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Abstract

:

A system of variational inclusions (GSVI) is considered in Banach spaces. An implicit iterative procedure is proposed for solving the GSVI. Strong convergence of the proposed algorithm is given.
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1. Introduction


Let X be a smooth Banach space and ∅≠C⊂X a closed convex set. Let A1,A2:C→X and M1,M2:C→2X be nonlinear mappings. In the present article, we consider the following system of variational inclusions (GSVI, for short) which aims to seek (u*,v*)∈C×C verifying


0∈ς1(A1v*+M1u*)+u*−v*,0∈ς2(A2u*+M2v*)+v*−u*,



(1)




where ς1 and ς2 are two positive constants.



Special cases: If A1=A2=A and M1=M2=M, then the relation (1) reduces to seek (u*,v*)∈C×C verifying


0∈ς1(Av*+Mu*)+u*−v*,0∈ς2(Au*+Mv*)+v*−u*.



(2)







If u*=v* in (2), then the relation (2) reduces to seek (u*,v*)∈C×C verifying


0∈Au*+Mu*.



(3)







Especially, if M=∂ϕ, where ϕ:H→R∪+∞ is a proper convex lower semi-continuous function, then we have the following mixed quasi-variational inequality


⟨Au,y−u⟩+ϕ(y)−ϕ(u)⟩≥0,∀y∈H.











Variational inequalities and variational inclusions have played vital roles in practical applications. Numerous iterative procedures for approaching variational inequalities and variational inclusions have been computed by the researchers [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].



In [4], the authors introduced an iterative procedure for approaching GSVI (1). Qin et al. [30] suggested an extragradient algorithm for solving GSVI (1), and demonstrated the strong convergence analysis of the presented algorithm. Lan et al. [28], Buong et al. [11], Zhang et al. [13] studied iterative procedures for approaching variational inclusion (3).



On the other hand, iterative computation of zeros or fixed points of nonlinear operators has been studied extensively in the literature [14,31,32,33,34,35,36]. Zhang et al. [37] introduced an iterative procedure for approaching a solution of the inclusion problem (3) and a fixed point of a nonexpansive mapping in Hilbert spaces. Peng et al. [38] presented a viscosity algorithm for finding a solution of a variational inclusion with set-valued maximal monotone mapping and inverse strongly monotone mappings, the set of solutions of an equilibrium problem and a fixed point of a nonexpansive mapping.



Motivated by the above work, in the present paper, we consider the GSVI (1) with the hierarchical variational inequality constraint for a strict pseudocontraction T in Banach spaces. We suggest an implicit iterative procedure for solving the GSVI (1) with the HVI constraint for strict pseudocontraction T. We show the strong convergence of the suggested procedure to a solution of the GSVI (1).




2. Preliminaries


Let X be a real Banach space and ∅≠C⊂X a closed convex set. A mapping f:C→C is said to be k-Lipschitz if ∥f(u)−f(v)∥≤k∥u−v∥,∀u,v∈C for some k≥0. If k<1, then f is said to be a k-contraction. If k=1, then f is said to be nonexpansive.



Recall that an operator T:C→X is called




	(i)

	
accretive if


⟨Tu−Tv,j(u−v)⟩≥0,∀u,v∈C,








where j(u−v)∈J(u−v).




	(ii)

	
α-inverse-strongly accretive if


⟨Tu−Tv,j(u−v)⟩≥α∥Tu−Tv∥2,∀u,v∈C,








where j(u−v)∈J(u−v) and α>0.




	(iii)

	
strictly pseudocontractive if


⟨Tu−Tv,j(u−v)⟩≤∥u−v∥2−β∥u−v−(Tu−Tv)∥2,∀u,v∈C,








where j(u−v)∈J(u−v) and β>0.









If X is q-uniformly smooth with 1<q≤2, then


∥u+v∥q+∥u−v∥q≤2(∥u∥q+∥cv∥q),∀u,v∈X,








where c>0 is some constant.



Proposition 1

([32]). In a smooth and uniformly convex Banach space X, for all u,v∈Br={u∈X:∥u∥≤r}, there holds


g(∥u−v∥)≤∥u∥2−2⟨u,j(v)⟩+∥v∥2,








where g:[0,2r]→R is a strictly increasing, continuous, and convex function satisfying g(0)=0.





Proposition 2

([35]). In a 2-uniformly smooth Banach space X, there holds


∥u+v∥2≤∥u∥2+2⟨v,j(u)⟩+2∥cv∥2,∀u,v∈X.













Let D⊂C and Π:C→D be an operator. If Π[(1−s)Π(u)+su]=Π(u), whenever (1−s)Π(u)+su∈C for u∈C and s≥0, we call Π is sunny.



Proposition 3

([26]). Let X be a smooth Banach space and ∅≠C⊂X a closed convex set. Let ∅≠D⊂C be a set and Π:C→D be a retraction. Then the following conclusions are equivalent:




	(i) 

	
⟨Π(u)−u,j(v−Π(u))⟩≥0,∀u∈C and ∀v∈D;




	(ii) 

	
∥Π(u)−Π(v)∥2≤⟨u−v,j(Π(u)−Π(v))⟩,∀u,v∈C;




	(iii) 

	
Π is sunny nonexpansive operator.











If an accretive operator M satisfies R(I+rM)=X for each r>0, then M is said to be m-accretive. Assume that an accretive M satisfies the range condition D(M)¯⊂R(I+rM). Define the resolvent JrM:R(I+rM)→D(M) of M by JrM=(I+rM)−1. Note that JrM is nonexpansive and F(JrM)=M−10={x∈D(M):0∈Mx} [31]. If M−10≠∅, then the inclusion 0∈Mx is solvable.



Lemma 1.

Let X be a smooth Banach space and ∅≠C⊂X a closed convex set. Let M:C→2X be an m-accretive operator. Then, for any given r>0,


∥JrMx−JrMy∥2≤⟨x−y,j(JrMx−JrMy)⟩,∀x,y∈X.











This means that JrM:X→C is nonexpansive.





Proof. 

Put u=JrMx and v=JrMy. Then we have x∈(I+rM)u and y∈(I+rM)v. Hence, there exist u˜∈Mu and v˜∈Mv such that x=u+ru˜ and y=v+rv˜. Utilizing the accretiveness of M, we obtain


⟨x−y,j(JrMx−JrMy)⟩=⟨u+ru˜−(v+rv˜),j(u−v)⟩=⟨u−v,j(u−v)⟩+r⟨u˜−v˜,j(u−v)⟩=∥u−v∥2+r⟨u˜−v˜,j(u−v)⟩≥∥u−v∥2=∥JrMx−JrMy∥2.








 □





Lemma 2.

Let M1,M2:C→2X be two m-accretive operators and A1,A2:C→X be two operators. (x*,y*) is a solution of the GSVI (1) iff Qx*=Jς1M1(I−ς1A1)Jς2M2(I−ς2A2)x*, where y*=Jς2M2(I−ς2A2)x*.





Proof. 

Observe that


0∈x*−y*+ς1(A1y*+M1x*)0∈y*−x*+ς2(A2x*+M2y*)⇔x*=Jς1M1(I−ς1A1)y*,y*=Jς2M2(I−ς2A2)x*⇔x*=Qx*.








 □





Lemma 3

([3]). Let X be a strictly convex Banach space and ∅≠C⊂X a closed convex set. Let μ∈(0,1) be a constant. Define an operator S:C→X by Sx=μT1x+(1−μ)T2x,∀x∈C, where T1,T2:C→X be two nonexpansive mappings with F(T1)∩F(T2)≠∅. Then S is nonexpansive and F(S)=F(T1)∩F(T2).





Lemma 4

([3]). Let X be a 2-uniformly smooth Banach space and ∅≠C⊂X a closed convex set. If the operator A:C→X is α-inverse-strongly accretive, then


∥(I−ζA)u−(I−ζA)v∥2≤∥u−v∥2+2ζ(c2ζ−α)∥Au−Av∥2,∀u,v∈C.













Lemma 5

([3]). Let X be a 2-uniformly smooth Banach space and ∅≠C⊂X a closed convex set. Let M1,M2:C→2X be two m-accretive operators and Ai:C→X(i=1,2) be ζi-inverse-strongly accretive operator. Define an operator Q:C→C by Q:=Jς1M1(I−ς1A1)Jς2M2(I−ς2A2). If 0≤ςi≤ζic2(i=1,2), then Q:C→C is nonexpansive.





Lemma 6

([36]). Let X be a uniformly smooth Banach space and ∅≠C⊂X a closed convex set. Let A:C→C be a nonexpansive mapping with F(A)≠∅, and f:C→X be a contraction. Let t∈(0,1). Define a net zt by zt=tf(zt)+(1−t)Azt. Then zt→x*∈F(A) and


⟨(I−f)x*,j(x*−x)⟩≤0,∀x∈F(A).













Lemma 7

([36]). Assume the sequence {an}⊂[0,∞) satisfies an+1≤(1−λn)an+λnσn(∀n≥0), where the sequences {λn}⊂(0,1) and {σn} satisfy




	(i) 

	
∑n=0∞λn=∞;




	(ii) 

	
either ∑n=0∞|λnσn|<∞ or lim supn→∞σn≤0.









Then limn→∞an=0.





Lemma 8

([33]). Let X be a 2-uniformly smooth Banach space and ∅≠C⊂X a closed convex set. Let T:C→C be a λ-strict pseudocontraction. Define an operator Tα by Tαx=(1−α)x+αTx,α∈(0,1). Then, Tα:C→C is nonexpansive with F(Tα)=F(T) provided α∈(0,λc2].






3. Main Results


Theorem 1.

Let X be a uniformly convex and 2-uniformly smooth Banach space and ∅≠C⊂X a closed convex set. Let M1,M2:C→2X be two m-accretive operators and Ai:C→X(i=1,2) be ζi-inverse-strongly accretive operator. Let f:C→C be a contraction with coefficient k∈[0,1). Let V:C→C be a nonexpansive operator and T:C→C be a λ-strict pseudocontraction with Ω:=F(T)∩F(Q)≠∅, where the operator Q is defined as in Lemma 5. Assume that the sequences {αn}⊂(0,1),{βn}⊂(0,1), {δn}⊂(0,1) and {γn}⊂(0,1) satisfy




	(i) 

	
αn+δn+βn+γn=1(∀n≥1);




	(ii) 

	
αn→0 and βnαn→0;




	(iii) 

	
γn→1;




	(iv) 

	
∑n=1∞αn=∞.









Given x0∈C, compute the sequences {xn} and {yn} such that


yn=Jς2M2(xn−ς2A2xn),xn=αnf(xn−1)+δnxn−1+βnVxn−1+γn[μSxn+(1−μ)Jς1M1(yn−ς1A1yn)],∀n≥1,



(4)




where Sx=(1−α)x+αTx,∀x∈C with 0<α<min{1,λc2} and μ∈(0,1). Then xn→x*, yn→y* and




	(a) 

	
(x*,y*) solves the GSVI (1);




	(b) 

	
x* solves the variational inequality: ⟨(I−f)x*,j(u−x*)⟩≥0,∀u∈Ω.











Proof. 

By Lemmas 5 and 8, Q and S are nonexpansive and F(S)=F(T). Put A:=μS+(1−μ)Q with μ∈(0,1). It is easy to see that the implicit iterative scheme (4) can be rewritten as


xn=αnf(xn−1)+δnxn−1+βnVxn−1+γnAxn,∀n≥1.



(5)







Consider the mapping Fnu=αnf(xn−1)+δnxn−1+βnVxn−1+γnAu,∀u∈C. According to Lemma 3, we have


∥Fnu−Fnv∥=γn∥Au−Av∥≤γn∥u−v∥,∀u,v∈C.











Hence Fn is a contraction. Thus, (5) and hence (4) are all well-posed.



Let u†∈Ω. Thus, Tu†=u† and Qu†=u†. It is clear that


xn−u†=αnf(xn−1)+δnxn−1+βnVxn−1+γnAxn−u†=αn(f(xn−1)−u†)+δn(xn−1−u†)+βn(Vxn−1−u†)+γn(Axn−u†).











By Lemma 3, we get


∥xn−u†∥≤αn∥f(xn−1)−u†∥+δn∥xn−1−u†∥+βn∥Vxn−1−u†∥+γn∥Axn−u†∥≤αn(∥f(xn−1)−f(u†)∥+∥f(u†)−u†∥)+δn∥xn−1−u†∥+βn(∥Vxn−1−Vu†∥+∥Vu†−u†∥)+γn∥xn−u†∥≤αn(k∥xn−1−u†∥+∥f(u†)−u†∥)+δn∥xn−1−u†∥+βn(∥xn−1−u†∥+∥Vu†−u†∥)+γn∥xn−u†∥=αn∥f(u†)−u†∥+(1−(1−k)αn−γn)∥xn−1−u†∥+βn∥Vu†−u†∥+γn∥xn−u†∥.











By condition (ii), without loss of generality, we assume that βn≤αn for all n≥1. Hence,


∥xn−u†∥≤[1−(1−k)αn1−γn]∥xn−1−u†∥+αn1−γn∥f(u†)−u†∥+βn1−γn∥Vu†−u†∥≤[1−(1−k)αn1−γn]∥xn−1−u†∥+αn1−γn∥f(u†)−u†∥+αn1−γn∥Vu†−u†∥=[1−(1−k)αn1−γn]∥xn−1−u†∥+αn1−γn(∥f(u†)−u†∥+∥Vu†−u†∥)≤max{∥xn−1−u†∥,(∥f(u†)−u†∥+∥Vu†−u†∥)/(1−k)}.



(6)







Thus, {xn}, {Txn},{Sxn},{yn},{Qxn} and {Axn} are all bounded.



Set q=Jς2M2(u†−ς2A2u†) and zn=Jς1M1(yn−ς1A1yn). Then zn=Qxn,∀n≥1. By virtue of Lemma 4, we get


∥yn−q∥2=∥Jς2M2(xn−ς2A2xn)−Jς2M2(u†−ς2A2u†)∥2≤∥xn−u†−ς2(A2xn−A2u†)∥2≤∥xn−u†∥2−2ς2(ζ2−c2ς2)∥A2xn−A2u†∥2,



(7)




and


∥zn−u†∥2=∥Jς1M1(yn−ς1A1yn)−Jς1M1(q−ς1A1q)∥2≤∥yn−q−ς1(A1yn−A1q)∥2≤∥yn−q∥2−2ς1(ζ1−c2ς1)∥A1yn−A1q∥2.



(8)







Substituting (7) for (8), we derive


∥zn−u†∥2≤∥xn−u†∥2−2ς2(ζ2−c2ς2)∥A2xn−A2u†∥2−2ς1(ζ1−c2ς1)∥A1yn−A1q∥2.



(9)







In view of (5) and (9), we obtain


∥xn−u†∥2=αn⟨f(xn−1)−u†,j(xn−u†)⟩+δn⟨xn−1−u†,j(xn−u†)⟩+βn⟨Vxn−1−u†,j(xn−u†)⟩+γn⟨(1−μ)Sxn+μzn−u†,j(xn−u†)⟩≤αn⟨f(xn−1)−u†,j(xn−u†)⟩+δn∥xn−1−u†∥∥xn−u†∥+βn∥Vxn−1−u†∥∥xn−u†∥+γn∥(1−μ)Sxn+μzn−u†∥∥xn−u†∥≤δn∥xn−1−u†∥∥xn−u†∥+γn[(1−μ)∥xn−u†∥+μ∥zn−u†∥]∥xn−u†∥+αn[⟨f(xn−1)−f(u†),j(xn−u†)⟩+⟨f(u†)−u†,j(xn−u†)⟩]+βn(∥Vxn−1−Vu†∥+∥Vu†−u†∥)∥xn−u†∥≤δn∥xn−1−u†∥∥xn−u†∥+γn[(1−μ)∥xn−u†∥+μ∥zn−u†∥]∥xn−u†∥+αn[k∥xn−1−u†∥∥xn−u†∥+⟨f(u†)−u†,j(xn−u†)⟩]+βn(∥xn−1−u†∥+∥Vu†−u†∥)∥xn−u†∥≤αn⟨f(u†)−u†,j(xn−u†)⟩+[1−(1−k)αn−γn]/2(∥xn−1−u†∥2+∥xn−u†∥2)+βn∥Vu†−u†∥∥xn−u†∥+γn∥xn−u†∥2−γnμ[ς2(ζ2−c2ς2)∥A2xn−A2u†∥2+ς1(ζ1−c2ς1)∥A1yn−A1q∥2].



(10)







It follows that


γnμ[ς2(ζ2−c2ς2)∥A2xn−A2u†∥2+ς1(ζ1−c2ς1)∥A1yn−A1q∥2]≤[1−(1−k)αn−γn]/2(∥xn−1−u†∥2+∥xn−u†∥2)+αn⟨f(u†)−u†,j(xn−u†)⟩+βn∥Vu†−u†∥∥xn−u†∥−(1−γn)∥xn−u†∥2≤αn∥f(u†)−u†∥∥xn−u†∥+[1−(1−k)αn−γn]/2(∥xn−1−u†∥2+∥xn−u†∥2)+βn∥Vu†−u†∥∥xn−u†∥.











By the assumptions (ii) and (iii), we conclude


limn→∞∥A2xn−A2u†∥=0andlimn→∞∥A1yn−A1q∥=0.



(11)







Utilizing Lemma 1 and Proposition 1, we have


∥yn−q∥2=∥Jς2M2(xn−ς2A2xn)−Jς2M2(u†−ς2A2u†)∥2≤⟨(xn−ς2A2xn)−(u†−ς2A2u†),j(yn−q)⟩=⟨xn−u†,j(yn−q)⟩+ς2⟨A2u†−A2xn,j(yn−q)⟩≤[∥xn−u†∥2+∥yn−u†∥2−g1(∥xn−yn−(u†−q)∥)]/2+ς2∥A2u†−A2xn∥∥yn−q∥.











It follows that


∥yn−q∥2≤∥xn−u†∥2−g1(∥xn−yn−(u†−q)∥)+2ς2∥A2u†−A2xn∥∥yn−q∥.



(12)







Similarly,


∥zn−u†∥2=∥Jς1M1(yn−ς1A1yn)−Jς1M1(q−ς1A1q)∥2≤⟨(yn−ς1A1yn)−(q−ς1A1q),j(zn−u†)⟩=⟨yn−q,j(zn−q)⟩+ς1⟨A1q−A1yn,j(zn−u†)⟩≤12[∥yn−q∥2+∥zn−u†∥2−g2(∥yn−zn+(u†−q)∥)]+ς1∥A1q−A1yn∥∥zn−u†∥,








which implies that


∥zn−u†∥2≤∥yn−q∥2−g2(∥yn−zn+(u†−q)∥)+2ς1∥A1q−A1yn∥∥zn−u†∥.



(13)







Substituting (12) for (13), we get


∥zn−u†∥2≤∥xn−u†∥2−g1(∥xn−yn−(u†−q)∥)−g2(∥yn−zn+(u†−q)∥)+2ς2∥A2u†−A2xn∥∥yn−q∥+2ς1∥A1q−A1yn∥∥zn−u†∥.



(14)







From (10) and (14), we have


∥xn−u†∥2≤αn⟨f(u†)−u†,j(xn−u†)⟩+[1−(1−k)αn−γn](∥xn−1−u†∥2+∥xn−u†∥2)/2+βn∥Vu†−u†∥∥xn−u†∥+γn(∥xn−u†∥2+(1−μ)∥xn−u†∥2+μ∥zn−u†∥2)/2≤αn⟨f(u†)−u†,j(xn−u†)⟩+[1−(1−k)αn−γn](∥xn−1−u†∥2+∥xn−u†∥2)/2+βn∥Vu†−u†∥∥xn−u†∥+γn∥xn−u†∥2−γnμ2[g1(∥xn−yn−(u†−q)∥)+g2(∥yn−zn+(u†−q)∥)]+γnμ(ς2∥A2u†−A2xn∥∥yn−q∥+ς1∥A1q−A1yn∥∥zn−u†∥).











It follows that


γnμ2[g1(∥xn−yn−(u†−q)∥)+g2(∥yn−zn+(u†−q)∥)]≤αn⟨f(u†)−u†,j(xn−u†)⟩+[1−(1−k)αn−γn](∥xn−1−u†∥2+∥xn−u†∥2)/2+βn∥Vu†−u†∥∥xn−u†∥−(1−γn)∥xn−u†∥2+γnμ(ς2∥A2u†−A2xn∥∥yn−q∥+ς1∥A1q−A1yn∥∥zn−u†∥)≤αn∥f(u†)−u†∥∥xn−u†∥+[1−(1−k)αn−γn](∥xn−1−u†∥2+∥xn−u†∥2)/2+βn∥Vu†−u†∥∥xn−u†∥+ς2∥A2u†−A2xn∥∥yn−q∥+ς1∥A1q−A1yn∥∥zn−u†∥.











This together with conditions (ii) and (iii) implies that


limn→∞g1(∥xn−yn−(u†−q)∥)=0andlimn→∞g2(∥yn−zn+(u†−q)∥)=0.











Hence,


limn→∞∥xn−yn−(u†−q)∥=0andlimn→∞∥yn−zn+(u†−q)∥=0.



(15)







In light of (15), we have


∥xn−zn∥≤∥xn−yn−(u†−q)∥+∥yn−zn+(u†−q)∥→0,








which means that


limn→∞∥xn−Qxn∥=0.



(16)







Note that


γn∥xn−Axn∥=∥αn(f(xn−1)−xn)+δn(xn−1−xn)+βn(Vxn−1−xn)∥≤αn∥f(xn−1)−xn∥+δn∥xn−1−xn∥+βn∥Vxn−1−xn∥.











Thus,


limn→∞∥xn−Axn∥=0.



(17)







Also, observe that


μ∥Sxn−xn∥=∥Axn−xn−(1−μ)(Qxn−xn)∥≤∥Axn−xn∥+∥Qxn−xn∥.











In terms of (16) and (17), we obtain


limn→∞∥xn−Sxn∥=0.



(18)







Since S=(1−α)I+αT with 0<α<min{1,λc2}, it is easy from (3.15) that


limn→∞∥xn−Txn∥=0.











Define a net {ut} by ut=(1−t)Aut+tf(ut). So,


ut−xn=t(f(ut)−xn)+(1−t)(Aut−xn).



(19)







It follows that


∥ut−xn∥2≤2t⟨f(ut)−xn,j(ut−xn)⟩+(1−t)2∥Aut−xn∥2≤2t⟨f(ut)−xn,j(ut−xn)⟩+(1−t)2[∥Aut−Axn∥+∥Axn−xn∥]2≤2t⟨f(ut)−xn,j(ut−xn)⟩+(1−t)2[∥ut−xn∥+∥Axn−xn∥]2=(1−t)2[∥ut−xn∥2+∥Axn−xn∥2+2∥ut−xn∥∥Axn−xn∥]+2t⟨f(ut)−xn,j(ut−xn)⟩,








that is,


∥ut−xn∥2≤∥Axn−xn∥(2∥ut−xn∥+∥Axn−xn∥)+2t∥ut−xn∥2+2t⟨f(ut)−ut,j(ut−xn)⟩+(1−t)2∥ut−xn∥2=(1+t2)∥ut−xn∥2+2t⟨f(ut)−ut,j(ut−xn)⟩+∥Axn−xn∥(2∥ut−xn∥+∥Axn−xn∥).











It follows that


⟨ut−f(ut),j(ut−xn)⟩≤t2∥ut−xn∥2+12t(2∥ut−xn∥+∥Axn−xn∥)∥Axn−xn∥.



(20)







Letting n→∞ in (20), from (17), we have


limn→∞¯⟨ut−f(ut),j(ut−xn)⟩≤tM02



(21)




where M0 is a constant such that ∥ut−xn∥2≤M0,∀n≥0,∀t∈(0,1). By Lemma 6, ut→x*∈Ω, which solves ⟨(I−f)x*,j(x*−x)⟩≤0,∀x∈Ω. Letting t→0+ in (21), we deduce


limn→∞¯⟨x*−f(x*),j(x*−xn)⟩≤0.











Putting u†=x* in (10), we obtain


∥xn−x*∥2≤αn⟨f(x*)−x*,j(xn−x*)⟩+[1−(1−k)αn−γn](∥xn−1−x*∥2+∥xn−x*∥2)/2+βn∥Vx*−x*∥∥xn−x*∥+γn∥xn−x*∥2.











Consequently, we have


∥xn−x*∥2≤2αn1+(1−k)αn−γn⟨f(x*)−x*,j(xn−x*)⟩+1−(1−k)αn−γn1+(1−k)αn−γn∥xn−1−x*∥2+2βn1+(1−k)αn−γn∥Vx*−x*∥∥xn−x*∥=(1−υn)∥xn−1−x*∥2+υnϱn,



(22)




where υn=2(1−k)αn1+(1−k)αn−γn and


ϱn=βn(1−k)αn∥Vx*−x*∥∥xn−x*∥+11−k⟨f(x*)−x*,j(xn−x*)⟩.











Now, observe that


(1−k)αn=2(1−k)αn2≤2(1−k)αn1−γn+(1−k)αn=υn.











Observe that limn→∞¯ϱn≤0. With the help of Lemma 7, we get xn→x*. Moreover, putting u†=x* and q=y*=Jς2M2(I−ς2A2)x* in (15), we obtain


limn→∞∥xn−yn−(x*−y*)∥=0.











Note that


∥yn−y*∥≤∥xn−yn−(x*−y*)∥+∥x*−xn∥.











So, it follows that yn→y* as n→∞. Consequently, (x*,y*) is a solution of (1) by Lemma 2. □





Corollary 1.

Let X be a uniformly convex and 2-uniformly smooth Banach space and ∅≠C⊂X a closed convex set. Let M:C→2X be an m-accretive operator and A:C→X be a ζ-inverse-strongly accretive operator. Let f:C→C be a contraction with coefficient k∈[0,1). Let V:C→C be a nonexpansive operator and T:C→C be a λ-strict pseudocontraction with Ω:=F(T)∩F(Q)≠∅, where the operator Q=Jς1M(I−ς1A)Jς2M(I−ς2A) and 0<ςi<ζc2(i=1,2). Assume that the sequences {αn}⊂(0,1),{βn}⊂(0,1) and {γn}⊂(0,1) satisfy




	(i) 

	
αn+δn+βn+γn=1(∀n≥1);




	(ii) 

	
αn→0 and βnαn→0;




	(iii) 

	
γn→1;




	(iv) 

	
∑n=1∞αn=∞.









Given x0∈C, compute the sequences {xn} and {yn} such that


yn=Jς2M(xn−ς2Axn),xn=δnxn−1+αnf(xn−1)+βnVxn−1+γn[μSxn+(1−μ)Jς1M(yn−ς1Ayn)],∀n≥1,








where Sx=(1−α)x+αTx,∀x∈C with 0<α<min{1,λc2} and μ∈(0,1). Then xn→x*, yn→y* and




	(a) 

	
(x*,y*) solves the GSVI (2);




	(b) 

	
x* solves the variational inequality: ⟨(I−f)x*,j(u−x*)⟩≥0,∀u∈Ω.











Corollary 2.

Let H be a Hilbert space and ∅≠C⊂H a closed convex set. Let M:C→2H be a maximal monotone operator and A:C→H be a ζ-inverse-strongly monotone operator. Let f:C→C be a contraction with coefficient k∈[0,1). Let V:C→C be a nonexpansive operator and T:C→C be a λ-strict pseudocontraction with Ω:=F(T)∩F(Q)≠∅, where the operator Q=Jς1M(I−ς1A)Jς2M(I−ς2A) and 0<ςi<ζc2(i=1,2). Assume that the sequences {αn}⊂(0,1),{βn}⊂(0,1) and {γn}⊂(0,1) satisfy




	(i) 

	
αn+δn+βn+γn=1(∀n≥1);




	(ii) 

	
αn→0 and βnαn→0;




	(iii) 

	
γn→1;




	(iv) 

	
∑n=1∞αn=∞.









Given x0∈C, compute the sequences {xn} and {yn} such that


yn=Jς2M(xn−ς2Axn),xn=δnxn−1+αnf(xn−1)+βnVxn−1+γn[μSxn+(1−μ)Jς1M(yn−ς1Ayn)],∀n≥1,








where Sx=(1−α)x+αTx,∀x∈C with 0<α<min{1,λc2} and μ∈(0,1). Then xn→x*, yn→y* and




	(a) 

	
(x*,y*) solves the GSVI (2);




	(b) 

	
x* solves the variational inequality: ⟨(I−f)x*,j(u−x*)⟩≥0,∀u∈Ω.












4. Conclusions


In this paper, we consider the GSVI (1) with the hierarchical variational inequality (HVI) constraint for a strict pseudocontraction in a uniformly convex and 2-uniformly smooth Banach space. By utilizing the equivalence between the GSVI (1) and the fixed point problem, we construct an implicit composite viscosity approximation method for solving the GSVI (1) with the HVI constraint for strict pseudocontractions. We prove the strong convergence of the proposed algorithm to a solution of the GSVI (1) with the HVI constraint for strict pseudocontraction under very mild conditions. Note that our algorithm (4) is an implicit manner. This brings us a natural question: could we construct an explicit algorithm with strong convergence?
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