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Abstract: In many real world problems, science fields such as biology, computer science, data 
mining, electrical and mechanical engineering, and signal processing, researchers aim to compare 
and classify several regression models. In this paper, a computational approach, based on the 
non-parametric methods, is used to investigate the similarities, and to classify several linear and 
non-linear regression models with symmetric errors. The ability of each given approach is then 
evaluated using simulated and real world practical datasets.  
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1. Introduction 

In many situations, we aim to study the effects of variables 𝑋ଵ, … , 𝑋௞ on variable 𝑌. Simple and 
multiple regressions are data analysis techniques to model these effects. The authors of the 
references [1-2] applied simple and multiple linear regression models in different science fields, such 
as agriculture, biology, material, mechanical engineering, and signal processing. In many real world 
problems, scientists want to compare the relationship between the dependent variable and 
independent variables in several separate datasets.  

The comparison of the correlation between the variables X and Y in two separate datasets, 
different techniques was provided by [3-5]. The comparison of the correlation between the variables 
X and Y in a dataset, and the correlation between the two variables X and W in another dataset, 
resulted in different methods developed by [6-10]. The correlation between the variables X and Y in 
a dataset, and the correlation between two variables W and Z in another dataset, were compared by 
different methods in [9, 11-12]. The comparison and classification of two, and more simple linear 
regression models, have been considered in [13-16]. The comparison of two regression models has 
been reported in [14-22].  

In the present research, we aim to compare and classify several linear and non-linear regression 
models that fitted on several independent datasets. The non-parametric methods are used to 
construct an approach to investigate the similarity and to classify the linear and non-linear 
regression models. A given approach is then evaluated using simulation and real world studies. The 
introduced approach is powerful and applicable in its ability to compare any linear or non-linear 
regression models.  
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2. Models Comparing and Classification 

Assume (𝑋ଵ௝, … , 𝑋௞௝, 𝑌௝), 𝑗 = 1, … , 𝑛௜, is a sample dataset of size 𝑛௜ , from(𝑋ଵ, … , 𝑋௞, 𝑌).  The 
equations of m linear or non-linear regression models can be written by: 𝑌௜௝ = 𝑓௜(𝑋ଵ௝, … , 𝑋௞௝) + 𝜀௜௝, 𝑗 = 1, … , 𝑛௜,   𝑖 = 1, … , 𝑚, (1) 

such that for 𝑖 = 1, … , 𝑚,  𝜀௜௝, 𝑗 = 1, … , 𝑛௜,  are zero-mean symmetric random variables with 
unknown and equal variance 𝜎௜ଶ. 

By considering Equation (1), consequently, the conditional expectation of Y based on 𝑓௜(𝑋ଵ, … , 𝑋௞), that we show it by 𝜃௜(𝑋ଵ, … , 𝑋௞ ), is given by: 𝜃௜(𝑋ଵ, … , 𝑋௞ ) = 𝐸(𝑌|𝑓௜(𝑋ଵ, … , 𝑋௞)) = 𝑓௜(𝑋ଵ, … , 𝑋௞).                               (2) 
In real-word problems the aim is to test the hypothesis 𝐻଴: 𝜃ଵ(𝑋ଵ, … , 𝑋௞ ) = 𝜃ଶ(𝑋ଵ, … , 𝑋௞ ) = ⋯ = 𝜃௠(𝑋ଵ, … , 𝑋௞ ). Under the rejection of 𝐻଴, we conclude that at least two models of the m regression 

models are not statistically similar, and if 𝐻଴  is accepted then it can be concluded that the m 
regression models are statistically equal. 

The regression equations can be represented by: 𝒀𝒊 = 𝒇௜(𝑿ଵ, … , 𝑿௞) + 𝜺௜,    𝑖 = 1, … , 𝑚,                                   (3) 
such that 𝒀𝒊 =  (𝑦ଵ, … , 𝑦௡೔)், 𝑖 = 1, … , 𝑚,  are the values for the dependent variable Y, 𝑿ଵ = (𝑥ଵଵ, … , 𝑥ଵ௡೔)், … , 𝑿௞ =  ൫𝑥௞ଵ, … , 𝑥௞௡೔൯், 𝑖 = 1, … , 𝑚  are the values for the independent variables (𝑋ଵ, … , 𝑋௞) , 𝒇௜(𝑿ଵ, … , 𝑿௞) = ൫𝑓௜(𝑥ଵଵ, … , 𝑥௞ଵ), … , 𝑓௜(𝑥ଵ௡೔ , … , 𝑥௞௡೔)൯்,  and 𝜺௜ =  (𝜀௜ଵ, … , 𝜀௜௡೔)், 𝑖 = 1, … , 𝑚, 

are zero-mean random variables with unknown and equal variance 𝜎௜ଶ. 
First, all m regression models are estimated by  𝒀෡𝒊 = 𝒇෠௜(𝑿ଵ, … , 𝑿௞),    𝑖 = 1, … , 𝑚,                                   (4) 
for all 𝑛 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑛ଵ ∪ 𝑛ଶ ∪ … ∪ 𝑛௠)  values of (𝑿ଵ, … , 𝑿௞) , where 𝒀෡𝒊 = (𝑦ො௜ଵ, … , 𝑦ො௜௡)், 𝑖 = 1, … , 𝑚,  are the estimated values for dependent variable 𝑌, based on ith regression 

model. Since 𝜀௜, 𝑖 = 1, … , 𝑚, are zero-mean symmetric random variables, consequently,  𝑦ො௜ଵ, … , 𝑦ො௜௡,𝑖 = 1, … , 𝑚,  are unbiased estimators for 𝜃௜(𝑋ଵ, … , 𝑋௞ ), 𝑖 = 1, … , 𝑚, respectively. In other words, 𝑦ො௜ଵ, … , 𝑦ො௜௡, 𝑖 = 1, … , 𝑚,  are random variables with mean 𝜃௜(𝑋ଵ, … , 𝑋௞ ), 𝑖 = 1, … , 𝑚. 
Remark 1: 𝑛 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑛ଵ ∪ 𝑛ଶ ∪ … ∪ 𝑛௠) means that the repeated points are assumed 

once. 
Now, to compare the fitted regression models, the Friedman test [23-26] will be applied on n 

couples (𝑦ොଵଵ, … , 𝑦ො௠ଵ), … , (𝑦ොଵ௡, … , 𝑦ො௠ଵ).  
The Friedman test that is a non-parametric alternative to the repeated measures is used to 

compare related datasets (datasets that are repeated on the same subjects). This test is commonly 
applied when dataset do not follow the parametric conditions, such as normality assumption.  

2.1. Classification 

In previous discussion, if 𝐻଴ is false, then we conclude that the mechanism of one model or 
mechanisms of some models are significantly different from the other models. However, to 
determine which models are significantly different from each other, the sign test or Wilcoxon test are 
applied in order to compare each of the regression model pairs.  

3. Simulation Study 

This section assesses the ability of the introduced approach simulation datasets. First, the 
different datasets from different regression models are produced. Then, we compute the values of 
the Estimated Type I error probability (𝛼ො) and the Estimated Power (𝜋ො) of the introduced approach. 
For comparison, the Wilcoxon and Friedman tests are applied. The simulations are accomplished 
after 1000 runs and using the R 3.5.3 software (R Development Core Team, 2018) on a PC (Processor: 
Intel(R) CoreTM(2) Duo CPU T7100 @ 1.80GHz 1.80GHz, RAM: 2.00GB, System Type: 32-bit). 

Example 1. Assume the simple linear regression model: 
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 𝑌 = 𝛽𝑋 + 𝜀,                                         (5) 
such that 𝜀 and 𝑋 are independent.  

Example 2. Let  

    𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝛽ଶ𝑋𝜀,                                       (6) 
such that 𝜀 and 𝑋 are independent.  

Example 3. Assume:  𝑌 = 1 + 𝛽𝑋 + 𝜀,                                        (7) 
such that 𝜀 and 𝑋 are independent.  

Example 4. Assume the multiple linear regression model:  𝑌 = 𝛽଴ + 𝛽ଵ𝑋ଵ + 2𝛽ଶ𝑋ଶ + 𝜀,                                     (8) 
such that 𝜀, 𝑋ଵ and 𝑋ଶ are independent.  

Example 5. For the first dataset, assume the simple nonlinear regression model:  𝑌 = 𝑒௑ + 𝜀,                                           (9) 
such that 𝜀 and 𝑋 are independent.   
For the second and the third datasets let  𝑌 = ሼ𝑒௑ + 𝜀, 1 + 𝛽𝑋 + 𝜀ሽ, and 𝑌 = ሼ𝑒௑ + 𝜀, 1 + 𝛽𝑋 +𝜀, 2𝑋 + 𝜀ሽ, respectively. 
Figures 1 and 2 shows the density plots of the some parts of the response variable Y. As it can be 

seen in these figures, the density plots are symmetric, but not necessarily normal (Figure 2).  

 

Figure 1. The density plots of the some parts of the response variable Y ( Black or Pie: Normal (0,1); 
Red or Triangle: Normal (0,2); Green or Star: Normal (0,3); Blue or Plus: Normal (0,5)). 
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Figure 2. The density plots of the some parts of the response variable Y ( Black or Pie: 0.5 – Beta 
(1.5,1.5); Red or Triangle: 0.5 – Beta (1.75,1.75); Green or Star: 0.5 – Beta (2,2); Blue or Plus: 0.5 – Beta 
(2.5,2.5)). 

The values of 𝛼ො (first four rows) and 𝜋ො (other rows) for Examples 1 to 5 are summarized in 
Tables 1 to 5, respectively. As Tables 1-5 indicate the values of 𝛼ො are very close to size test (𝛼 =0.05), 
and consequently the introduced approach can be controlled the type I error. Also the values of 𝜋ො 
show that the given technique can distinguished between the null and alternative hypotheses.  

Table 1. The values of 𝛼ො and 𝜋ො  for Example 1. 

 (𝐧𝟏, 𝐧𝟐, 𝐧𝟑) 

 𝜺 
 𝑿 

𝜷 
 (𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 

 (𝟐𝟎, 𝟒𝟎, 𝟔𝟎) 
 (𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎) 

 (75,100,150) 
Secon

d 
Thir

d 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 0.053 0.051 0.051 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 0.052 0.052 0.051 0.048 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 0.053 0.052 0.050 0.049 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 0.053 0.052 0.050 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 0.738 0.882 0.934 0.958 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 0.753 0.801 0.950 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 0.754 0.854 0.945 0.972 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 0.749 0.889 0.913 0.970 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 3 0.703 0.825 0.941 0.993 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 3 0.710 0.859 0.917 0.975 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 3 0.728 0.824 0.910 0.984 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 3 0.707 0.864 0.934 0.953 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 1 0.768 0.828 0.913 0.978 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 1 0.703 0.824 0.928 0.951 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 1 0.794 0.846 0.930 0.968 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 1 0.794 0.800 0.903 0.955 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 2 0.745 0.813 0.946 0.971 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 2 0.718 0.858 0.937 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 2 0.784 0.866 0.901 0.953 
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𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 2 0.726 0.821 0.944 0.999 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 3 0.795 0.849 0.924 0.982 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 3 0.755 0.856 0.928 0.961 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 2 3 0.763 0.845 0.936 0.988 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 2 3 0.710 0.865 0.914 0.975 

Table 2. The values of 𝛼ො  and 𝜋ො  for Example 2. 

 (𝐧𝟏, 𝐧𝟐, 𝐧𝟑) 𝜺 𝑿 
(𝜷𝟎, 𝜷𝟏, 𝜷𝟐) 

 (𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
 (𝟐𝟎, 𝟒𝟎, 𝟔𝟎) 

 (𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎) 
 (75,100,150) 

Secon
d 

Third 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) 0.052 0.052 0.051 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) 0.053 0.051 0.050 0.049 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) 0.053 0.052 0.051 0.049 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) 0.052 0.052 0.051 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) 0.770 0.843 0.903 0.981 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) 0.743 0.817 0.909 0.979 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) 0.771 0.842 0.918 0.992 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) 0.791 0.855 0.934 0.967 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (3,2,1) 0.737 0.891 0.941 0.997 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (3,2,1) 0.798 0.860 0.932 0.988 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (3,2,1) 0.740 0.849 0.947 0.993 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (3,2,1) 0.712 0.827 0.916 0.997 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (2,1,2) 0.782 0.837 0.932 0.966 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (2,1,2) 0.780 0.830 0.936 0.960 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (2,1,2) 0.720 0.857 0.945 0.998 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (2,1,2) 0.767 0.897 0.902 0.958 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (0,2,1) 0.790 0.809 0.921 0.992 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (0,2,1) 0.741 0.814 0.935 0.992 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (0,2,1) 0.710 0.844 0.945 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (0,2,1) 0.760 0.871 0.906 0.972 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (3,2,1) 0.776 0.807 0.919 0.969 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (3,2,1) 0.701 0.875 0.928 0.963 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (0,2,1) (3,2,1) 0.780 0.803 0.936 0.987 𝑁𝑜𝑟𝑚𝑎𝑙 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (0,2,1) (3,2,1) 0.720 0.886 0.923 0.960 

Table 3. The values of 𝛼ො and 𝜋ො for Example 3. 

 (𝐧𝟏, 𝐧𝟐, 𝐧𝟑) 𝜺 𝑿 
𝜷 

 (𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
 (𝟐𝟎, 𝟒𝟎, 𝟔𝟎) 

 (𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎) 
 (75,100,150) 

Secon
d 

Thir
d 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 1 1 0.053 0.051 0.050 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 0.053 0.051 0.051 0.050 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 1 1 0.053 0.051 0.051 0.050 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 0.053 0.051 0.051 0.050 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 1 2 0.724 0.846 0.924 0.996 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 0.734 0.813 0.942 0.952 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 1 2 0.737 0.818 0.914 0.959 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 0.764 0.819 0.949 0.998 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 1 5 0.797 0.808 0.904 0.959 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 5 0.760 0.869 0.919 0.978 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 1 5 0.793 0.843 0.917 0.988 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 5 0.765 0.876 0.910 0.983 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 2 1 0.742 0.868 0.934 0.954 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 1 0.730 0.810 0.925 0.966 
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𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 2 1 0.725 0.867 0.911 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 1 0.769 0.868 0.930 0.996 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 2 2 0.763 0.816 0.905 0.982 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 2 0.706 0.895 0.935 0.951 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 2 2 0.723 0.866 0.909 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 2 0.765 0.857 0.903 0.974 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) Geometric (0.4) 2 5 0.710 0.867 0.910 0.950 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 5 0.764 0.837 0.904 0.981 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) Geometric (0.4) 2 5 0.778 0.891 0.933 0.987 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5)  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 2 5 0.726 0.819 0.946 0.967 

Table 4. The values of 𝛼ො and 𝜋ො for Example 4. 

 (𝐧𝟏, 𝐧𝟐, 𝐧𝟑) 𝑿𝟏 𝑿𝟐 
(𝜷𝟎, 𝜷𝟏, 𝜷𝟐) 

 (𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
 (𝟐𝟎, 𝟒𝟎, 𝟔𝟎) 

 (𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎) 
 (75,100,150) 

Secon
d 

Third 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) 0.052 0.052 0.050 0.049 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (2,1,2) (2,1,2) 0.053 0.052 0.050 0.049  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) 0.052 0.052 0.051 0.049  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (2,1,2) (2,1,2) 0.052 0.051 0.050 0.048 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) 0.734 0.893 0.923 0.961 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (2,1,2) (0,2,1) 0.787 0.887 0.947 0.964  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) 0.766 0.813 0.943 0.973  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (2,1,2) (0,2,1) 0.762 0.897 0.909 0.993 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (3,2,1) 0.706 0.866 0.936 0.966 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (2,1,2) (3,2,1) 0.746 0.882 0.946 0.960  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (3,2,1) 0.716 0.875 0.948 0.975  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (2,1,2) (3,2,1) 0.757 0.811 0.939 0.950 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (2,1,2) 0.792 0.866 0.936 0.985 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (0,2,1) (2,1,2) 0.768 0.824 0.902 0.995  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (2,1,2) 0.773 0.841 0.933 0.983  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (0,2,1) (2,1,2) 0.795 0.801 0.940 0.992 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (0,2,1) 0.790 0.891 0.912 0.953 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (0,2,1) (0,2,1) 0.784 0.855 0.924 0.951  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (0,2,1) 0.739 0.842 0.908 0.961  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (0,2,1) (0,2,1) 0.749 0.880 0.905 0.963 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (3,2,1) 0.745 0.854 0.918 0.956 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,2) Geometric (0.3) (0,2,1) (3,2,1) 0.739 0.825 0.946 0.955  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (0,2,1) (3,2,1) 0.743 0.883 0.926 0.960  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (3, 0.5) Geometric (0.3) (0,2,1) (3,2,1) 0.734 0.840 0.918 0.976 

Table 5. The values of 𝛼ො and 𝜋ො for Example 5. 

 (𝐧𝟏, 𝐧𝟐, 𝐧𝟑) 𝜺 𝑿 
𝒀  (𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 

 (𝟐𝟎, 𝟒𝟎, 𝟔𝟎) 
 (𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎) 

 (75,100,150) Second Third 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.052 0.051 0.051 0.048 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.053 0.051 0.051 0.049 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.052 0.051 0.051 0.049 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.052 0.051 0.050 0.048 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 1 + 𝛽𝑋 + 𝜀 0.787 0.895 0.901 0.965 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 1 + 𝛽𝑋 + 𝜀 0.787 0.829 0.930 0.974 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 1 + 𝛽𝑋 + 𝜀 0.725 0.848 0.912 0.991 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 1 + 𝛽𝑋 + 𝜀 0.759 0.898 0.944 0.984 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 2𝑋 + 𝜀 0.734 0.891 0.949 0.962 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 2𝑋 + 𝜀 0.788 0.811 0.921 0.981 
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𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 2𝑋 + 𝜀 0.759 0.877 0.941 0.965 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 2𝑋 + 𝜀 0.704 0.868 0.948 0.989 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.798 0.845 0.908 0.956 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.753 0.809 0.927 0.989 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.731 0.865 0.910 0.990 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 𝑒௑ + 𝜀 𝑒௑ + 𝜀 0.731 0.820 0.906 0.962 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 1 + 𝛽𝑋 + 𝜀 1 + 𝛽𝑋 + 𝜀 0.723 0.897 0.934 0.960 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 1 + 𝛽𝑋 + 𝜀 1 + 𝛽𝑋 + 𝜀 0.799 0.807 0.949 0.982 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 1 + 𝛽𝑋 + 𝜀 1 + 𝛽𝑋 + 𝜀 0.713 0.877 0.916 0.952 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 1 + 𝛽𝑋 + 𝜀 1 + 𝛽𝑋 + 𝜀 0.743 0.872 0.925 0.965 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 1 + 𝛽𝑋 + 𝜀 2𝑋 + 𝜀 0.725 0.892 0.901 0.996 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−2,2) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 1 + 𝛽𝑋 + 𝜀 2𝑋 + 𝜀 0.795 0.886 0.944 0.959 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 1 + 𝛽𝑋 + 𝜀 2𝑋 + 𝜀 0.707 0.821 0.925 0.972 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 1 + 𝛽𝑋 + 𝜀 2𝑋 + 𝜀 0.798 0.825 0.924 0.974 

4. Real data 

In this section, a practical real data is considered to study the power of the introduced approach 
in real world problems. Drought is a damaging natural phenomenon. To prevent this phenomenon, 
the hydrologists model and predict the drought datasets in a standard time period. In this research, 
the average monthly rainy days (1966 – 2010) at three Iranian synoptic stations (Fasa, Sarvestan, and 
Shiraz) was considered and modeled. 

To model and forecast the average monthly rainy days, different polynomial regression models 
of orders 1 to 3 (linear, quadratic and cubic) and exponential model were fitted to datasets. The 
formulas of the considered models are as following: 

Linear model:  𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝜀Quadratic model:  𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝛽ଶ𝑋ଶ + 𝜀.   (11) 
 Cubic model:  𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ + 𝜀.          (12)   

 Exponential model:  𝑌 = 𝛽଴ + 𝛽ଵ𝑒ఉమ௑ + 𝜀.      (13) 

The numerical computations are done using the R 3.5.3 software (Library 'nlstools', lm() 
function for linear regression and nls() function for nonlinear regression) and Minitab 18 software. 

The results of fitted regression models are summarized in Table 6. It can be observed that, for 
all of the stations, respectively, the polynomial regression of order 3 (cubic), and the exponential 
models, had the most R-square (R2) and the least root mean square error (RMSE) between all fitted 
models.  

Table 6. Indices to evaluate the fitted regression models. 

Model Station R Square RMSE

Linear 
Fasa 0.624 1.693 

Sarvestan 0.638 1.516 
Shiraz 0.689 1.501 

Quadratic 
Fasa 0.734 1.350 

Sarvestan 0.743 1.285 
Shiraz 0.767 1.265 

Cubic 
Fasa 0.895 0.910 

Sarvestan 0.899 0.855 
Shiraz 0.976 0.529 

Exponential
Fasa 0.767 0.978 

 Sarvestan 0.778 0.926 
Shiraz 0.876 0.713 

Now, we use the proposed approach to compare and classify these stations, for each model. 
The result of Friedman test is shown in Table 7. This table indicated that the fitted cubic and 
exponential models are significantly different in these stations (p<0.05). Also, there is no significant 
difference between the fitted linear and quadratic models in these stations (p >0.05). 
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Table 7. Friedman test to compare the stations. 

Model p 
Linear 0.123 

Quadratic 0.224 
Cubic <0.001 

Exponential <0.001 
As Table 8 indicates, we can classify the stations in two clusters, for cubic and exponential 

models. First cluster: Fasa and Sarvestan, and second cluster: Shiraz. 

Table 8. Wilcoxon test to compare and classify the stations. 

Model Stations P 

Cubic 
Pair 1 Shiraz - Fasa 0.011 
Pair 2 Shiraz - Sarvestan 0.003 
Pair 3 Fasa - Sarvestan 0.144 

Exponential 
Pair 1 Shiraz - Fasa 0.019 
Pair 2 Shiraz - Sarvestan <0.001 
Pair 3 Fasa - Sarvestan 0.112 

5. Conclusion 

In many real world problems, researchers wish to compare and classify the regression models 
in several datasets. In this paper, the non-parametric methods were used to construct an approach 
to investigate the similarity of some linear and non-linear regression models with symmetric errors. 
Particular approaches were evaluated using simulation and practical datasets. A simulation study 
indicated that the introduced approach controlled the Type I error. Also the proposed technique 
distinguished well between null and alternative hypotheses. The introduced approach also had 
many advantages. First, it was powerful. Second, it was not too computational. Third, it could be 
applied to compare any linear or non-linear regression models. Fourth, this method did not need the 
normality of errors and could be applied for all models with symmetric errors. 
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