(x, µ),

(G−)−1(x, λ) = lim
µ∈C− ,µ→λ

P−(x, µ), λ ∈ R∪ iR,
(48)

the two matrix functions G+ and G− are related to each other by using Equations (26), (30), (38),
and (48):

G+(x, λ)(G−)−1 = G(x, λ), (49)

where

G = ES+T+E−1 = ES−T−E−1 = E

(
1 s̃12

s21 1

)
E−1. (50)

Equation (49) accurately gives the R–H problem of a correlation matrix. From Equations (32) and
(40), the asymptotic properties of the above R–H problem shows

P±(x, λ)→ I, λ ∈ C± → ∞, (51)

and the canonical normalization condition

G±(x, λ)→ I, λ ∈ R∪ iR→ ∞. (52)

We know that a key step for solving soliton solutions is to calculate the potential matrix Q through
P±(x, λ). In view of P+ being the solution of the scattering problem (15), we expand the P+ at
large-λ as

P+(x, λ) = I + λ−1P+
1 (x) + λ−2P+

1 (x) + o(λ−3), λ→ ∞, (53)



Symmetry 2019, 11, 826 9 of 20

and by taking Equation (53) into Equation (15) and comparing the term of o(1), we have

Q = i[σ3, P+
1 ] = i

(
0 2(P+

1 )12

−2(P+
1 )21 0

)
. (54)

Therefore, the reconstructed solution q can be represented by P+ as

q = 2i(P+
1 )12. (55)

At this point, the inverse scattering process has been completed.
Similarly, we obtain

diag(P+
1 )x = diag(QP+

1 ). (56)

Through the large-x asymptotic of P+(x, λ) from Equation (19) and Equations (55)–(56), we find
the full matrix P+

1 (x, λ) can be expressed as

P+
1 (x) =

1
2i

( ∫ x
−∞ |q(y)|

2dy q(x)
q(x)

∫ ∞
x |q(y)|

2dy

)
. (57)

By the same method, we can get the asymptotic expansion of P−.
It is well known that soliton solutions for the R–H problem with zeros can be obtained by

transforming them into a problem without zeros. As long as the det P± is specified at the zeros in C± ,
and the structure of the ker P± at these zeros can be determined, then the uniqueness of the solution
for each of the associated R–H problems defined by the Equations (49)–(50) is established. From the
definitions of Equations (30) and (38) as well as the scattering relation (26), we get

det P+(x, λ) = s̃22(x, λ) = s11(x, λ), (58)

det P−(x, λ) = s22(x, λ) = s̃11(x, λ). (59)

Let N be an arbitrary nature, we assume that s̃22 has N zeros {λk ∈ C+, 1 ≤ K ≤ N} and s22 has
N zeros {λ̂k ∈ C−, 1 ≤ K ≤ N}. To get N- Solitons, we suppose that all zeros λk and λ̂k are simple
zeros. In this case, each of ker P+(λk), 1 ≤ K ≤ N, which includes only a single column vector vk; each
of ker P−(λ̂k), 1 ≤ K ≤ N, which includes only a single row vector v̂k. That is,

P+(λk)vk = 0, v̂kP−(λ̂k) = 0, 1 ≤ k ≤ N. (60)

The potential matrix Q possesses a symmetry property (18), which yields a symmetry property in
the scattering matrix and Jost functions. In addition, we notice that the scattering Equation (15) has the
Hermitian property, then by utilizing the anti-Hermitian property of the first equation in (18), we have

J†
x = −iλ2

[σ3, J†]− J†Q. (61)

Therefore, Equation (61) shows that J†
±(x, λ) satisfies the adjoint scattering Equation (34). From

Equation (35), we know that J−1
± (x, λ) also satisfies the adjoint equation. Therefore, J†

±(x, λ) and
J−1
± (x, λ) must be linearly related to each other. That is, J†

±(x, λ) = AJ−1
± (x, λ), where A is

x-independent. We can get A = 1 by utilizing the boundary conditions (19) of Jost solutions J±.
That is,

J†
±(x, λ) = J−1

± (x, λ). (62)
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By utilizing this involution property and definitions Equation (30) as well as (38) for P±, we see
that the analytic solutions P± also possess the involution property:

(P+)†(λ) = P−(λ). (63)

In addition, from the scattering relationship (26) between J+ and J−, the involution property is
also suitable for S:

S†(λ) = S−1(λ). (64)

Considering the zeros of the scattering coefficients s̃22(λ) and s22(λ) are λk and λ̂k, respectively;
the involution relation from the involution property (64) shows

λ̂k = λk. (65)

In order to get the symmetric properties of the eigenvectors v̂k and vk, we use the Hermitian of
the equation P+(λk)vk = 0, and take the involution properties Equations (63) and (65). Thus, we have

v†
k P−(λ̂k) = 0. (66)

Then, we compare it with the equation v̂kP−(λ̂k) = 0, and see that eigenvectors (vk, v̂k) have the
involution property

v̂k = v†
k . (67)

To obtain soliton solutions in the R–H problems above, we set G = I. When we set s21 = s̃12 = 0,
this means that the reflection does not exist in the scattering problem. By factoring a rational matrix
Γ(λ), the solution of the non-regular R–H problem with zeros is

P+(λ) = P̃+(λ)Γ(λ), P−(λ) = Γ−1(λ)P̃−(λ). (68)

P̃± is the solution to the following regularized R–H problem:

P̃−(λ)P̃+(λ) = Γ(λ)G(λ)Γ−1, λ ∈ R∪ iR, (69)

and P̃± → I as λ→ ∞.
The rational matrix functions Γ and Γ−1, which are defined as

Γ(λ) = I +
N

∑
k,l=1

vk(M−1)kl v̂l

λ− λ̂l
,

Γ−1(λ) = I −
N

∑
k,l=1

vk(M−1)kl v̂l
λ− λk

,

(70)

where

Mkl =
v̂kvl

λ̂k − λl
, 1 ≤ k, l ≤ N, (71)

and det Γ(λ) =
N
Π

l=1

λ−λl
λ−λ̂l

. Γ(λ) and Γ−1(λ) have the same zeros as P+(λ) and P−(λ), respectively, as

well as the null spaces:
Γ(λk)vk = 0, v̂kΓ−1(λ̂k) = 0.

Because the zeros λk and λ̂k are contants, i.e., they do not rely on spatial variable x and time
variable t, it is easy to determine the temporal and spatial evolution of vectors vk(x, t) and v̂k(x, t)(1 ≤
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k ≤ N) in ker P±. We calculate the derivatives of x on both sides of equation P+vk = 0. By utilizing
Equation (15), we have

P+(x, λk)

(
dvk
dx

+ iλ2
kσ3vk

)
= 0, 1 ≤ k ≤ N. (72)

Thus, we can draw a conclusion that for 1 ≤ k ≤ N, the vector dvk
dx + iλ2

kσ3vk must be in the kernel
of P+(x, λk) and it must be a scalar function of the vector. We set the constant vanishes and have

dvk
dx

= −iλ2
kσ3vk, 1 ≤ k ≤ N. (73)

In a similar way, the time dependency of vk can be obtained by utilizing (16):

dvk
dt

= −2iλ4
kσ3vk, 1 ≤ k ≤ N. (74)

Finally, we can get
vk(x, t) = e−iλ2

k σ3x−2iλ4
k σ3tvk0 , 1 ≤ k ≤ N, (75)

v̂k(x, t) = v̂k0 eiλ2
k σ3x+2iλ4

k σ3t, 1 ≤ k ≤ N, (76)

where vk0 (1 ≤ k ≤ N) is an arbitrary constant number column vector, and v̂k0(1 ≤ k ≤ N) is
an arbitrary constant row vector.

3. The N-Soliton Solutions and Their Danamics

By using the relation P+ in Equations (53) and (68) as well as the reconstructed potential Q in
Equation (54), we get the N-soliton solutions of Equation (2), which are expressed as

P+
1 =

N

∑
k,l=1

vk(M−1)kl v̂l (77)

and

q(x, t) = 2i(P+
1 )12 = 2i

(
N

∑
k,l=1

vk(M−1)kl v̂l

)
12

. (78)

Here, vectors vk are given by Equation (74), v̂k = v†
k . In addition, matrix M has been defined in

Equation (71). Without loss of generality, let vl0 = (cl , 1)T . Therefore, the solution q can be expressed
explicitly as

q(x, t) = 2i

(
N

∑
k,l=1

ckeθk−θl (M−1)kl

)
, (79)

where the N × N matrix M is

Mkl =
1

λk − λl

[
e−(θk+θl) + ckcleθk+θl

]
, (80)

where θk = −iλ2
k x− 2iλ4

kt.
In order to simplify the calculation, solution q can also be expressed by matrix determinants [48]:

q(x, t) = −2i
det F
det M

, (81)
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where

F =


0 e−θ1 · · · e−θN

c1eθ1 M11 · · · M1N
...

...
. . .

...
cNeθN MN1 · · · MNN

 . (82)

3.1. Single-Soliton Solutions

When N = 1, the solution q(x, t) is

q(x, t) = 2i(λ1 − λ1)
c1eθ1−θ1

e−(θ1+θ1) + |c1|2eθ1+θ1
. (83)

We assume that
λ1 = ζ + iτ, c1 = e−4ζτx0+iσ0 , (84)

here, ζ is real part of λ1, and τ is imaginary part of λ1. In addition, x0, σ0 are real parameters; thus,
the solution of Equation (79) can be expressed as

q(x, t) =2τsech{4ζτ[x + 4(ζ2τ − ζτ2)t]− x0} exp {−2i

(ζ2 − τ2)x− 4i(ζ4 + τ4 − 6ζ2τ2)t + iσ0}
. (85)

Notice that the shape of the amplitude function |q(x, t)| is a hyperbolic secant, and its peak
amplitude is 2τ and the velocity is −4(ζ2τ − ζτ2). We can see the soliton’s peak amplitude only relies
on τ, consequently, the peak cannot change after the soliton collisions. The phase of the solution
depends not only linearly on spatial x but also on t. In addition, the parameter x0 represents the
initial position of the solitary wave, and σ0 represents the phase of the solitary wave. We choose the
appropriate parameter and give the evolution characteristics of single soliton solutions in Figure 1.

Remark 2. Because of the difference in Lax pairs, the corresponding R–H problem of the spatial matrix spectral
problem is also different. We can clearly see through the solution (85) that the NLS-like equation is different
from the single soliton solution of the derivative NLS equation, which also makes the pulse width and velocity of
the NLS-like equation corresponding to the derivative NLS equation different.

Figure 1. Modulus of the soliton q(x, t) in Equation (85) with the parameters chosen as τ = 0.5, ζ =

0.2, x0 = 0.2, σ0 = 0.2.
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3.2. Two-Soliton Solutions

When N = 2, the two-soliton solutions can also be written out explicitly; however, it is quite
complicated. For simplicity, we take N = 2 into Equation (81) and get

q(x, t) = −2i
−c1eθ1−θ1 M22 + c2eθ2−θ1 M12

|M|

× c1eθ1−θ2 M21 − c2eθ2−θ2 M11

|M| ,

(86)

where

M11 =
e−(θ1+θ1) + |c1|2eθ1+θ1

λ1 − λ1
,

M12 =
e−(θ2+θ1) + c1c2eθ2+θ1

λ1 − λ2
,

M21 =
e−(θ1+θ2) + c2c1eθ1+θ2

λ2 − λ1
,

M22 =
e−(θ2+θ2) + |c2|2eθ2+θ2

λ2 − λ2
.

Then, we show the collision of the two-soliton in Figure 2 and Figure 3. One for the case of ζ1 6= ζ2

and the other one for the case of ζ1 = ζ2. Here,

λk = ζk + iτk, k = 1, 2, (87)

where ζk is real part of λk and τk is imaginary part of λk.

Case I. We set λ1 = 1 + 0.75i, λ2 = 0.65 + 0.55i.

In this case, we assume that ζ1 > ζ2, which indicates that soliton-2 is on the left side of soliton-1
as t→ −∞ as well as moves fast. After collision, their position and phase will be scattered. Through
asymptotic analysis, we can explain this change.

When t→ −∞, by simple calculation, the asymptotic state of Equation (86) can be expressed as

q(x, t)→ 2i(λ1 − λ1)
c−1 eθ1−θ1

e−(θ1+θ1) + |c−1 |2eθ1+θ1
, t→ −∞, (88)

where c−1 = c1
λ1−λ2
λ1−λ2

and the asymptotic solution has the same peak amplitude 2τ1 and velocity

−4(ζ2
1τ1 − ζ1τ2

1 ) as Equation (86).
When t→ +∞, the asymptotic state of Equation (86) also can be expressed as

q(x, t)→ 2i(λ1 − λ1)
c+1 eθ1−θ1

e−(θ1+θ1) + |c+1 |2eθ1+θ1
, t→ +∞, (89)

where c+1 = c1
λ1−λ2
λ1−λ2

. The asymptotic solution also has same peak amplitude 2τ1 and velocity−4(ζ2
1τ1−

ζ1τ2
1 ) as Equation (86). As Figure 2 shows, the solution does not change their velocity and shape after

collision, but the initial positions and phases of solitary waves have shifted.
The position shift is

∆x01 = − 1
4ζ1τ1

(ln |c+1 | − ln |c−1 |) =
1

2ζ1τ1
ln
∣∣∣∣λ1 − λ2

λ1 − λ2

∣∣∣∣ . (90)
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It is easy to see ∆x01 < 0, because λk ∈ C+. Then, the phase shift is

∆σ01 = arg(c+1 )− arg(c−1 ) = −2 arg
(

λ1 − λ2

λ1 − λ2

)
. (91)

Similarly, as t→ ±∞, the asymptotic solutions have the same peak amplitude 2τ2 and velocity

−4(ζ2
2τ2 − ζ2τ2

2 ) with single solitons, where c−2 = c1
λ2−λ1
λ2−λ1

, c+2 = c1
λ2−λ1
λ2−λ1

. Therefore, the second soliton
position shift is

∆x02 = − 1
2ζ2τ2

ln
∣∣∣∣λ2 − λ1

λ2 − λ1

∣∣∣∣ > 0, (92)

and the phase shift is

∆σ02 = 2 arg
(

λ2 − λ1

λ2 − λ1

)
. (93)

From Equations (90) and (92), we get

∆x02

∆x01
= − ζ1τ1

ζ2τ2
. (94)

This shows that the position deviation of each soliton is inversely proportional to its amplitude.

Figure 2. Modulus of the soliton q(x, t) in Equation (86) with the parameters chosen as ζ1 = 1, τ1 =

0.75, ζ2 = 0.65, τ2 = 0.55, c1 =
√

3
2 , c2 = − 1

2 i.

Case II. We set λ1 = 0.8 + 0.55i, λ2 = 0.8 + 0.45i.

In the second case, we assume that ζ1 = ζ2. As Figure 3 shows, the two solitons have the same
velocity, and the amplitude function |q(x, t)| has periodic oscillations with time.



Symmetry 2019, 11, 826 15 of 20

Figure 3. Modulus of the soliton q(x, t) in Equation (86) with the parameters chosen as ξ1 = 0.8, η1 =

0.55, ξ2 = 0.8, η2 = 0.45, c1 = 1, c2 = 1.

4. Evolution of the R–H Data in the Perturbed NLS-Like Equation

In this part, a perturbed NLS-like equation

iqt + qxx − 2q|q|2 + 2a(|q|2)xq = R′(q) (95)

is analyzed, where Equation (95) is called a nearly integrable system. Here, R′ is a perturbation term,
and ε � 1. We give the symbol δ

δt to the perturbations in order to distinguish the integrable and
perturbation contributions. Consequently,

i
δQ
δt

= R, R =

(
0 R′

−R′ 0

)
.

Generally, a perturbation leads to a slow evolution of the R–H data. In fact, a perturbation causes
the variational δQ of the potential of the spectral Equation (15), which leads to the variation of the Jost
solutions,

δJ±x = −iλ2[σ3, δJ±] + δQJ± + QδJ±.

By solving the equation, we have

δJ± = J±E(
∫ x

±∞
dx
′
E−1 J−1

± δQJ±E)E−1.

Hence, by utilizing the Equations (26), (30), and (38), we get a variation of a scattering matrix:

δS
δt

= −iεS+

∫ ∞

−∞
dxE−1(P+)−1RP+ES−1

−

= −iεT−1
+

∫ ∞

−∞
dxE−1P−R(P−)−1ET−.
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Here, S± and T± are the matrices defined in Section 2. Notice that the analytic solution P± is
naturally installed in the equation. We can thus denote that

Υ+(a, b) =
∫ b

a
dxE−1(P+)−1RP+E,

Υ−(a, b) =
∫ b

a
dxE−1P−R(P−)−1E,

Υ±(λ) ≡ Υ±(−∞, ∞).

(96)

Then,
δS
δt

= −iεS+Υ+(λ)S−1
− = −iεT−1

+ Υ−(λ)T−.

Matrix Υ± is interrelated through matrix G into the R–H problem (49):

Υ−(λ) = GΥ+(λ)G−1.

From Equations (30) and (38), the variations of the analytic solutions show

δP+

δt
= −iεP+EH+E−1,

δP−

δt
= iεEH−E−1P−,

where H+ are the evolution functionals, which are defined as

H+ = Υ+(λ)H1 − Υ+(x, ∞),

H− = H1Υ−(λ)− Υ−(x, ∞).
(97)

From Equation (63), we get the connection between H+ and H−, H− = H†
+, λ ∈ R ∪ iR. They

contain all the basic information about a perturbation. The additional terms obtained from the
perturbation evolution equation P± are defined by H±,

(P+)t = −2ik4[σ3, P+] + VP+ − iεP+EH+E−1,

(P−)t = −2ik4[σ3, P−]− P−V + iεEH−E−1P−.
(98)

In addition, the evolution equation for the matrix G of the R–H problem also has the form

Gt = −2ik4[σ3, G]− iε(GH+ − H−G). (99)

Indeed, the equation provides the evolution of the continuous R–H data.
Next, we derive the perturbation induced evolution equation for the discrete R–H data, i.e., for

the zero λk and the eigenvector vk. Vectors vK = (vK1, vK2)
T are constant without perturbation. Under

perturbation, vectors vK = (vK1, vK2)
T have slow t dependence. Let us start with the equation

P+(λk)vk = P+(λk)e(−iλ2
k x−2i

∫
dtλ4

k)σ3 vP = 0

which is unaffected by a perturbation. Here, the integral in the exponential takes account of the time
dependence of the zero λk caused by the possible perturbation. Taking the total derivative in t, we get{

(P+(λ)e−iλ2σ3x−2i
∫

dtλ4
k σ3)t

+(P+(λ)e−iλ2σ3x−2i
∫

dtλ4
k σ3)λλt

}
λ=λk

+ P+(λk)e−iλ2
k σ3x−2i

∫
dtλ4

k σ3(vP )t = 0.
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The first term with (P+)t is given by Equation (98), which includes the evolution functional H+.
Note that the evolution functional H+(λ) is defined by Υ+ in Equation (97) which depend on (P+)−1,
conversely. Thus, the function H+ , which has the simple pole in λk, is meromorphic in C+, where P+

has zero,

H+(λ) = H
(reg)
+ (λ) +

1
λ− λk

Res[H+(λ), λk],

where H
(reg)
+ represents the regular part of H+ in the point λk. The perturbation evolution of the

vector vK is given by

(vK)t = iεe2i
∫

dtλ4
k σ3 H

(reg)
+ (λk)e−2i

∫
dtλ4

k σ3 vK. (100)

In order to derive the evolution equation of λk, we start with the equation det P+(λk) = 0. Taking
the total derivative in t, we get

[(det P+(λ))t]λ=λk + [(det P+(λ))λ]λ=λk (λk)t = 0.

From Equations (68) and (70), we have

det P+(λ) =
λ− λk

λ− λk
det P̃+(λ),

where det P̃+(λ) 6= 0. From Equations (73)–(74), we get

vk = exp(θkσ3)vk0 =

(
exp(θk + ak + iσ0k)

e−θk

)
. (101)

Here, θk = −iλ2
k x− 2iλ4

kt, and defined exp(ak + iσ0k) = (vk0)
1/(vk0)

2, with ak and σ0k are real
constants. Denote [det P+(λ)]t = iεtrH+ det P+(λ), we finally get a simple evolution equation for
spectral λk, ak, σ0k,

(λk)t = −iεRes[Υ+22(λ), λk], (102)

and
(ak + iσ0k)t

= Υ
(reg)
22 (λk)− exp

(
4i
∫ t

0
dtλ4

k − ak − iσ0k

)
Υ
(reg)
12 (λk).

(103)

Perturbation-induced evolution of R–H data is determined by Equations (99), (102), and (103).
Notice that these equations are accurate because we have not mentioned any small part of ε. In
addition, these equations cannot be applied directly, because Υ± goes in and depends on the unknown
solutions P± for the spectral problem of the perturbed potential Q.

5. Conclusions

In this paper, an NLS-like equation associated with a 2× 2 Lax pair is studied. We start from
the spectral analysis of the Lax pair of Equation (2). By using the R–H method, when the scattering
coefficients vanish, the regularization condition at the infinity on the real axis can be used to solve
the corresponding R–H problem. When the jump matrix G is the unit matrix, the N-soliton solutions
of the integrable equation can be obtained. The R–H method is a very useful tool, especially for
soliton solutions. As we all know, the R–H approach has been widely used to solve many integrable
equations, for example, the generalized Sasa–Satsuma equation [14], the general coupled nonlinear
Schrödinger equation [49], and the Harry–Dym equation [50]. Furthermore, based on the R–H problem,
the evolution functional is derived and the R–H data in the perturbed NLS-like equation is obtained.
Perturbation theory has many applications, such as propagation of arbitrarily polarized optical pulses
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in optical fibers, multicomponent soliton equations, and soliton pulses in various Bose–Einstein
condensations.

It is very meaningful to study the exact solutions and other types of integrable equations, and to
analyze perturbation theory based on R–H problems. Further research on how to apply the R–H
problem to the generalized integrable correspondence equation combined with perturbation theory
will be one of our future considerations.
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