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1. Introduction

The main purposes of this paper are (i) to establish tensor product C∗-probability spaces

(A⊗C Sp, ψ⊗ ϕ
p
j )

induced both by arbitrary unital C∗-probability spaces (A, ψ), and by analytic structures (Sp, ϕ
p
j )

acting on p-adic number fields Qp for all primes p in the set P of all primes, where j ∈ Z, (ii) to consider
free-probabilistic structures of (i) affected both by the free probability on (A, ψ), and by the number
theory on Qp for all p ∈ P , (iii) to study asymptotic behaviors on the structures of (i) as p → ∞ in
P , based on the results of (ii), and (iv), and then investigate asymptotic semicircular laws from the
free-distributional data of (iii).

Our main results illustrate cross-connections among number theory, representation theory, operator
theory, operator algebra theory, and stochastic analysis, via free probability theory.

1.1. Preview and Motivation

Relations between primes and operators have been studied in various different approaches. In [1],
we studied how primes act on operator algebras induced by dynamical systems on p-adic, and Adelic
objects. Meanwhile, in [2], primes are acting as linear functionals on arithmetic functions, characterized
by Krein-space operators.

For number theory and free probability theory, see [3–22], respectively.
In [23], weighted-semicircular elements, and semicircular elements induced by p-adic number fields Qp

are considered by the author and Jorgensen, for each p ∈ P , statistically. In [24], the author extended
the constructions of weighted-semicircular elements of [23] under free product of [15,22]. The main
results of [24] demonstrate that the (weighted-)semicircular law(s) of [23] is (are) well-determined
free-probability-theoretically. As an application, the free stochastic calculus was considered in [6].

Independent from the above series of works, we considered asymptotic semicircular laws induced
by {Qp}p∈P in [1]. The constructions of [1] are highly motivated by those of [6,23,24], but they are
totally different not only conceptually, but also theoretically. Thus, even though the main results of [1]
seem similar to those of [6,24], they indicate-and-emphasize “asymptotic” semicircularity induced by
{Qp}p∈P , as p→ ∞. For example, they show that our analyses on {Qp}p∈P not only provide natural
semicircularity but also asymptotic semicircularity under free probability theory.
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In this paper, we study asymptotic-semicircular laws over “both” primes and unital C∗-probability
spaces. Since we generalize the asymptotic semicircularity of [25] up to C∗-algebra-tensor, the patterns
and results of this paper would be similar to those of [25], but generalize-or-universalize them.

1.2. Overview

In Section 2, fundamental concepts and backgrounds are introduced. In Sections 3–6, suitable
free-probabilistic models are considered, where they contain p-adic number-theoretic information,
for our purposes.

In Section 7, we establish-and-study C∗-probability spaces containing both analytic data from Qp,
and free-probabilistic information of fixed unital C∗-probability spaces. Then, our free-probabilistic
structure LSA, a free product Banach ∗-probability space, is constructed, and the free probability on
LSA is investigated in Section 8.

In Section 9, asymptotic behaviors on LSA are considered overP , and they analyze the asymptotic
semicircular laws on LSA over P in Section 10.

2. Preliminaries

In this section, we briefly mention backgrounds of our proceeding works.

2.1. Free Probability

See [15,22] (and the cited papers therein) for basic free probability theory. Roughly speaking,
free probability is the noncommutative operator-algebraic extension of measure theory (containing
probability theory) and statistical analysis. As an independent branch of operator algebra theory, it is
applied not only to mathematical analysis (e.g., [5,12–14,26]), but also to related fields (e.g., [18,27–31]).

Here, combinatorial free probability is used (e.g., [15–17]). In the text, free moments, free cumulants,
and the free product of ∗-probability spaces are considered without detailed introduction.

2.2. Analysis on Qp

For p-adic analysis and Adelic analysis, see [21,22]. We use definitions, concepts, and notations from
there. Let p ∈ P be a prime, and let Q be the set of all rational numbers. Define a non-Archimedean norm
|.|p , called the p-norm on Q by

|x|p =
∣∣∣pk a

b

∣∣∣
p
= 1

pk ,

for all x = pk a
b ∈ Q, where k, a ∈ Z, and b ∈ Z \ {0}.

The normed space Qp is the maximal p-norm closures in Q, i.e., the set Qp forms a Banach space,
for p ∈ P (e.g., [22]). Each element x of Qp is uniquely expressed by

x = ∑∞
k=−N xk pk, xk ∈ {0, 1, ..., p− 1},

for N ∈ N, decomposed by

x = ∑−1
l=−N xl pl + ∑∞

k=0 xk pk.

If x = ∑∞
k=0 xk pk in Qp, then x is said to be a p-adic integer, and it satisfies |x|p ≤ 1. Thus, one can

define the unit disk Zp of Qp,

Zp = {x ∈ Qp : |x|p ≤ 1}.

For the p-adic addition and the p-adic multiplication in the sense of [22], the algebraic structure Qp

forms a field, and hence, Qp is a Banach field.
Note that Qp is also a measure space,

Qp =
(
Qp, σ(Qp), µp

)
,
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equipped with the σ-algebra σ(Qp) of Qp, and a left-and-right additive invariant Haar measure on
µp, satisfying

µp(Zp) = 1.

If we take
Uk = pkZp = {pkx ∈ Qp : x ∈ Zp}, (1)

in σ
(
Qp
)

, for all k ∈ Z, then these subsets Uk’s of (1) satisfy

Qp = ∪
k∈Z

Uk,

and

µp (Uk) =
1
pk = µp (x + Uk) , (2)

for all x ∈ Qp, and

· · · ⊂ U2 ⊂ U1 ⊂ U0 = Zp ⊂ U−1 ⊂ U−2 ⊂ · · ·,

i.e., the family {Uk}k∈Z of (1) is a topological basis element of Qp (e.g., [22]).
Define subsets ∂k ∈ σ(Qp) by

∂k = Uk \ Uk+1, (3)

for all k ∈ Z.
Such µp-measurable subsets ∂k of (3) are called the k-th boundaries (of Uk) in Qp, for all k ∈ Z. By (2)

and (3),

Qp = t
k∈Z

∂k,

(4)

µp (∂k) = µp (Uk) − µp (Uk+1) =
1
pk − 1

pk+1 ,

where t is the disjoint union, for all k ∈ Z,
LetMp be an algebraic algebra,

Mp = C
[{

χS : S ∈ σ(Qp)
}]

, (5a)

where χS are the usual characteristic functions of µp-measurable subsets S of Qp. Thus, f ∈Mp, if and
only if

f = ∑
S∈σ(Qp)

tSχS; tS ∈ C, ( 5b)

where ∑ is the finite sum. Note that the algebra Mp of (5a) is a ∗-algebra over C, with its
well-defined adjoint, (

∑
S∈σ(Gp)

tSχS

)∗
de f
= ∑

S∈σ(Gp)
tS χS,

for tS ∈ C with their conjugates tS in C.
If f ∈Mp is given as in (5b), then one defines the integral of f by∫

Qp
f dµp = ∑

S∈σ(Qp)
tS µp(S). (6a)

Remark that, by (5a), the integral (6a) is unbounded onMp, i.e.,∫
Qp

χQp dµp = µp
(
Qp
)
= ∞, (6b)
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by (2).
Note that, by (4), for each S ∈ σ(Qp), there exists a corresponding subset ΛS of Z,

ΛS = {j ∈ Z : S ∩ ∂j 6= ∅}, (7)

satisfying ∫
Qp

χS dµp =
∫
Qp

∑
j∈ΛS

χS∩∂j
dµp

= ∑
j∈ΛS

µp
(
S ∩ ∂j

)
by (6a)

≤ ∑
j∈ΛS

µp
(
∂j
)
= ∑

j∈ΛS

(
1
pj − 1

pj+1

)
, (8)

by (4), for the set ΛS of (7).
Remark again that the right-hand side of (8) can be ∞; for instance, ΛQp = Z, e.g., see (4), (6a) and

(6b). By (8), one obtains the following proposition.

Proposition 1. Let S ∈ σ(Qp), and let χS ∈Mp. Then, there exists rj ∈ R, such that

0 ≤ rj =
µp(S∩∂j)

µp(∂j)
≤ 1, ∀j ∈ ΛS;

(9)∫
Qp

χS dµp = ∑
j∈ΛS

rj

(
1
pj − 1

pj+1

)
.

3. Statistical Models onMp

In this section, fix p ∈ P , and let Qp be the p-adic number field, and letMp be the ∗-algebra (5a).
We here establish a suitable statistical model onMp with free-probabilistic language.

Let Uk be the basis elements (1), and ∂k, their boundaries (3) of Qp, i.e.,

Uk = pkZp,

for all k ∈ Z, and

∂k = Uk \ Uk+1; k ∈ Z. (10)

Define a linear functional ϕp :Mp → C by the integration (6a), i.e.,

ϕp ( f ) =
∫
Qp

f dµp, (11)

for all f ∈Mp.

Then, by (9), one obtains that ϕp

(
χUj

)
= 1

pj , and ϕp

(
χ∂j

)
= 1

pj − 1
pj+1 , since ΛUj = {k ∈ Z :

k ≥ j}, and Λ∂j
= {j}, for all j ∈ Z, where ΛS are in the sense of (7) for all S ∈ σ(Qp).

Definition 1. The pair
(
Mp, ϕp

)
is called the p-adic (unbounded-)measure space for p ∈ P , where ϕp is the

linear functional (11) onMp.

Let ∂k be the k-th boundaries (10) of Qp, for all k ∈ Z. Then, for k1, k2 ∈ Z, one obtains that

χ∂k1
χ∂k2

= χ∂k1
∩∂k2

= δk1,k2 χ∂k1
,

and hence,
ϕp

(
χ∂k1

χ∂k2

)
= δk1,k2 ϕp

(
χ∂k1

)
= δk1,k2

(
1

pk1
− 1

pk1+1

)
.

(12)
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Proposition 2. Let (j1, ..., jN) ∈ ZN , for N ∈ N. Then,

N
Π

l=1
χ∂jl

= δ(j1,...,jN)χ∂j1
inMp,

and hence,

ϕp

(
N
Π

l=1
χ∂jl

)
= δ(j1,...,jN)

(
1

pj1
− 1

pj1+1

)
, (13)

where

δ(j1,...,jN) =

(
N−1
Π

l=1
δjl ,jl+1

) (
δjN ,j1

)
.

Proof. The computation (13) is shown by the induction on (12).

Recall that, for any S ∈ σ
(
Qp
)

,

ϕp (χS) = ∑
j∈ΛS

rj

(
1
pj − 1

pj+1

)
, (14)

for some 0 ≤ rj ≤ 1, for j ∈ ΛS, by (9). Thus, by (14), if S1, S2 ∈ σ
(
Qp
)

, then

χS1 χS2 =

(
∑

k∈ΛS1

χS1∩∂k

)(
∑

j∈ΛS2

χS2∩∂j

)
= ∑

(k,j)∈ΛS1
×ΛS2

(
χS1∩∂k

χS2∩∂j

)
= ∑

(k,j)∈ΛS1
×ΛS2

δk,j χ(S1∩S2)∩∂j

= ∑
j∈ΛS1,S2

χ(S1∩S2)∩∂j
, (15)

where

ΛS1,S2 = ΛS1 ∩ΛS2 ,

by (4).

Proposition 3. Let Sl ∈ σ(Qp), and let χSl ∈
(
Mp, ϕp

)
, for l = 1, ..., N, for N ∈ N. Let

ΛS1,...,SN =
N
∩

l=1
ΛSl in Z,

where ΛSl are in the sense of (7), for l = 1, ..., N. Then, there exists rj ∈ R, such that

0 ≤ rj ≤ 1 in R,

for all j ∈ ΛS1,...,SN , and

ϕp

(
N
Π

l=1
χSl

)
= ∑

j∈ΛS1,...,SN

rj

(
1
pj − 1

pj+1

)
. (16)

Proof. The proof of (16) is done by the induction on (15), and by (13).



Symmetry 2019, 11, 819 6 of 33

4. Representation of
(
Mp, ϕp

)
Fix a prime p ∈ P . Let

(
Mp, ϕp

)
be the p-adic measure space. By understanding Qp as a measure

space, construct the L2-space,

Hp
de f
= L2 (Qp, σ(Qp), µp

)
= L2 (Qp

)
, (17)

over C. Then, this Hilbert space Hp of (17) consists of all square-integrable elements ofMp, equipped
with its inner product <,>2,

〈 f1, f2〉2
de f
=
∫
Qp

f1 f ∗2 dµp, (18a)

for all f1, f2 ∈ Hp. Naturally, Hp is has its L2-norm ‖.‖2 onMp,

‖ f ‖2
de f
=
√
〈 f , f 〉2, (18b)

for all f ∈ Hp, where <,>2 is the inner product (18a) on Hp.

Definition 2. The Hilbert space Hp of (17) is called the p-adic Hilbert space.

Our ∗-algebraMp acts on the p-adic Hilbert space Hp, via an action αp,

αp( f ) (h) = f h, for all h ∈ Hp, (19a)

for all f ∈Mp. i.e., the morphism αp of (19a) is a ∗-homomorphism fromMp to the operator algebra
B(Hp), consisting of all Hilbert-space operators on Hp. For instance,

αp
(

χQp

) ∑
S∈σ(Qp)

tSχS

 = ∑
S∈σ(Qp)

tSχQp∩S

= ∑
S∈σ(Qp)

tSχS,

(19b)

for all h = ∑
S∈σ(Qp)

tSχS ∈ Hp, with ‖h‖2 < ∞, for χQp ∈Mp, even though χQp /∈ Hp.

Indeed, It is not difficult to check that

αp( f1 f2) = αp( f1)α
p( f2) on Hp, ∀ f1, f2 ∈Mp,

(20a)

(αp( f ))∗ = α( f ∗) on Hp, ∀ f ∈Mp.

Notation 1. Denote αp( f ) by α
p
f , for all f ∈Mp. In addition, for convenience, denote α

p
χS simply by α

p
S,

for all S ∈ σ
(
Qp
)

.

Note that, by (19b), one can have a well-defined operator α
p
Qp

= α
p
χQp

in B(Hp), and it satisfies that

α
p
Qp

(h) = h = 1Hp (h) , ∀h ∈ Hp, (20b)

where 1Hp ∈ B(Hp) is the identity operator on Hp.

Proposition 4. The pair (Hp, αp) is a Hilbert-space representation ofMp.

Proof. It suffices to show that αp is an algebra-action ofMp on Hp. However, this morphism αp is a
∗-homomorphism fromMp into B(Hp), by (20a).

Definition 3. The Hilbert-space representation
(

Hp, αp) is called the p-adic representation ofMp.
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Depending on the p-adic representation (Hp, αp) ofMp, one can define the C∗-subalgebra Mp of
B(Hp) as follows.

Definition 4. Let Mp be the operator-norm closure ofMp,

Mp
de f
= αp

(
Mp

)
= C

[
α

p
f : f ∈ Mp

]
(21)

in B(Hp), where X are the operator-norm closures of subsets X of B(Hp). This C∗-algebra Mp is said to be the
p-adic C∗-algebra of

(
Mp, ϕp

)
.

By (21), the p-adic C∗-algebra Mp is a unital C∗-algebra contains its unity (or the unit, or the
multiplication-identity) 1Hp = α

p
Qp

, by (20b).

5. Statistics on Mp

In this section, fix p ∈ P , and let Mp be the corresponding p-adic C∗-algebra of (21). Define a
linear functional ϕ

p
j : Mp → C by

ϕ
p
j (a)

de f
=
〈

a(χ∂j
), χ∂j

〉
2

, ∀a ∈ Mp, (22a)

for χ∂j
∈ Hp, where <,>2 is the inner product (4.2) on the p-adic Hilbert space Hp of (4.1), and ∂j are

the boundaries (3.1) of Qp, for all j ∈ Z. It is not hard to check such a linear functional ϕ
p
j on Mp is

bounded, since

ϕ
p
j

(
α

p
S

)
=
〈

α
p
S

(
χ∂j

)
, χ∂j

〉
2
=
〈

χSχ∂j
, χ∂j

〉
2

=
〈

χS∩∂j
, χ∂j

〉
2
=
∫
Qp

χS∩∂j
dµp

≤
∫
Qp

χ∂j
dµp = µp

(
∂j
)
= 1

pj − 1
pj+1 , (22b)

for all S ∈ σ(Qp), for any fixed j ∈ Z.

Definition 5. Let ϕ
p
j be bounded linear functionals (22a) on the p-adic C∗-algebra Mp, for all j ∈ Z. Then, the

pairs
(

Mp, ϕ
p
j

)
are said to be the j-th p-adic C∗-measure spaces, for all j ∈ Z.

Thus, one can get the system

{(Mp, ϕ
p
j ) : j ∈ Z}

of the j-th p-adic C∗-measure spaces (Mp, ϕ
p
j )’s.

Note that, for any fixed j ∈ Z, and (Mp, ϕ
p
j ), the unity

1Mp
denote
= 1Hp = α

p
Qp

of Mp

satisfies that

ϕ
p
j

(
1Mp

)
=
〈

χQp∩∂j
, χ∂j

〉
2

=
∥∥∥χ∂j

∥∥∥2
= 1

pj − 1
pj+1 .

(23)

Thus, the j-th p-adic C∗-measure space (Mp, ϕ
p
j ) is a bounded-measure space, but not a probability

space, in general.

Proposition 5. Let S ∈ σ
(
Qp
)

, and α
p
S ∈

(
Mp, ϕ

p
j

)
, for a fixed j ∈ Z. Then, there exists rS ∈ R, such that
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0 ≤ rS ≤ 1 in R,

and

ϕ
p
j

((
α

p
S

)n)
= rS

(
1
pj − 1

pj+1

)
; n ∈ N. (24)

Proof. Remark that the element α
p
S is a projection in Mp, in the sense that:(

α
p
S

)∗
= α

p
(χ∗S)

= α
p
S = α

p
(χS∩χS)

=
(

α
p
S

)2
, in Mp,

and hence, (
α

p
S

)n
= α

p
S,

for all n ∈ N. Thus, we obtain the formula (24) by (22b).

As a corollary of (24), one obtains that, if ∂k is a k-th boundaries of Qp, then

ϕ
p
j

((
α

p
∂k

)n)
= δj,k

(
1
pj − 1

pj+1

)
, (25)

for all n ∈ N, for k ∈ Z.

6. The C∗-Subalgebra Sp of Mp

Let Mp be the p-adic C∗-algebra for p ∈ P . Let

Pp,j = α
p
∂j
∈ Mp, (26)

for all j ∈ Z. By (24) and (25), these operators Pp,j of (26) are projections on the p-adic Hilbert space Hp,
in Mp, for all p ∈ P , j ∈ Z.

Definition 6. Let p ∈ P , and let Sp be the C∗-subalgebra

Sp = C∗
(
{Pp,j}j∈Z

)
= C

[
{Pp,j}j∈Z

]
of Mp, (27)

where Pp,j are in the sense of ((26)), for all j ∈ Z. We call Sp, the p-adic boundary (C∗-)subalgebra of Mp.

Proposition 6. If Sp is the p-adic boundary subalgebra (27), then

Sp
∗-iso
= ⊕

j∈Z

(
C · Pp,j

) ∗-iso
= C⊕|Z|, (28)

in the p-adic C∗-algebra Mp.

Proof. It is enough to show that the generating operators {Pp,j}j∈Z of Sp are mutually orthogonal
from each other. It is not hard to check that

Pp,j1 Pp,j2 = αp
(

χ∂
p
j1
∩∂

p
j2

)
= δj1,j2 α

p
∂

p
j1

= δj1,j2 Pp,j1 ,

in Sp, for all j1, j2 ∈ Z. Therefore, the structure theorem (28) is shown.

By (27), one can define the measure spaces,

Sp(j) denote
=

(
Sp, ϕ

p
j

)
, ∀j ∈ Z, (29)

for p ∈ P , where the linear functionals ϕ
p
j of (29) are the restrictions ϕ

p
j |Sp of (22a), for all p ∈ P ,

j ∈ Z.



Symmetry 2019, 11, 819 9 of 33

7. On the Tensor Product C∗-Probability Spaces
(

A⊗C Sp, ψ⊗ϕ
p
j

)
In this section, we define and study our main objects of this paper. Let (A, ψ) be an arbitrary

unital C∗-probability space (e.g., [22]), satisfying

ψ(1A) = 1,

where 1A is the unity of a C∗-algebra A. In addition, let

Sp(j) =
(
Sp, ϕ

p
j

)
(30)

be the p-adic C∗-measure spaces (29), for all p ∈ P , j ∈ Z.
Fix now a unital C∗-probability space (A, ψ), and p ∈ P , j ∈ Z. Define a tensor product C∗-algebra

SA
p

de f
= A⊗C Sp, (31)

and a linear functional ψ
p
j on SA

p by a linear morphism satisfying

ψ
p
j

(
a⊗ Pp,k

)
= ϕ

p
j

(
ψ(a)Pp,k

)
, (32)

for all a ∈ (A, ψ), and k ∈ Z.
Note that, by the structure theorem (28) of the p-adic boundary subalgebra Sp,

SA
p
∗-iso
= A ⊗C

(
C⊕|Z|

) ∗-iso
= A⊕|Z|, (33)

by (31).
By (33), one can verify that a morphism ψ

p
j of (32) is indeed a well-defined bounded linear

functional on SA
p .

Definition 7. For any arbitrarily fixed p ∈ P , j ∈ Z, let SA
p be the tensor product C∗-algebra (31), and ψ

p
j ,

the linear functional (32) on SA
p . Then, we call SA

p , the A-tensor p-adic boundary algebra. The corresponding
structure,

SA
p (j) denote

=
(
SA

p , ψ
p
j

)
(34)

is said to be the j-th p-adic A-(tensor C∗-probability-)space.

Note that, by (22a), (22b) and (32), the j-th p-adic A-space SA
p (j) of (34) is not a “unital”

C∗-probability space, even though (A, ψ) is. Indeed, the C∗-algebra SA
p of (31) has its unity 1A ⊗ 1Mp ,

satisfying

ψ
p
j

(
1A ⊗ 1Mp

)
= ϕ

p
j

(
ψ(1A)1Mp

)
= 1 · ϕp

j (1Mp) =
1
pj − 1

pj+1 ,

for j ∈ Z.
Remark that, by (32),

ψ
p
j

(
a⊗ Pp,k

)
= ψ(a) ϕ

p
j

(
Pp,k

)
, (35a)

for all a ∈ (A, ψ), and k ∈ Z. Thus, by abusing notation, one may write the definition (32) by

ψ
p
j = ψ⊗ ϕ

p
j on A⊗C Sp = SA

p , (35b)

in the sense of (35a), for all p ∈ P , j ∈ Z.
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Proposition 7. Let a ∈ (A, ψ), and Pp,k, the k-th generating projection of Sp, for all k ∈ Z, and let a⊗ Pp,k
be the corresponding free random variable of the j-th p-adic A-space SA

p (j), for j ∈ Z. Then,

ψ
p
j

((
a⊗ Pp,k

)n)
= δj,k ψ(an)

(
1
pj − 1

pj+1

)
, (36)

for all n ∈ N.

Proof. Let Ta
p,k = a⊗ Pp,k be a given free random variable of SA

p (j). Then,(
Ta

p,k

)n
=
(

a⊗ Pp,k

)n
= an ⊗ Pp,k = Tan

p,k,

and hence

ψ
p
j

((
Ta

p,k

)n)
= ψ

p
j

(
Tan

p,k

)
= ψ(an) ϕ

p
j

(
Pp,k

)
= ψ(an)

(
δj,k

(
1
pj − 1

pj+1

))
by (35a)

= δj,kψ(an)
(

1
pj − 1

pj+1

)
,

for all n ∈ N. Therefore, the free-distributional data (36) holds.

Suppose a is a “self-adjoint” free random variable in (A, ψ) in the above proposition. Then,
formula (36) completely characterizes the free distribution of a⊗ Pp,k in the j-th p-adic A-space SA

p (j)
of (34), i.e., the free distribution of a⊗ Pp,k is characterized by the sequence,(

δj,kψ(an)
(

1
pj − 1

pj+1

))∞

n=1

for all p ∈ P , and j, k ∈ Z because a⊗ Pp,k is self-adjoint in SA
p too.

It illustrates that the free probability on SA
p (j) is determined both by the free probability on (A,

ψ), and by the statistical data on Sp(j) of (30) (implying p-adic analytic information), for p ∈ P , j ∈ Z.

Notation. From below, for convenience, let’s denote the free random variables a⊗ Pp,k of SA
p (j), with

a ∈ (A, ψ) and k ∈ Z, by Ta
p,k, i.e.,

Ta
p,k

denote
= a⊗ Pp,k,

for all p ∈ P , j ∈ Z.

In the proof of (36), it is observed that(
Ta

p,k

)n
= Tan

p,k ∈ SA
p (j) (37)

for all n ∈ N. More generally, the following free-distributional data is obtained.

Theorem 1. Fix p ∈ P , and j ∈ Z, and let SA
p (j) be the j-th p-adic A-space (34). Let Tal

p,kl
∈ SA

p (j), for l =
1, ..., N, for N ∈ N. Then,

ψ
p
j

(
N
Π

l=1

(
Tal

p,kl

)nl
)
=

(
N
Π

l=1
δj,kl

)(
1
pj − 1

pj+1

)
ψ

(
N
Π

l=1
anl

l

)
, (38)

for all n1, ..., nN ∈ N.

Proof. Let Tal
p,kl

= al ⊗ Pp,kl
be free random variables of SA

p (j), for l = 1, ..., N. Then, by (37),(
Tal

p,kl

)nl
= T

a
nl
l

p,kl
∈ SA

p (j), for nl ∈ N,

for all l = 1, ..., N. Thus,
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T =
N
Π

l=1

(
Tal

p,kl

)nl
=

(
N
Π

l=1
anl

l

)
⊗
(

δj:k1,...,kN Pp,j

)
in SA

p (j), with

δj:k1,...,kN =
N
Π

l=1
δj,kl
∈ {0, 1}.

Therefore,

ψ
p
j (T) = δj:k1,...,kN ψ

(
N
Π

l=1
anl

l

)
ϕ

p
j
(

Pp,j
)

= δj:k1,...,kN

(
1
pj − 1

pj+1

)
ψ

(
N
Π

l=1
anl

l

)
,

by (35a). Thus, the joint free-distributional data (38) holds.

Definitely, if N = 1 in (38), one obtains the formula (36).

8. On the Banach ∗-Probability Spaces LSA
p,j

Let (A, ψ) be an arbitrarily fixed unital C∗-probability space, and let Sp(j) be in the sense of (30),
for all p ∈ P , j ∈ Z. Then, one can construct the tensor product C∗-probability spaces, the j-th p-adic
A-space,

SA
p (j) =

(
SA

p , ψ
p
j

)
=
(

A⊗C Sp, ψ⊗ ϕ
p
j

)
of (34), for p ∈ P , j ∈ Z.

Throughout this section, we fix p ∈ P , j ∈ Z, and the corresponding j-th p-adic A-space SA
p (j). In

addition, we keep using our notation Ta
p,k for the free random variables a⊗ Pp,k of SA(j), for all a ∈

(A, ψ) and k ∈ Z, where Pp,k are the generating projections (26) of the p-adic boundary subalgebra Sp.
Recall that, by (36) and (38),

ψ
p
j

(
Ta

p,k

)
= δj,kψ(a)

(
1
pj − 1

pj+1

)
, ∀k ∈ Z. (39)

Now, let φ be the Euler totient function,

φ : N→ C,

defined by

φ(n) = |{k ∈ N : k ≤ n, gcd(n, k) = 1}| , (40)

for all n ∈ N, where |X| are the cardinalities of sets X, and gcd is the greatest common divisor.
By the definition (40),

φ(n) = n
(

Π
q∈P , q|n

(
1− 1

q

))
, (41)

for all n ∈ N, where “q | n” means “q divides n.” Thus,

φ(q) = q− 1 = q
(

1− 1
q

)
, ∀q ∈ P , (42)

by (40) and (41).
By (42), we have

ϕ
p
j

(
Pp,k

)
=

δj,k

pj

(
1− 1

p

)
=

δj,kφ(p)
pj+1 ,
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for Pp,k ∈ Sp, and hence,

ψ
p
j

(
Ta

p,k

)
= δj,k

(
φ(p)
pj+1

)
ψ(a), (43)

for all Ta
p,k ∈ SA

p (j), by (39).
Let’s consider the following estimates.

Lemma 1. Let φ be the Euler totient function (40). Then,

lim
p→∞

φ(p)
pj+1 =


0, if j > 0,
1, if j = 0,
∞, Undefined, if j < 0,

(44)

for all j ∈ Z, where “p→ ∞” means “p is getting bigger and bigger in P .”

Proof. Observe that

lim
p→∞

φ(p)
p = lim

p→∞

(
1− 1

p

)
= 1,

by (42). Thus, one can get that

lim
p→∞

φ(p)
pj+1 = lim

p→∞

(
φ(p)

p

) (
1
pj

)
= lim

p→∞
1
pj ,

for j ∈ Z. Thus,

lim
p→∞

φ(p)
pj+1 = lim

p→∞
1
pj =


0, if j > 0,
1, if j = 0,
lim
p→∞

p|j| = ∞, if j < 0,

where |j| are the absolute values of j ∈Z. Thus, the estimation (44) holds.

8.1. Semicircular Elements

Let (B, ϕ) be an arbitrary topological ∗-probability space (C∗-probability space, or W∗-probability
space, or Banach ∗-probability space, etc.) equipped with a topological ∗-algebra B (C∗-algebra, resp.,
W∗-algebra, resp., Banach ∗-algebra), and a linear functional ϕ on B.

Definition 8. A self-adjoint operator a ∈ B is said to be semicircular in (B, ϕ), if

ϕ (an) = ωnc n
2
; n ∈ N, ωn =

{
1, if n is even,
0, if n is odd,

(45)

and ck are the k-th Catalan numbers,

ck =
1

k+1

(
2k
k

)
= (2k)!

k!(k+1)! ,

for all k ∈ N0 = N ∪ {0}.

By [15–17], if kn(...) is the free cumulant on B in terms of ϕ, then a self-adjoint operator a is
semicircular in (B, ϕ), if and only if

kn

a, a, ......, a︸ ︷︷ ︸
n-times

 =

{
1, if n = 2,
0, otherwise,

(46)
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for all n ∈ N. The above characterization (46) of the semicircularity (45) holds by the Möbius inversion
of [15]. For example, definition (45) and the characterization (46) give equivalent free distributions,
the semicircular law.

If al are semicircular elements in topological ∗-probability spaces (Bl , ϕl), for l = 1, 2, then the
free distributions of al are completely characterized by the free-moment sequences,(

ϕl(an
l )
)∞

n=1 , for l = 1, 2,

by the self-adjointness of a1 and a2; and by (45), one obtains that(
ϕ1(an

1 )
)∞

n=1 =
(

ωnc n
2

)∞

n=1
= (0, c1, 0, c2, 0, c3, ...)
= (ϕ2(an

2 ))
∞
n=1 .

Equivalently, the free distributions of the semicircular elements a1 and a2 are characterized by the
free-cumulant sequences,(

k1
n(a1, ..., a1)

)∞
n=1 = (0, 1, 0, 0, 0, ...) =

(
k2

n(a2, ..., a2)
)∞

n=1 ,

by (46), where kl
n(...) are the free cumulants on Bl in terms of ϕl , for all l = 1, 2.

It shows the universality of free distributions of semicircular elements. For example,
the free distributions of any semicircular elements are universally characterized by either the
free-moment sequence (

ωnc n
2

)∞

n=1
, (47)

or the free-cumulant sequence

(0, 1, 0, 0, ...).

Definition 9. Let a be a semicircular element of a topological ∗-probability space (B, ϕ). The free distribution
of a is called “the” semicircular law.

8.2. Tensor Product Banach ∗-Algebra LSA
p

Let SA
p (k) =

(
SA

p , ψ
p
k

)
be the k-th p-adic A-space (34), for all p ∈ P , k ∈ Z. Throughout this

section, we fix p ∈ P , k ∈ Z, and SA
p (k). In addition, denote a⊗ Pp,j by Ta

p,j in SA
p (k), for all a ∈ (A, ψ)

and j ∈ Z.
Define now bounded linear transformations cA

p and aA
p “acting on the tensor product C∗-algebra

SA
p ,” by linear morphisms satisfying,

cA
p

(
Ta

p,j

)
= Ta

p,j+1,

(48)

aA
p

(
Ta

p,j

)
= Ta

p,j−1,

on Sp, for all j ∈ Z.
By the definitions (27) and (31), and by the structure theorem (33), the above linear morphisms cA

p
and aA

p of (48) are well-defined on SA
p .

By (48), one can understand cA
p and aA

p as bounded linear transformations contained in the operator
space B(SA

p ) consisting of all bounded linear operators acting on SA
p , by regarding the C∗-algebra SA

p
as a Banach space equipped with its C∗-norm (e.g., [32]). Under this sense, the operators cA

p and aA
p of

(48) are well-defined Banach-space operators on SA
p .
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Definition 10. The Banach-space operators cA
p and aA

p on SA
p , in the sense of (48), are called the A-tensor

p-creation, respectively, the A-tensor p-annihilation on SA
p . Define a new Banach-space operator lA

p by

lA
p = cA

p + aA
p on SA

p . (49)

We call this operator lA
p , the A-tensor p-radial operator on SA

p .

Let lA
p be the A-tensor p-radial operator cA

p + aA
p of (49) in B(SA

p ). Construct a closed subspace LA
p

of B(SA
p ) by

LA
p = C[{lA

p }] ⊂ B(SA
p ), (50)

equipped with the inherited operator-norm ‖.‖ from the operator space B(SA
p ), defined by

‖T‖ = sup{‖Tx‖SA
p

: x ∈ SA
p s.t., ‖x‖SA

p
= 1},

where ‖.‖SA
p

is the C∗-norm on the A-tensor p-adic algebra SA
p (e.g., [32]).

By the definition (50), the set LA
p is not only a closed subspace of B(SA

p ), but also an algebra over
C. Thus, the subspace LA

p is a Banach algebra embedded in B(SA
p ).

On the Banach algebra LA
p of (50), define a unary operation (∗) by(

∑∞
k=0 sk

(
lA

p

)k
)∗

= ∑∞
k=0 sk

(
lA

p

)k
in LA

p , (51)

where sk ∈ C, with their conjugates sk ∈ C.
Then, the operation (51) is a well-defined adjoint on LA

p . Thus, equipped with the adjoint (51),
this Banach algebra LA

p of (50) forms a Banach ∗-algebra in B(SA
p ). For example, all elements of LA

p are
adjointable (in the sense of [32]) in B(SA

p ).
Let LA

p be in the sense of (50). Construct now the tensor product Banach ∗-algebra LSA
p by

LSA
p

de f
= LA

p ⊗CS
A
p = LA

p ⊗C
(

A⊗C Sp
)

, (52)

where ⊗C is the tensor product of Banach ∗-algebras. Since SA
p is a C∗-algebra, it is a Banach

∗-algebra too.

Take now a generating element
(

lA
p

)n
⊗ Ta

p,j, for some n ∈ N0, and j ∈ Z, where Ta
p,j = a⊗ Pp,j

are in the sense of (37) in SA
p , with axiomatization:(

lA
p

)0
= 1SA

p
,

the identity operator on SA
p in B

(
SA

p

)
, satisfying

1SA
p
(T) = T,

for all T ∈ SA
p . Define now a bounded linear morphism EA

p : LSA
p → SA

p by a linear transformation
satisfying that:

EA
p

((
lA

p

)k
⊗ Ta

p,j

)
= 1

[ k
2 ]+1

(
lA

p

)k
(Ta

p,j), (53)

for all k ∈ N0, j ∈ Z, where
[

k
2

]
is the minimal integer greater than or equal to k

2 , for all k ∈ N0, for example,

[ 3
2
]
= 2 =

[
4
2

]
.
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By the cyclicity (50) of the tensor factor LA
p of LSA

p , and by the structure theorem (33) of the
other tensor factor SA

p of LSA
p , the above morphism EA

p of (53) is a well-defined bounded linear
transformation from LSA

p onto SA
p .

Now, consider how our A-tensor p-radial operator lA
p = cA

p + aA
p acts on SA

p . First, observe that:
if cA

p and aA
p are the A-tensor p-creation, respectively, the A-tensor p-annihilation on SA

p , then

cA
p aA

p

(
Ta

p,j

)
= Ta

p,j = aA
p cA

p

(
Ta

p,j

)
,

for all a ∈ (A, ψ), and for all j ∈ Z, p ∈ P , and, hence,

cA
p aA

p = 1SA
p
= aA

p cA
p on SA

p . (54)

Lemma 2. Let cA
p , aA

p be the A-tensor p-creation, respectively, the A-tensor p-annihilation on SA
p . Then,(

cA
p

)n (
aA

p

)n
= 1SA

p
=
(

aA
p

)n (
cA

p

)n
,

(55)(
cA

p

)n1
(

aA
p

)n2
=
(

aA
p

)n2
(

cA
p

)n1
,

on SA
p , for all n, n1, n2 ∈ N.

Proof. The formulas in (55) hold by induction on (54).

By (55), one can get that(
lA

p

)n
=
(

cA
p + aA

p

)n
= ∑n

k=0

(
n
k

) (
cA

p

)k (
aA

p

)n−k
, (56)

with identity: (
cA

p

)0
= 1SA

p
=
(

aA
p

)0
,

for all n ∈ N, where (
n
k

)
= n!

k!(n−k)! ,

for all k ≤ n ∈ N0. By (56), one obtains the following proposition.

Proposition 8. Let lA
p ∈ LA

p be the A-tensor p-radial operator on SA
p . Then,(

lA
p

)2m−1
does not contain 1SA

p
-term, and (57)(

lA
p

)2m
contains its 1SA

p
-term,

(
2m
m

)
· 1SA

p
, (58)

for all m ∈ N.

Proof. The proofs of (57) and (58) are done by straightforward computations of (56) with the help
of (55).
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8.3. Free-Probabilistic Information of Qa
p,j in LSA

p

Fix p ∈ P , and a unital C∗-probability space (A, ψ), and let LSA
p be the Banach ∗-algebra (52).

Let EA
p : LSA

p → SA
p be the linear transformation (53). Throughout this section, let

Qa
p,j

denote
= lA

p ⊗ Ta
p,j ∈ LSA

p , (59)

for all j ∈ Z, where Ta
p,j = a⊗ Pp,j ∈ SA

p are in the sense of (37) generating SA
p , for a ∈ (A, ψ), and j ∈

Z. Observe that (
Qa

p,j

)n
=
(

lA
p ⊗ Ta

p,j

)n

=
(

lA
p

)n
⊗
(

Ta
p,j

)n
=
(

lA
p

)n
⊗ Tan

p,j,
(60)

by (37), for all n ∈ N, for all j ∈ Z.
If Qa

p,j ∈ LSA
p is in the sense of (59) for j ∈ Z, then

EA
p

((
Qa

p,j

)n)
= 1

[ n
2 ]+1

(
lA

p

)n (
Tan

p,j

)
, (61)

by (53) and (60), for all n ∈ N.
For any fixed j ∈ Z, define a linear functional τ

p
j on LSA

p by

τ
p
j = ψ

p
j ◦ EA

p on LSA
p , (62)

where ψ
p
j = ψ⊗ ϕ

p
j is a linear functional (35a), or (35b) on SA

p .

By the linearity of both ψ
p
j and EA

p , the morphism τ
p
j of (62) is a well-defined linear functional on

LSA
p for j ∈ Z. Thus, the pair

(
LSA

p , τ
p
j

)
forms a Banach ∗-probability space (e.g., [22]).

Definition 11. The Banach ∗-probability spaces

LSA
p,j

denote
=

(
LSA

p , τ
p
j

)
(63)

are called the A-tensor j-th p-adic (free-)filters, for all p ∈ P , j ∈ Z, where τ
p
j are in the sense of (62).

By (61) and (62), if Qa
p,j is in the sense of (59) in LSA

p,j, then

τ
p
j

((
Qa

p,j

)n)
= 1

[ n
2 ]+1

ψ
p
j

(
(lA

p )
n
(

Tan

p,j

))
, (64)

for all n ∈ N.

Theorem 2. Let Qa
p,k = lA

p ⊗ Ta
p,k = lA

p ⊗
(

a⊗ Pp,k

)
be a free random variable (59) of the A-tensor j-th

p-adic filter LSA
p,j of (63), for p ∈ P , j ∈ Z, for all k ∈ Z. Then,

τ
p
j

((
Qa

p,k

)n)
= δj,kωnψ(an)c n

2

(
φ(p)
pj+1

)
, (65)

where ωn are in the sense of (45), for all n ∈ N.

Proof. Let Qa
p,j be in the sense of (59) in LSA

p,j, for the fixed p ∈ P and j ∈ Z. Then,

τ
p
j

((
Qa

p,j

)2n−1
)
= ψ

p
j

(
EA

p

((
Qa

p,j

)2n−1
))

by (62)

=

(
1

[ 2n−1
2 ]+1

)
ψ

p
j

(
(lA

p )
2n−1

(
Ta2n−1

p,j

))
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by (64)

=

(
1

[ 2n−1
2 ]+1

)
ψ

p
j

((
∑n

k=0

(
2n− 1

k

)
(cA

p )
k(aA

p )
2n−1−k

)(
Ta2n−1

p,j

))
by (56)

= 0,

by (57), for all n ∈ N.
Observe now that, for any n ∈ N,

τ
p
j

((
Qa

p,j

)2n
)
=

(
1

[ 2n
2 ]+1

)
ψ

p
j

(
(lA

p )
2n
(

Ta2n

p,j

))
by (64)

=
(

1
n+1

)
ψ

p
j

((
∑2n

k=0

(
2n
k

)
(cA

p )
k(aA

p )
2n−k

)(
Ta2n

p,j

))
by (56)

=
(

1
n+1

)
ψ

p
j

((
2n
n

)
Ta2n

p,j + [Rest terms]

)
by (58)

= 1
n+1

(
2n
n

)
ψ

p
j

(
Ta2n

p,j

)
= 1

n+1

(
2n
n

)
ψ(a2n)

(
φ(p)
pj+1

)
by (39) and (43)

= cnψ(a2n)
(

φ(p)
pj+1

)
,

where cn are the n-th Catalan numbers.
If k 6= j in Z, and if Qa

p,k are in the sense of (59) in LSA
p,j, then

τ
p
j

((
Qa

p,k

)n)
= 0,

for all n ∈ N, by the definition (22a) of the linear functional ϕ
p
j on Sp, inducing the linear functional

ψ
p
j = ψ⊗ ϕ

p
j on the tensor factor SA

p of LSA
p,j.

Therefore, the free-distributional data (65) holds true.

Note that, if a is self-adjoint in (A, ψ), then the generating operators Qa
p,k of the A-tensor j-th

p-adic filter LSA
p,j are self-adjoint in LSA

p , since(
Qa

p,k

)∗
=
(

lA
p ⊗ Ta

p,k

)∗
= (lA

p )
∗ ⊗

(
Ta

p,k

)∗
= lA

p ⊗ Ta∗
p,k = Qa

p,k,

for all k ∈ Z, for p ∈ P , j ∈ Z, by (51).
Thus, if a is a self-adjoint free random variable of (A, ψ), then the above formula (65) fully

characterizes the free distributions (up to τ
p
j ) of the generating operators Qa

p,k of LSA
p , for all k, j ∈ Z,

for p ∈ P .
The free-distributional data (65) can be refined as follows: if p ∈ P , j ∈ Z , and if LSA

p,j is the
corresponding A-tensor j-th p-adic filter (63), then

τ
p
j

((
Qa

p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
, (66)

for all n ∈ N, and



Symmetry 2019, 11, 819 18 of 33

τ
p
j

((
Qa

p,k

)n)
= 0, (67)

for all n ∈ N, whenever k 6= j in Z, for all n ∈ N.
Before we focus on non-zero free-distributional data (66) of Qa

p,j, let’s conclude the following
result for {Qa

p,k}k 6=j∈Z.

Corollary 1. Let p ∈ P , j ∈ Z, and let LSA
p,j be the A-tensor j-th p-adic filter (63). Then, the

generating operators

Qa
p,k = lA

p ⊗ Ta
p,j = lA

p ⊗
(
a⊗ Pp,j

)
∈ LSA

p,j

have the zero free distribution, whenever k 6= j in Z.

Proof. It is proven by (65) and (67).

By the above corollary, we now restrict our interests to the “j-th” generating operators Qa
p,j of

(59) in the A-tensor “j-th” p-adic filter LSA
p,j, for all p ∈ P , j ∈ Z, having non-zero free distributions

determined by (66).

9. On the Free Product Banach ∗-Probability Space LSA

Throughout this section, let (A, ψ) be a fixed unital C∗-probability space, and let

LSA
p,j =

(
LSA

p , τ
p
j

)
(68)

be A-tensor j-th p-adic filters, where

LSA
p = LA

p ⊗C SA
p = LA

p ⊗C
(

A⊗C Sp
)

,

are in the sense of (52), and τ
p
j are the linear functionals (62) on LSA

p , for all p ∈ P , j ∈ Z.

Let Qa
p,k = lA

p ⊗ Ta
p,k = lA

p ⊗
(

a⊗ Pp,k

)
be the generating elements (59) of LSA

p,j of (68), for a ∈ (A,

ψ), p ∈ P , and k, j ∈ Z. Then, these operators Qa
p,k of LSA

p,j have their free-distributional data,

τ
p
j

((
Qa

p,k

)n)
= δj,kωnψ(an)c n

2

(
φ(p)
pj+1

)
, (69)

for all n ∈ N, by (65).
By (66) and (67), we here concentrate on the “j-th” generating operators of LSA

p,j having non-zero
free distributions (69) for all j ∈ Z, for all p ∈ P .

9.1. Free Product Banach ∗-Probability Space (LSA, τ)

By (68), we have the family {
LSA

p,j : p ∈ P , j ∈ Z
}

of Banach ∗-probability spaces, consisting of the A-tensor j-th p-adic filters LSA
p,j.

Define the free product Banach ∗-probability space,

(LSA, τ)
de f
= ?

p∈P , j∈Z
LSA

p,j,

=

(
?

p∈P , j∈Z
LSA

p , ?
p∈P , j∈Z

τ
p
j

) (70)
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in the sense of [15,22].
By (70), the A-tensor j-th p-adic filters LSp,j of (68) are the free blocks of the Banach ∗-probability

space (LSA, τ) of (70).
All operators of the Banach ∗-algebra LSA in (70) are the Banach-topology limits of linear

combinations of noncommutative free reduced words (under operator-multiplication) in

t
p∈P , j∈Z

LSA
p,j.

More precisely, since each free block LSA
p,j is generated by {Qa

p,k}a∈A,k∈Z, for all p ∈ P , j ∈ Z,
all elements of LSA are the Banach-topology limits of linear combinations of free words in

t
p∈P ,j∈Z

{Qa
p,k ∈ LSp,j : a ∈ A, k ∈ Z}.

In particular, all noncommutative free words have their unique free “reduced” words (as operators
of LSA under operator-multiplication) formed by

N
Π

l=1

(
Qal

pl ,kl

)nl
, where Qal

pl ,kl
∈ LSA

pl ,jl

in LSA, for all a1, ..., aN ∈ (A, ψ), and n1, ..., nN ∈ N, where either the N-tuple

(p1, ..., pN) , or (j1, ..., jN)

is alternating in P , respectively, in Z, in the sense that:

p1 6= p2, p2 6= p3, ..., pN−1 6= pN in P ,

respectively,

j1 6= j2, j2 6= j3, ..., jN−1 6= jN in Z

(e.g., see [22]).
For example, a 5-tuple

(2, 2, 3, 7, 2)

is not alternating in P , while a 5-tuple

(2, 3, 2, 7, 2)

is alternating in P , etc.
By (70), if Qa

p,j are the j-th a-tensor generating operators of a free block LSA
p,j of the Banach

∗-probability space (LSA, τ), for all j ∈ Z, for p ∈ P , j ∈ Z, then
(

Qa
p,j

)n
are contained in the same

free block LSA
p,j of (LSA, τ) , and, hence, they are free reduced words with their lengths-1, for all n ∈

N. Therefore, we have

τ
((

Qa
p,j

)n)
= τ

p
j

((
Qa

p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

(71)

for all n ∈ N, by (69).

Definition 12. The Banach ∗-probability space LSA
denote
= (LSA, τ) of (70) is called the A-tensor (free-)Adelic

filterization of {LSA
p,j}p∈P ,j∈Z.
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As we discussed at the beginning of Section 9, we now focus on studying free random variables
of the A-tensor Adelic filterization LSA of (70) having “non-zero” free distributions.

Define a subset U of LSA by

U =
{

Q1A
p,j ∈ LSA

p,j |∀p ∈ P , j ∈ Z
}

(72)

in LSA, where 1A is the unity of A, and Q1A
p,j are the “j-th” 1A-tensor generating operators of LSA, in

the free blocks LSA
p,j, for all p ∈ P , j ∈ Z.

Then, the elements Q1A
p,j of U have their non-zero free distributions,(

ωnc n
2

ψ(1n
A)
(

φ(p)
pj+1

))∞

n=1
=
(

ωnc n
2

(
φ(p)
pj+1

))∞

n=1
,

by (71), since

ψ(1n
A) = ψ(1A) = 1,

for all n ∈ N. Now, define a Cartesian product set

UA
de f
= A×U , (73a)

set-theoretically, where U is in the sense of (72).
Define a function Ω : UA → LSA by

Ω
(
(a, Q1A

p,j)
) de f
= Qa

p,j in LSA, (73b)

for all (a, Q1A
p,j) ∈ UA, where UA is in the sense of (73a).

It is not difficult to check that this function Ω of (73b) is a well-defined injective map. Moreover, it
induces all j-th a-tensor generating elements Qa

p,j of LSa
p,j in LSA, for all p ∈ P , and j ∈ Z.

Define a Banach ∗-subalgebra LSA of the A-tensor Adelic filterization LSA of (70) by

LSA
de f
= C [Ω (UA)] in LSA, (74a)

where Ω(UA) is the subset of LSA, induced by (73a) and (73b), and Y mean the Banach-topology
closures of subsets Y of LSA.

Then, this Banach ∗-subalgebra LSA of (74a) has a sub-structure,

LSA
denote
=

(
LSA, τ = τ |LSA

)
(74b)

in the A-tensor Adelic filterization LSA.

Theorem 3. Let LSA be the Banach ∗-algebra (74a) in the A-tensor Adelic filterization LSA. Then,

LSA
∗-iso
= ?

p∈P , j∈Z
C
[
{Qa

p,j : a ∈ (A, ψ}
]

∗-iso
= C

[
?

p∈P , j∈Z
{Qa

p,j : a ∈ (A, ψ}
]

,

(75)

where Qa
p,j ∈ Ω(UA) of (73b). Here, (?) in the first ∗-isomorphic relation in (75) is the free-probability-theoretic

free product determined by the linear functional τ of (70), or of (74b) (e.g., [15,22]), and (?) in the second
∗-isomorphic relation in (75) is the pure-algebraic free product generating noncommutative free words in Ω(UA).

Proof. Let LSA be the Banach ∗-subalgebra (74a) in LSA. Then,

LSA = C
[
{Qa

p,j ∈ LSA
p,j : a ∈ (A, ψ)}p∈P , j∈Z

]
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by (73a), (73b) and (74a)

∗-iso
= ?

p∈P , j∈Z
C
[
{Qa

p,j : a ∈ (A, ψ)}
]

in LSA, since all elements Qa
p,j ∈ Ω (UA) are chosen from mutually distinct free blocks LSA

p,j of the

A-tensor Adelic filterization LSA, and, hence, the operators {Qa
p,j, Qa∗

p,j}p∈P , j∈Z are free from each
other in LSA, for any a ∈ (A, ψ), for all p ∈ P , j ∈ Z, moreover,

∗-iso
= C

[
?

p∈P , j∈Z
{Qa

p,j : a ∈ (A, ψ)}
]

,

because all elements of LSA are the (Banach-topology limits of) linear combinations of free words in
Ω(UA), by the very above ∗-isomorphic relation. Indeed, for any noncommutative (pure-algebraic)
free words in

∪
p∈P , j∈Z

{Qa
p,j : a ∈ (A, ψ)}

have their unique free “reduced” words under operator-multiplication on LSA, as operators of LSA.
Therefore, the structure theorem (75) holds.

The above theorem characterizes the free-probabilistic structure of the Banach ∗-algebra LSA
of (74a) in the A-tensor Adelic filterization LSA. This structure theorem (75) demonstrates that the
Banach ∗-probability space (LSA, τ) of (74b) is well-determined, having its natural inherited free
probability from that on LSA.

Definition 13. Let (LSA, τ) be the Banach ∗-probability space (74b). Then, we call

LSA
denote
= (LSA, τ),

the A-tensor (Adelic) sub-filterization of the A-tensor Adelic filterization LSA.

By (69), (71), (72) and (75), one can verify that the free probability on the A-tensor sub-filterization
LSA provide “possible” non-zero free distributions on the A-tensor Adelic filterization LSA, up to
free probability on (A, ψ). i.e., if a ∈ (A, ψ) have their non-zero free distributions, then Qa

p,j ∈ LSA
have non-zero free distributions, and, hence, they have their non-zero free distributions on LSA.

Theorem 4. Let Qa
p,j ∈ Ω(UA) be free random variables of the A-tensor sub-filterization LSA, for a ∈ (A, ψ),

and p ∈ P , and j ∈ Z. Then,

τ
((

Qa
p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

(76)

τ

(((
Qa

p,j

)∗)n
)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

for all n ∈ N.

Proof. The first formula of (76) is shown by (71). Thus, it suffices to prove the second formula of (76)
holds. Note that (

Qa
p,j

)∗
=
(

lA
p ⊗ Ta

p,j

)∗
=
(

lA
p ⊗

(
a⊗ Pp,j

))∗
=
(

lA
p

)∗
⊗
(
a⊗ Pp,j

)∗
= lA

p ⊗
(
a∗ ⊗ Pp,j

)
,

and, hence, (
Qa

p,j

)∗
= Qa∗

p,j in LSA, (77)
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for all Qa
p,j ∈ Ω (UA) . Thus, one has((

Qa
p,j

)∗)n
=
(

Qa∗
p,j

)n
= Q(a∗)n

p,j = Q(an)∗

p,j in LSA,

by (77).
Thus, one has

τ

(((
Qa

p,j

)∗)n
)

= ωnc n
2

ψ ((an)∗)
(

φ(p)
pj+1

)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

by (71), for all n ∈ N. Therefore, the second formula of (76) holds too.

9.2. Prime-Shifts on LSA

Let LSA be the A-tensor sub-filterization (70) of the A-tensor Adelic filterization LSA. In this
section, we define a certain ∗-homomorphism on LSA, and study asymptotic free-distributional data
on LSA (and hence those on LSA) over primes.

Let P be the set of all primes in N, regarded as a totally ordered set (in short, a TOset) for the usual
ordering (≤), i.e.,

P = {q1 < q2 < q3 < q4 < · · ·}, (78)

with

q1 = 2, q2 = 3, q3 = 5, q4 = 7, q5 = 11, ..., etc.

Define an injective function h : P → P by

h (qk) = qk+1; k ∈ N, (79)

where qk are primes of (78), for all k ∈ N.

Definition 14. Let h be an injective function (79) on the TOset P of (78). We call h the shift on P .

Let h be the shift (79) on the TOset P , and let

h(n)
de f
= h ◦ h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

n-times

, on P , (80)

for all n ∈ N, where (◦) is the usual functional composition.
By the definitions (79) and (80),

h(n) (qk) = qk+n, (81)

for all n ∈ N, in P . For instance, h(3)(2) = 7, and h(4)(5) = 17, etc.
These injective functions h(n) of (80) are called the n-shifts on P , for all n ∈ N.
For the shift h on P , one can define a ∗-homomorphism πh on the A-tensor sub-filterization LSA by

a bounded “multiplicative” linear transformation, satisfying that

πh

(
Qa

qk ,j

)
= Qa

h(qk),j
= Qa

qk+1,j, (82)

for all Qqk ,j ∈ Ω(UA), for all qk ∈ P , for all j ∈ Z, where h is the shift (79) on P .
By (82), we have

πh

(
N
Π

l=1

(
Qal

qkl
,jl

)nl
)
=

N
Π

l=1

(
Qal

h(qkl
), jl

)nl

=
N
Π

l=1

(
Qal

qkl+1,jl

)nl

, (83)
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in LSA, for all Qa
qkl

,jl
∈ Ω(UA), for qkl

∈ P , jl ∈ Z, for l = 1, ..., N, for N ∈ N, where n1, ..., nN ∈ N.

Remark 1. Note that the multiplicative linear transformation πh of (82) is indeed a ∗-homomorphism satisfying

πh (T∗) = (πh(T))
∗ ,

for all T ∈ LSA, because

πh

((
Qa

p,j

)∗)
= πh

(
Qa∗

p,j

)
= Qa∗

h(p),j

=
(

Qa
h(p),j

)∗
=
(

πh

(
Qa

p,j

))∗
,

for all Qa
p,j ∈ Ω (UA) .

In addition, by (82), we obtain the ∗-homomorphisms,

πn
h = πhπhπh · · · πh︸ ︷︷ ︸

n-times

, on LSA, (84)

the products (or compositions) of the n-copies of the ∗-homomorphism πh of (82), acting on LSA. It is
not difficult to check that

πn
h

(
Qa

p,j

)
= πn−1

h

(
Qa

h(p),j

)
= πn−2

h

(
Qa

h(2)(p),j

)
= · · · = πh

(
Qa

h(n−1)(p), j

)
= Qa

h(n)(p), j
,

(85)

for all Qa
p,j ∈ Ω(UA) in LSA, where h(k) are the k-shifts (80) on P , for all k ∈ N.

Definition 15. Let πh be the ∗-homomorphism (82) on the A-tensor sub-filterization LSA, and let πn
h be the

products (84) acting on LSA, for all n ∈N, with π1
h = πh. Then, we call πn

h , the n-prime-shift (∗-homomorphism)
on LSA, for all n ∈ N. In particular, the 1-prime-shift πh is simply said to be the prime-shift (∗-homomorphism)
on LSA.

Thus, for any Qa
qk ,j ∈ Ω(UA) in LSA, for qk ∈ P (in the sense of (78) with k ∈ N), the n-prime-shift

πn
h satisfies

πn
h

(
Qa

qk ,j

)
= Qa

h(n)(qk),j
= Qa

qk+n ,j, (86)

by (81) and (85), and, hence,

πn
h

(
N
Π

l=1

(
Qal

qkl
,jl

)nl
)
=

N
Π

l=1

(
Qal

qkl+n ,jl

)nl

, (87)

by (83) and (86), for all n ∈ N.
By (86) and (87), one may write as follows;

πn
h = πh(n) on LSA, for all n ∈ N,

where h(n) are the n-shifts (81) on the TOset P .
Consider now the sequence

Π =
(
πn

h
)∞

n=1 (88)

of the n-prime-shifts on LSA.
For any fixed T ∈ LSA, the sequence Π of (88) induces the sequence of operators,

Π(T) =
(
πn

h (T)
)∞

n=1 =
(
πh(T), π2

h(T), π3
h(T), · ··

)
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in LSA, and this sequence Π(T) has its corresponding free-distributional data, represented by the
following C-sequence:

τ(Π(T)) =
(
τ
(
πn

h (T)
))∞

n=1 . (89)

We are interested in the convergence of the C-sequence τ(Π(T)) of (89), as n→ ∞.
Either convergent or divergent, the C-sequence τ(Π(T)) of (89), induced by any fixed operator T

∈ LSA, shows the asymptotic free distributional data of the family {πn
h (T)}

∞
n=1 ⊂ LSA, as n→ ∞ in N,

equivalently, as qn → ∞ in P .

9.3. Asymptotic Behaviors in LSA over P

Recall that, by (44), we have

lim
p→∞

φ(p)
pj+1 =


0, if j > 0,
1, if j = 0,
∞, Undefined, if j < 0,

(90)

for j ∈ Z.
Recall also that there are bounded ∗-homomorphisms

Π =
(
πn

h
)∞

n=1 , acting on LSA,

of (88), where πn
h are the n-prime shifts of (84), where h is the shift (79) on the TOset P of (78). Then,

these ∗-homomorphisms of Π satisfies

lim
n→∞

(
πn

h

(
Qa

p,j

))
= lim

n→∞

(
Qa

h(n)(p), j

)
, (91)

for all Qa
p,j ∈ Ω(UA) in LSA, where h(n) are the n-shifts (80) on P , for all n ∈ N.

Thus, one can get that: if
N
Π

l=1

(
Qal

pl ,jl

)nl
is a free reduced words of LSA in Ω (UA) , then

lim
n→∞

πn
h

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
= lim

n→∞

(
N
Π

l=1
πn

h

((
Qal

pl ,jl

)nl
))

= lim
n→∞

(
N
Π

l=1

(
πn

h

(
Qal

pl ,jl

))nl
)

since πn
h are ∗-homomorphisms on LSA

= lim
n→∞

(
N
Π

l=1

(
Qal

h(n)(pl),jl

)nl
)

by (91)

=
N
Π

l=1

(
lim

n→∞

(
Qal

h(n)(pl), jl

)nl
)

, (92)

under the Banach-topology for LSA, for all Qal
pl ,jl
∈ Ω(UA), for al ∈ (A, ψ), pl ∈ P , jl ∈ Z, for l = 1, ...,

N, for all N ∈ N.

Notation 2. (in short, N 2 from below) For convenience, we denote lim
n→∞

πn
h symbolically by π, for the

sequence Π =
(
πn

h
)∞

n=1 of (88).

Lemma 3. Let Qal
pl ,jl
∈ Ω(UA) be generators of the A-tensor sub-filterization LSA, for l = 1, ..., N, for N ∈

N. In addition, let Π be the sequence (88) acting on LSA. If π is in the sense of N 2, then

π
(

Qa1
p1,j1

)
= lim

n→∞

(
Qa1

(h(n)(p1)), j1

)
,

(93)
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π

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
= lim

n→∞

(
N
Π

l=1

(
Qal

h(n)(pl), jl

)nl
)

,

for all n1, ..., nN ∈ N, where h(n) are the n-shifts (80) on P .

Proof. The proof of (93) is done by (91) and (92).

By abusing notation, one may/can understand the above formula (93) as follows

π
(

Qa1
p1,j1

)
= lim

p1→∞
Qa1

p1, j1
,

(94a)

π

(
N
Π

l=1
Qnl

pl ,jl

)
=

N
Π

l=1

(
lim

pl→∞

(
Qnl

pl ,jl

))
,

respectively, where “ lim
q→∞

” for q ∈ P is in the sense of (44).

Such an understanding (94a) of the formula (93) is meaningful by the constructions (80) of n-shifts
h(n) on P . For example,

lim
n→∞

h(n)(q) = lim
p→∞

p, for q ∈ P , (94b)

where the right-hand side of (94b) means that: starting with q, take bigger primes again and again in
the TOset P of (78).

Assumption and Notation: From below, for convenience, the notations in (94a) are used for (93),
if there is no confusion.

We now define a new (unbounded) linear functional τ0 on LSA with respect to the linear functional
τ of (74a), by

τ0
de f
= τ ◦ π on LSA, (95)

where π is in the sense of N 2.

Theorem 5. Let LSA = (LSA, τ) be the A-tensor sub-filterization (74b), and let τ0 = τ ◦ π be the new linear
functional (95) on the Banach ∗-algebra LSA of (74a). Then, for the generators

{Qa
p,j}p∈P ⊂ Ω(UA) of LSA,

for an arbitrarily fixed a ∈ (A, ψ) and j ∈ Z, we have that

τ0

((
Qa

p,j

)n)
=


0, if j > 0,
ωnc n

2
ψ(an), if j = 0,

∞, Undefined, if j < 0,
(96)

for all n ∈ N.

Proof. Let {Qa
p,j}p∈P ⊂ Ω(UA) in LSA, for fixed a ∈ (A, ψ) and j ∈ Z. Then,

τ0

((
Qa

p,j

)n)
= (τ ◦ π)

((
Qa

p,j

)n)
= τ

(
lim
p→∞

(
Qa

p, j

)n
)

by (93) and (94a)

= lim
p→∞

τ
((

Qa
p,j

)n)
by the boundedness of τ for the (norm, or strong) topology for LSA
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= lim
p→∞

τ
p
j

((
Qa

p,j

)n)
= lim

p→∞

(
ωnc n

2
ψ(an)

(
φ(p)
pj+1

))
by (70), (75) and (77)

=
(

ωnc n
2

ψ(an)
)(

lim
p→∞

φ(p)
pj+1

)

=


0, if j > 0,
ωnc n

2
ψ(an), if j = 0,

∞, Undefined, if j < 0,

by (90), for each n ∈ N. Therefore, the free-distributional data (96) holds for τ0.

By (96), we obtain the following corollary.

Corollary 2. Let Q1A
p,0 ∈ Ω(UA) be free random variables of the A-tensor sub-filterization LSA, for all p ∈ P ,

where 1A is the unity of (A, ψ). Then, the asymptotic free distribution of the family

Q1A
0 = {Q1A

p,0 ∈ Ω(UA)}p∈P

follows the semicircular law asymptotically as p→ ∞ in P .

Proof. Let Q1A
0 = {Q1A

p,0}p∈P ⊂ Ω(UA) in LSA. Then, for the linear functional τ0 of (95) on LSA,

τ0

((
Q1A

p,0

)n)
= ωnc n

2
,

for all n ∈ N, by (96), since

ψ(1n
A) = ψ(1A) = 1; n ∈ N.

If p→ ∞ in P , then the asymptotic free distribution of the family Q1A
0 is the semicircular law by

the self-adjointness of all Q1A
p,0’s, and by the semicircularity (45) and (47).

Independent from (96), we obtain the following asymptotic free-distributional data on LSA.

Theorem 6. Let j1, ..., jN be “mutually distinct” in Z, for N > 1 in N, and hence the N-tuple

[j] = (j1, ..., jN) ∈ ZN

is alternating in Z. In addition, let

[a] = (a1, ..., aN)

be an arbitrarily fixed N-tuple of free random variables a1, ..., aN of the unital C∗-probability space (A, ψ),
and let’s fix

[n] = (n1, ..., nN) ∈ NN .

Now, define a family T [a],[n]
[j] of free reduced words with their lengths-N,

T [a],[n]
[j] =

{
T =

N
Π

l=1

(
Qal

pl ,jl

)nl
: p1, ..., pN ∈ P

}
, (97)

in LSA, for Qal
pl ,jl
∈ Ω (UA) , for all pl ∈ P , where al ∈ [a], jl ∈ [j], for l = 1, ..., N.

For any free reduced words T ∈ T [a],[n]
[j] , if τ0 is the linear functional (95) on LSA, then

τ0 (T) =


0, if ∑N

l=1 jl > 1− N,
N
Π

l=1

(
ωnl c nl

2
ψ(anl )

)
, if ∑N

l=1 jl = 1− N,

∞, Undefined, if ∑N
l=1 jl < 1− N,

(98)
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for all n ∈ N.

Proof. Let T ∈ T [a],[n]
[j] be in the sense of (97) in the A-tensor sub-filterization LSA. Then, these operators

T form free reduced words with their lengths-N in LSA, since [j] is an alternating N-tuple of “mutually
distinct” integers. Observe that

τ0 (T) = τ (π(T)) = τ

(
N
Π

l=1

(
lim

pl→∞

(
Qal

pl , jl

)nl
))

by (93) and (94a)

= τ

(
N
Π

l=1

(
lim
p→∞

(
Qal

p, jl

)nl
))

because

lim
p→∞

p = lim
n→∞

h(n) (pl) = lim
pl→∞

pl , in P ,

in the sense of (44), for all l = 1, ..., N, and, hence, it goes to

= lim
p→∞

(
τ

((
N
Π

l=1
Qal

p,jl

)nl
))

by the boundedness of τ for the (norm, or strong) topology for LSA

= lim
p→∞

(
N
Π

l=1

(
ωnl c nl

2
ψ(anl

l )

(
φ(p)
pjl+1

)))
since [j] consists of “mutually-distinct” integers, by the Möbius inversion

=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
N
Π

l=1

(
φ(p)
pjl+1

)))
=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

pN+ΣN
l=1 jl

))
=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

p(N−1+ΣN
l=1 jl)+1

))

=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

p(N−1+ΣN
l=1 jl)+1

))

=


0 if N − 1 + ∑N

l=1 jl > 0
N
Π

l=1

(
ωnl c nl

2
ψ(anl

l )
)

if N − 1 + ∑N
l=1 jl = 0

∞ if N − 1 + ∑N
l=1 jl < 0,

by (90), for all n ∈ N. Therefore, the family T [a],[n]
[j] of (97) satisfies the asymptotic free-distributional

data (98) in the A-tensor sub-filterization LSA over P .

The above two theorems illustrate the asymptotic free-probabilistic behaviors on the A-tensor
sub-filterization LSA over P , by (96) and (98).

As a corollary of (96), we showed that the family

Q1A
0 = {Q1A

p,0}p∈P ⊂ LSA

has its asymptotic free distribution, the semicircular law in LSA, as p → ∞. More generally,
the following theorem is obtained.

Theorem 7. Let a be a self-adjoint free random variable of our unital C∗-probability space (A, ψ). Assume that
it satisfies
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(i) ψ(a) ∈ R× = R \ {0} in C,
(ii) ψ(a2n) = ψ(a)2n, for all n ∈ N.

Then, the family

X a
0 =

{
Xa

p,0 = 1
ψ(a)Qa

p,0 : p ∈ P
}

(99)

follows the asymptotic semicircular law, in LSA over P .

Proof. Let a ∈ (A, ψ) be a self-adjoint free random variable satisfying two conditions (i) and (ii),
and let X a

0 be the family (99) of the A-tensor sub-filterization LSA. Then, all elements

Xa
p,0 =

1
ψ(a)Qa

p,0 = lA
p ⊗

((
1

ψ(a) a
)
⊗ Pp,0

)
of X a

0

are self-adjoint in LSA, by the self-adjointness of Qa
p,0, and by the condition (i).

For any Xa
p,0 ∈ X a

0 , observe that

τ0

((
Xa

p,0

)n)
= 1

ψ(a)n τ0

((
Qa

p,0

)n)
= 1

ψ(a)n

(
ωnc n

2
ψ(an)

)
by (96)

=
(

ωnc n
2

(
ψ(an)
ψ(an)

))
by the condition (ii)

= ωnc n
2
,

for all n ∈ N. Therefore, the family X a
0 has its asymptotic semicircular law over P , by (45).

Similar to the construction of X a
0 of (99), if we construct the families X a

j ,

X a
j =

{
1

ψ(a)Qa
p,j : Qa

p,j ∈ Ω (UA)
}

p∈P
, (100)

for a fixed a ∈ (A, ψ) satisfying the conditions (i) and (ii) of the above theorem, and, for a fixed j ∈ Z,
then one obtains the following corollary.

Corollary 3. Fix a ∈ (A, ψ) satisfying the conditions (i) and (ii) of the above theorem. Let’s fix j ∈ Z, and let
X a

j be the corresponding family (100) in the A-tensor sub-filterization LSA = (LSA, τ) .
I f j = 0, then X a

0 has the asymptotic semicircular law in LSA. (101)
I f j > 0, then X a

j has its asymptotic free distribution, the zero free distribution, in LSA. (102)
I f j < 0, then the asymptotic free distribution of X a

j is undefined in LSA. (103)

Proof. The proof of (101) is done by (99).
By (96), if j > 0, then, for any T = 1

ψ(a)Qa
p,j ∈ X a

j , one has that

τ0 (Tn) = 1
ψ(an)

τ0

((
Qa

p,j

)n)
= 0,

for all n ∈ N. Thus, the asymptotic free distribution of X a
j is the zero free distribution in LSA, as p→

∞ in P . Thus, the statement (102) holds.
Similarly, by (96), if j < 0, then the asymptotic free distribution X a

j is undefined in LSA over P ,
equivalently, the statement (103) is shown.

Motivated by (101), (102) and (103), we study the asymptotic semicircular law (over P) on LSA
more in detail in Section 10 below.
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10. Asymptotic Semicircular Laws on LSA over P

We here consider asymptotic semicircular laws on the A-tensor sub-filterization LSA = (LSA, τ).
In Section 9.3, we showed that the asymptotic free distribution of a family

X a
0 = { 1

ψ(a)Qa
p,0 : p ∈ P} (104)

is the semicircular law in LSA as p → ∞ in P , for a fixed self-adjoint free random variable a ∈ (A,
ψ) satisfying

(i) ψ(a) ∈ R×, and
(ii) ψ(a2n) = ψ(a)2n, for all n ∈ N.

As an example, the family

X 1A
0 = {Q1A

p,0 : p ∈ P} (105)

follows the asymptotic semicircular law in LSA over P .
We now enlarge such asymptotic behaviors on LSA up to certain ∗-isomorphisms.
Define bijective functions g+ and g− on Z by

g+(j) = j + 1, and g−(j) = j− 1, (106)

for all j ∈ Z.
By (106), one can define bijective functions g(n)± on Z by

g(n)±
de f
= g± ◦ g± ◦ g± ◦ · · · ◦ g±︸ ︷︷ ︸

n-times

, (107)

satisfying g(1)± = g± on Z, with axiomatization:

g(0)± = idZ, the identity function on Z,

for all n ∈ N0 = N ∪ {0}. For example,

g(n)± (j) = j± n, (108)

for all j ∈ Z, for all n ∈ N0.
From the bijective functions g(n)± of (107), define the bijective functions

(
go
±
)(n) on the generator

set Ω(UA) of (72) of the A-tensor sub-filterization LSA by(
go
+

)(n) (Qa
p,j

)
= Qa

p,g(n)+ (j)
= Qa

p,j+n,

(109)(
go
−
)(n) (Qa

p,j

)
= Qa

p,g(n)− (j)
= Qa

p,j−n,

with (
go
±
)(1)

= go
±, and

(
go
±
)(0)

= id,

by (108), for all p ∈ P and j ∈ Z, for all n ∈ N0, where id is the identity function on Ω(UA).
By the construction (73a) of the generator set Ω(UA) of LSA under (73b),

Ω(UA) = t
p∈P
{Qa

p,j : a ∈ A, j ∈ Z},
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the functions
(

go
±
)(n) of (109) are indeed well-defined bijections on Ω(UA), by the bijectivity of g(n)±

of (107).
Now, define bounded ∗-homomorphisms G± on LSA by the bounded multiplicative linear

transformations on LSA satisfying that:

G+

(
Qa

p,j

)
= go

+

(
Qa

p,j

)
= Qa

p,j+1,

(110)

G−
(

Qa
p,j

)
= go

−

(
Qa

p,j

)
= Qa

p,j−1,

in LSA, by using the bijections go
± of (109), for all Qa

p,j ∈ Ω(UA).
More precisely, the morphisms G± of (110) satisfy that

G±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)

=
N
Π

l=1
go
±

((
Qal

pl ,jl

)nl
)

=
N
Π

l=1

(
Qal

pl ,jl±1

)nl
.

(111a)

By (111a), one can get that

G±

((
N
Π

l=1

(
Qal

pl ,jl

)nl
)∗)

= G±

(
N
Π

l=1

(
Q

a∗N−l+1
pN−l+1,jN−l+1

)nN−l+1
)

=
N
Π

l=1

((
QaN−l+1

pN−l+1,(jN−l+1)±1

)nN−l+1
)∗

=

(
N
Π

l=1

(
Qal

pl ,jl±1

)nl
)∗

=

(
G±

(
N
Π

l=1
Qnl

pl ,jl

))∗
(111b)

for all Qal
pl ,jl
∈ Ω(UA), for l = 1, ..., N, for N ∈ N.

The formula (111a) are obtained by (110) and the multiplicativity of G±. The formulas in (111b),
obtained from (111a), show that indeed G± are ∗-homomorphisms on LSA, since

G± (T∗) = (G±(T))
∗ , ∀T ∈ LSA.

By (110) and (111a),

Gn
±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
=

N
Π

l=1

(
Qal

pl ,jl±n

)nl
,

(112)

Gn
±

((
N
Π

l=1

(
Qal

pl ,jl

)nl
)∗)

=

(
Gn
±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
))∗

,

for all Qal
pl ,jl
∈ Ω(UA), for l = 1, ..., N, for N ∈ N, for all n ∈ N0.

Definition 16. We call the bounded ∗-homomorphisms Gn
± of (110), the n-(±)-integer-shifts on LSA,

for all n ∈ N0.

Based on the integer-shifting processes on LSA, one can get the following asymptotic behavior on
LSA over P .

Theorem 8. Let X a
j be a family (100) of the A-tensor sub-filterization LSA, for any j ∈ Z, where a is a fixed

self-adjoint free random variable of (A, ψ) satisfying the additional conditions (i) and (ii) above. Then, there
exists a (−j)-integer-shift G−j on LSA, such that
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G−j =

{
G|j|− = Gj

− if j ≥ 0 in Z,

G|j|+ = G−j
+ if j < 0 in Z,

(113)

and

τ0
(
Gj(T)

)
= ωnc n

2
, ∀n ∈ N, (114)

for all T ∈ X a
j , where G±j

∓ on the right-hand sides of (113) are the |j|-(∓)-integer shifts (110) on LSA, and
where τ0 = τ ◦ π is the linear functional (95) on LSA.

Proof. Let X a
j =

{
1

ψ(a)Qa
p,j : p ∈ P

}
be a family (100) of LSA, for a fixed j ∈ Z, where a fixed

self-adjoint free random variable a ∈ (A, ψ) satisfies the above additional conditions (i) and (ii).
Assume first that j ≥ 0 in Z. Then, one can take the (−j)-(−)-integer-shift Gj

− of (110) on LSA,
satisfying

Gj
−

(
Qa

p,j

)
= Qa

p,j−j = Qa
p,0 in LSA,

for all Qa
p,j ∈ Ω (UA) .

Second, if j < 0 in Z, then one can have the |j|-(+)-integer shift G−j
+ of (110) on LSA, satisfying that

G−j
+

(
Qa

p,j

)
= Qa

p,j+(−j) = Qa
p,0 in LSA,

for all Qa
p,j ∈ Ω (UA) .

For example, for any Qa
p,j ∈ Ω(UA), we have the corresponding (−j)-integer-shift G−j,

G−j =

{
Gj
− if j ≥ 0,

G−j
+ if j < 0,

on LSA in the sense of (113), such that

G−j

(
Qa

p,j

)
= Qa

p,0 in LSA,

for all p ∈ P .
Then, for any Xa

p,j =
1

ψ(a)Qa
p,j ∈ X a

j , we have that

τ0

(
G−j

((
Xa

p,j

)n))
= τ0

(
1

ψ(a)n

(
G−j(Qa

p,j)
)n)

,

since G−j is a ∗-homomorphism (113) on LSA

= τ0

(
1

ψ(an)

(
Qa

p,0

)n)
= ωnc n

2
,

by (96) and (98), for all n ∈ N. Therefore, formula (114) holds true.

By the above theorem, we obtain the following result.

Corollary 4. Let X a
j be a family (100) of the A-tensor sub-filterization LSA, for j ∈ Z, where a self-adjoint free

random variable a ∈ (A, ψ) satisfies the conditions (i) and (ii). Then, the corresponding family

Ga
j =

{
G−j (X) : X ∈ X a

j

}
(115)

has its asymptotic free distribution, the semicircular law, in LSA over P , where G−j is the (−j)-integer shift
(113) on LSA, for all j ∈ Z.

Proof. The asymptotic semicircular law induced by the family Ga
j of (115) in LSA is guaranteed by

(114) and (45), for all j ∈ Z.

By the above corollary, the following result is immediately obtained.
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Corollary 5. Let X 1A
j be in the sense of (100) in LSA, where 1A is the unity of (A, ψ), and let

G1A
j =

{
G−j(X) : X ∈ X 1A

j

}
be in the sense of (115), for all j ∈ Z. Then, the asymptotic free distributions of G1A

j are the semicircular law in
LSA over P , for all j ∈ Z.

Proof. The proof is done by Corollary 4. Indeed, the unity 1A automatically satisfies the conditions (i)
and (ii) in (A, ψ).

More general to Theorem 8, we obtain the following result too.

Theorem 9. Let a ∈ (A, ψ) be a self-adjoint free random variable satisfying the conditions (i) and (ii), and let
p0 ∈ P be an arbitrarily fixed prime. Let

Ga
j [≥ p0]

de f
=

{
G−j

(
Xp,j

) ∣∣∣∣∣ Xa
p,j ∈ X a

j and
p ≥ p0 in P

}
,

where X a
j is the family (100), and Ga

j is the family (115), for j ∈ Z. Then, the asymptotic free distribution of the
family Ga

j [≥ p0] is the semicircular law in LSA.

Proof. The proof of this theorem is similar to that of Theorem 8. One can simply replace

“p→ ∞” ≡ “ lim
n→∞

hn(2); 2 ∈ P ,”

in the proof of Theorem 8 to

“p→ ∞” ≡ “ lim
n→∞

hn(p0); p0 ∈ P ,”

where (≡) means “being symbolically same”.
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