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Abstract: We demonstrate that when there is spontaneous symmetry breaking in any system,
relativistic or non-relativistic, the dynamic of the Nambu-Goldstone bosons is governed by the Quantum
Yang-Baxter equations. These equations describe the triangular dynamical relations between pairs of
Nambu-Goldstone bosons and the degenerate vacuum. We then formulate a theorem and a corollary
showing that these relations guarantee the appropriate dispersion relation and the appropriate counting
for the Nambu-Goldstone bosons.
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1. Introduction

The Spontaneous Symmetry Breaking (SSB) phenomena was formulated by Nambu [1,2], who,
inspired by the theory of superconductivity proposed by Bardeen et al. [3], started to explore the apparent
violations of gauge invariance on the model. A related problem was the formulation of quasiparticles
inside the Bardeen-Cooper-Schrieffer (BCS) theory done by Valantin and Bogoliubov [4,5]. In such a case,
the quasiparticles did not carry a definite charge since they were a combination of electron and hole [6–8].
Nambu then found that the problem is solved after introducing mass-less collective modes, today known
as Nambu-Goldstone (NG) bosons. Then, the principle of SSB emerged as a universal phenomena. It was
applied for first time in particle physics for explaining the chiral symmetry breaking and the mass generation
for nucleons [1,9]. It helped in the formulation of the Higgs mechanism in particle physics [10–13], which
provided the possibility of doing the electroweak unification [14,15]. The original formulation of the NG
theorem says that the number of Nambu-Goldstone bosons (NNG) is equal to the number of broken
generators (NBG). In addition, in ordinary situations, the Nambu-Goldstone bosons have a linear
dispersion relation, which is the case for mass-less particles. In some circumstances however, there
is a mismatch between NNG and NBG as well as an unusual behavior for the dispersion relations for
the Nambu-Goldstone bosons [16–21]. The problem of counting Nambu-Goldstone bosons as well as
the understanding of the dispersion relations is not new and has been analyzed in the past. A solution
was suggested by Nielsen and Chadha in [16] and Nambu himself had already done some formulations
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explaining the apparent discrepancy between number of broken symmetries of the system and the number
of Nambu-Goldstone bosons [17]. One interesting formulation was the one proposed by Watanabe,
Brauner and Murayama in [18]. Analysis of the Higgs mechanism under these special circumstances
was done in [22,23]. Other interesting approximations to this problem have been done in [24], where a
relation between the Nambu-Goldstone boson and the order parameter was proposed. All these previous
approaches were able to explain some rules for the counting of Nambu-Goldstone bosons as well as for the
dispersion relations. Some of the explanations related to this behavior were centered in the redundancies of
the broken generators or on the order of the derivative terms in the effective action [18–21]—fundamental
relations, explaining in a simplified way the dynamic of the Nambu-Goldstone bosons in different
situations where the discrepancies appear were not formulated. In this paper, we find that surprisingly the
Quantum Yang-Baxter equations (QYBE), in the same standard way as they are formulated in [25–30],
describe the appropriate dynamic of pairs of Nambu-Goldstone bosons. This surprising and unexpected
connection can be summarized in a theorem and a corollary based on the number of independent histories
(Yang-Baxter triangles) describing the interaction of a pair of Nambu-Goldstone bosons. In the most
general situations, if we have a pair of Nambu-Goldstone bosons (n and n′) interacting along some region
of the degenerate vacuum, we can define two independent histories related to each other under the
exchange of particles (n → n′). If the two histories are equivalent, having then only one independent
history, then n = n′ and we have a single degree of freedom with quadratic dispersion relation. If the
two histories remain independent, then we have two degrees of freedom (one for each Nambu-Goldstone
boson) and the dispersion relation is linear. Surprisingly, the QYBE generate the necessary constraints
which help us to obtain in a natural way the correct dispersion relations. The theorem described in this
paper is formulated in terms of operators (R-matrices), suggesting that, if, for the product of three matrices
formed by (1) the Nambu-Goldstone field, (2) the pair of matrices corresponding to the broken generators;
satisfy the QYBE after summing over the degenerate vacuum, then the appropriate dispersion relation for
the Nambu-Goldstone bosons is obtained naturally. The proposed triangular relation, based on the sum of
histories, automatically solves the problem of counting (NNG 6= NBG). The ordinary approach suggests
that, when the symmetry is spontaneously broken, one vacuum among many is selected arbitrarily due
to small fluctuations in the thermodynamic limit. On the other hand, in the formulation done in this
paper, the application of the QYBE requires the sum over all the possible vacuums. Here, we make the
mathematical justification about the sum carried out over the degenerate vacuum, even if each vacuum
represents in principle a different Hilbert space in the thermodynamic limit. Besides this, we will have as
many different vacuums as there are independent broken generators. The reason for this coincidence is
the fact that the action of a broken generator over any vacuum is to rotate (change) it toward a different
one. In different vacuums, we will have different vacuum expectation values of the order parameter.
The bi-linear character of the R-matrices makes the arguments formulated in this paper ideal for them
to be adapted to physical systems involving quark–antiquark and quark–quark interactions as the ones
analyzed in [31]. In the same way, the formulation done in this paper is relevant for situations where we
have a bi-linear object as an order parameter. This is the case of the chiral condensation analyzed in [32,33].
The paper is organized as follows: in Section 2, we explain the spontaneous symmetry breaking phenomena
by using the linear σ-model. In Section 3, we explain the Quantum Yang-Baxter Equations (QYBEs) and we
explain the relation between the broken generators and the order parameter based on the same relations.
In Section 4, we analyze in detail the connection between the spontaneous symmetry breaking condition
and the QYBE. In Section 5, we briefly analyze how we can infer the number of Nambu-Goldstone bosons
in a system by just looking at the rank of the R-matrices. In Section 6, we formulate a theorem with its
corollary connecting the R-matrices with the number of Nambu-Goldstone bosons and the dispersion
relations. We also justify in this section the sum over the degenerate vacuum which makes the Yang-Baxter
formulation valid. Finally, in Section 7, we conclude.
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2. Spontaneous Symmetry Breaking: The Linear σ Model

Here, we consider the the linear σ-model as an example of a system where the spontaneous symmetry
breaking phenomena appears. Having N scalar fields defined by φi(x), we can define a Lagrangian

£ =
1
2
(∂µφi)2 +

1
2

µ2(φi)2 − λ

4
[(φi)2]2, (1)

which is invariant under the following transformation

φi → Rijφj. (2)

This transformation is just a representation of the O(N) group, namely, the group of orthogonal
matrices in N dimensions. The potential of the Lagrangian (1) is given by

V(φi) = −1
2

µ2(φi)2 +
λ

4
[(φi)2]2. (3)

This potential has a minimum when

(φi
0)

2 =
µ2

λ
. (4)

From this previous condition, we can determine the magnitude of φi
0 but not its direction. Then,

the direction is in principle arbitrary and the vacuum is in this case degenerate as it is shown in the Figure 1.
We can select some arbitrary direction; for example, we can select φi

0 as

φi
0 = (0, 0, ..., 0, v), (5)

with v = µ/
√

λ. If we re-define the vacuum in agreement with the shift

φ(x) = (πk(x), v + σ(x)), (6)

with k = 1, ..., N − 1. The Lagrangian in terms of the fields πk(x) ans σ(x) becomes

£ =
1
2
(∂µπk)2 +

1
2
(∂µσ)2 − 1

2
(2µ2)σ2 −

√
λµσ3 −

√
λµ(πk)2σ− λ

4
σ4 − λ

2
(πk)2σ2 − λ

4
[(πk)2]2. (7)

This Lagrangian clearly contains N − 1 massless πk-fields and one massive field σ. The massless
fields move along the bottom of the potential in the Figure 1, which represents a degenerate vacuum. Then,
there are N − 1 broken generators and they correspond to the Nambu-Goldstone bosons in agreement
with the standard formulation. Here, we will explain how this result comes out.
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Figure 1. The potential for the spontaneous breaking of symmetry of the O(N) symmetry, for the case of
N = 2. Taken from [33].

2.1. The Nambu-Goldstone Theorem: Standard Counting Rule

We have seen in the previous explanations that the σ-model provides a basic example of spontaneous
symmetry breaking where the symmetry O(N) is broken and then the symmetry O(N − 1) remains after
selecting some arbitrary vacuum. In general, the previously defined potential V(φi) can be expanded
around the minimum as

V(φ) = V(φ0) +
1
2
(φ− φ0)

a(φ− φ0)
b
(

∂2

∂φa∂φb V
)

φ0

+ ...., (8)

where ∂V/∂φa = 0. The mass matrix for the modes is symmetric and given by the coefficient

(
∂2

∂φa∂φb V
)

φ0

= m2
ab ≥ 0. (9)

This previous condition is a consequence of the fact that φ0 represents a minimum. At this point,
we will assume that the full action given by

£ = (kinetic terms)−V(φ) (10)

is invariant under the the action of the group G = O(N). In addition, we assume that the selected vacuum
state is invariant under the action of a subgroup of G, given by H = O(N − 1). In such a case, in general
circumstances, the vacuum state is not invariant under the action of the full group G. In summary, we have
the following conditions:

G : φa′
0 = U(g)φa

0 6= φa
0, (11)

H : φa′
0 = U(h)φa

0 = φa
0, (12)

where U(g) and U(h) denote the representations of the groups G and H, respectively. However,
the potential V(φ) is still invariant under the action of the full group G. The action of this group on
the potential expansion (8) gives the result

Ta(φ)
∂

∂φa V(φ) = 0, (13)
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where Ta(φ) is the generator of the group transformation. In the U(g) representation, for example, it would
take the form

U(g) = eTaα ≈ Î + αTa → U(h)φa
0 = φa

0 + αTa(φ0), (14)

where Ta(φ) denotes the action of the operator Ta on the function state φ. If we introduce the result (13)
inside the expansion (8), then we get the condition

Ta(φ0)Tb(φ0)
∂2

∂φa∂φb V(φ) = Ta(φ0)Tb(φ0)m2
ab = 0. (15)

Note that, if Ta(φ0) = 0, namely, when the vacuum state selected is invariant under the action of
the the group, then the corresponding mass component mab is not necessarily zero. On the other hand,
when the symmetry generator is broken, namely, when the group element belonging to G does not leave
the vacuum invariant, then Ta(φ0) 6= 0 and then the mass components related to this condition are
necessarily zero (mab = 0). Then, the number of broken generators are clearly related to the existence of
gapless particles. In standard conditions, and for internal symmetries, the number of broken generators
is equivalent to the number of Nambu-Goldstone bosons with linear dispersion relation [33]. A linear
dispersion relation is what we expect from massless particles.

2.2. Charge Conservation

We can define the conserved charge from the Lagrangian £ as

ja
µ(x) =

∂£
∂(∂µφ)

δφ(x)
δαa , (16)

where δφ(x)/δα corresponds to the field variations under symmetry transformations of the Lagrangian.
The previously defined current is divergence-less and the corresponding charges are given by

Qa(x) =
∫

d3xja
0(x). (17)

In the standard cases, these charges are conserved, dQa/dt = 0, and they have a well defined
commutation relations given by

[Qa, Qb] = CabcQc, (18)

where Cabc are the structure constants of the Lie algebra. We can define a unitary operator with the charge
being the generator of the group transformations

U = eiQaαa
. (19)

If the vacuum is non-degenerate, then the previously defined charge annihilates the vacuum, namely,
U|0 >= |0 >, or equivalently

Qa|0 >= 0. (20)

When the vacuum is degenerate, then these previous conditions are not satisfied and in general

U 6= eiQaαa
, Qa|0 > 6= 0. (21)

If the operator φ(x) is not a singlet, then its commutation with the charge Qa is non-zero and given by

[Qa, φ′(x)] v φ(x). (22)
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Later, we will see that the right-hand side will come out to be the order parameter of the system.
When the symmetry is spontaneously broken, then the vacuum expectation value of the order parameter
does not vanish for an arbitrarily selected vacuum. Then, the result (22) gives

< 0|Qaφ′(x)− φ′(x)Qa|0 > 6= 0. (23)

If we introduce the definition of charge given in Equation (17), then we get

∑
n

∫
d3y

[
< 0|ja

0(y)|n >< n|φ′(x)|0 > − < 0|φ′(x)|n >< n|ja
0(y)|0 >

]
x0=y0 6= 0, (24)

where the equal-time condition has been imposed. Under spacetime translational invariance, this previous
expression finally becomes

(2π)3 ∑n δ(3)(~pn)
[
< 0|ja

0(0)|n >< n|φ′(x)|0 > eiMny0− < 0|φ′(x)|n >< n|ja
0(0)|0 > e−iMny0

]
x0=y0

, (25)

which must be different from zero. Note that p0
n = Mn and the spatial integrals were evaluated, obtaining in

this way the delta-Diracs. The current conservation guarantees that the previous expression is independent
of y0. Then, it is trivial to observe that Mn = 0 and this proves the Nambu-Goldstone theorem because the
particles are gapless and the momentum and frequency go to zero simultaneously. From gapless particles,
we would expect a linear dispersion relation. The previous demonstration also suggests that every broken
symmetry is related to the existence of one Nambu-Goldstone boson. The proof elaborated in the previous
way can be found in [34]. This method cannot say directly the relation between the number of broken
symmetries and the number of Nambu-Goldstone bosons in the most general situations. Later, we will see
how we can extract more information from the basic expression (22). For this purpose, we can rewrite the
results (22) and (23) by using bi-linear objects to be justified later. Then, the Nambu-Goldstone theorem at
the quantum level can be formulated suggesting that, given a field φa,b(x) which is not a singlet under the
action of the generator of a group, then its vacuum expectation value satisfies the condition

< 0SV |φa,b(x)|0SV > 6= 0. (26)

The sub-index SV means single vacuum. Note that here we take the field φab(x) as a second rank
tensor instead of a vector or scalar. We will consider the general situation where φa,b(~x) = φm,l

a,b εm ⊗ εl .
Since the field is not a singlet under the action of the broken generators, then it satisfies the condition

[Qm,k(y), φa,b(x)] v φ′a,b(x). (27)

Note that here we also take the conserved charges as a second order rank tensors. By combining the
two conditions, namely, Equations (26) and (27), we obtain the result

< 0SV |[Qm,k(y), φa,b(x)]|0SV > 6= 0. (28)

Here, Qm,k corresponds to conserved charges. In general, we can take Qm,l = Qp,k
m,lεp ⊗ εk.

Equation (28) is an equation with two pairs of indices living in different spaces, respectively. The meaning
of the indices will become clear later.
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3. The Quantum Yang-Baxter Conditions

The QYBE are defined by the relation

R(1,2)R(1,3)R(2,3) = R(2,3)R(1,3)R(1,2) (29)

in operator notation. The matrices will be bi-linear objects acting on a space M⊗V. In coordinate notation,
we can define the matrices as follows [35]

R : M⊗V = Ra,b
c,dma ⊗mb. (30)

Analogous conclusions appear for the other matrices. There might be cases where the spaces M and
V are the same. Here, B = {m1, m2, ..., mn} is a basis of M. The space V will have an analogous basis.
In coordinate notation, the QYBE defined in Equation (29) becomes [35]

Rs2,s3
j,k Rs1,c

i,s3
Ra,b

s1,s2
= Rr1,r2

i,j Ra,r3
r1,kRb,c

r2,r3
. (31)

In this paper, we will use this coordinate form for the QYBE.

3.1. The Relations between the Order Parameter and the Conserved Charges

The QYBE defined in Equation (31) admits the following form:

R0,n′
m,l Rn,k

p,n′R
a,b
n,0 = Rn,0

p,mRa,n′
n,l Rb,k

0,n′ , (32)

which corresponds to an equation for the product of three matrices defined by

R0,n′
m,l =< 0DV |Qm,l(y)|n′ >, Rn,k

p,n′ =< n′|Qk,p(z)|n >,

Ra,b
n,0 =< n|φa,b(x)|0DV >, Rn,0

p,m =< n|Qp,m(z)|0DV >,

Ra,n′
n,l =< n′|Ql,a(y)|n >, Rb,k

0,n′ =< 0DV |φb,k(x)|n′ > .

(33)

Note that the index notation is consistent. This can be observed from Figure 2. In the figure, each
line in the triangles represents one space. Then, for example, the index group b, 0 and m live in the same
space and the group of indices represented by k, n′ and l lives in another space. This statement appears
consistently in the matrix R0,n′

m,l , where 0 and m, appearing vertically one over the other, implies that they
are connected to the same space. The same logic applies to the pair n′ and l in the same matrix. The same
consistency appears if we repeat the same reasoning over the matrix Rb,k

0,n′ in Equation (33). The same
analysis can be repeated over all the other matrices. It is important to understand that we can only
contract pairs of indices living in the same space. This can be seen clearly from the QYBE in Equation (32).
The contracted group of indices represent either gapless intermediate particles or the degenerate vacuum
and this means that the QYBE demands us to sum over all the possible vacuums. On the other hand,
the free indices like b, p and l are the labels of the Nambu-Goldstone field and the pair of broken generators.
Since b is connected to the same space of the index 0, then this means that the Nambu-Goldstone field
will always appear operating over the vacuum in the different expressions. Repeating the same reasoning,
the index p is the label of the broken generator related to the modes n and the index l is the label for
the broken generator related to the modes n′. Finally, the indices a, k and m are auxiliary. They are just
telling us where should be located the modes n, n′ as well as the degenerate vacuum when we expand
the different expressions in the commutator representing the spontaneous symmetry breaking condition.
This point will be clearer in a moment. Look, for example, that the index a is always tied to the mode
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n. Then, whenever it appears, it is indicating to us that the mode n appears as a bra or as a ket for the
corresponding operator. From Equation (32), the following equality is satisfied

∑0,n,n′ < 0DV |Qm,l(0)|n′ >< n′|Qk,p(0)|n >< n|φa,b(x)|0DV >= ∑0,n,n′ < 0DV |φb,k(x)|n′ > ×

< n′|Ql,a(0)|n >< n|Qp,m(0)|0DV > .
(34)

The sub-index DV means degenerate vacuum. We have introduced pairs of complete set of intermediate
states defined by Î = ∑n |n >< n| = ∑n′ |n′ >< n′|. In addition, we are summing over the multiplicity
of vacuums |0DV >. We will justify this operation at the end of this paper. The sum over the vacuums is
represented by the contraction between the indices 0 in Equation (32). Note that the vacuum will then
appear as internal lines in the graphical version of the QYBE as it is shown in Figure 2. Here, we will
further explain the meaning of the free indices. The free indices corresponding to the Nambu-Goldstone
field φab and broken generators are indices living in the corresponding spaces of the Goldstone bosons or
the degenerate vacuum. For example, in the matrix Rn,k

p,n′ , the index p lives in the space of the family of
Goldstone bosons represented by n; meanwhile, the index k lives in the space of the family of Goldstone
bosons represented by n′. This matrix then represents the interaction of pairs of Goldstone bosons (n and
n′) and we can perceive the pair of indices k and p as the labels representing such interaction in the vertex
of the Yang-Baxter diagram. Consider now the Nambu-Goldstone field φa,b in Equation (34). In this case,
the pair of indices a, b represent the interaction between the Goldstone bosons n with the vacuum 0DV .
Then, we can think on φa,b as the Nambu-Goldstone field touching the legs corresponding to n and 0DV in
the diagrams. Analogous conclusions apply to the broken generators. In order to agree with the ordinary
commutators, we will take as the fundamental labels for the broken generators those indices living in the
spaces corresponding to the different families of the Goldstone bosons. If one broken generator has two
indices living in different families of Goldstone bosons n and n′, then we will take as the fundamental
label the index living in the space belonging to the family of Goldstone bosons, which is not a common
vertex with respect to another broken generator. Then, for example, in Equation (34), we will consider the
indices l and p as the real labels for the broken generators. Then, Qm,l = Ql and Ql,a = Ql will represent
the same broken generators in Equation (34). Analogously, Qp,m = Qp and Qk,p = Qp will also correspond
to a single broken generator. For the case of the Nambu-Goldstone field, the situation is different, and
the fundamental index is the one living in the vacuum space. Then, φa,b = φb,k = φb and in such a case
the fundamental index will be b, which lives in the space 0DV . Then, in this way, Equation (34) could be
expressed in a simplified notation as

∑
0
< 0DV |Ql(0)Qp(0)φb(x)|0DV >= ∑

0
< 0DV |φb(x)Ql(0)Qp(0)|0DV > . (35)

Figure 2. The Quantum Yang Baxter relations defined by Equation (32).
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Exchange of the Intermediate Particles n→ n′

If we exchange the spaces containing the intermediate states n → n′, then Equation (32) is
transformed into

R0,n
m,pRn′ ,a

l,n Rk,b
n′ ,0 = Rn′ ,0

l,m Rk,n
n′ ,pRb,a

0,n (36)

or, in operator notation, Equation (29) becomes

R(3,2)R(3,1)R(2,1) = R(2,1)R(3,1)R(3,2). (37)

This equation is the twist map of Equation (29). Under the exchange of spaces, the pair of indices
{(0, m), (n, p), (n′, l), (a, n), (k, n′), (b, 0)} remain together if we compare this case with the one analyzed
in Equation (32). This is equivalent to say that we only move the lines with respect to each other in the
diagrams representing the QYBE as can be observed from the Figure 3. Equation (36) represents the
following equality:

∑0,n,n′ < 0DV |Qm,p(0)|n >< n|Qa,l(0)|n′ >< n′|φk,b(x)|0DV >= ∑0,n,n′ < 0DV |φb,a(x)|n > ×

< n|Qp,k(0)|n′ >< n′|Ql,m(0)|0DV >,
(38)

if we use an analogous notation as in Equation (33). If n = n′, then Equations (29) and (37) are the same,
except for the fact that they are the time reversal version of each other and this will be reflected in the
corresponding phases. If n 6= n′, then the mentioned equations are different. In simplified notation,
the previous result can be expressed as

∑
0
< 0DV |Qp(0)Ql(0)φb(x)|0DV >= ∑

0
< 0DV |φb(x)Qp(0)Ql(0)|0DV > . (39)

4. The Spontaneous Symmetry Breaking Condition and the Yang-Baxter Relations

In general, if we have at least two or more different broken generators and if they satisfy a Lie algebra,
then we can re-express the spontaneous symmetry breaking condition defined in Equation (28) as follows:

< 0SV |
[
φb,a(x), [Qp,k(y), Ql,m(z)]

]
|0SV > 6= 0. (40)

Under the assumption of invariance under space-time translations defined through the equality
Qk,p(y) = e−ipyQk,p(0)eipy, the previous commutator gives an expression of the form

∑n,n′ < 0SV |φb(x)|n >< n| Qp(0)|n′ >< n′|Ql(0)|0SV > e−i(pn−pn′ )ye−i p̃n′ z

− < 0SV |φb(x)|n′ >< n′| Ql(0)|n >< n|Qp(0)|0SV > e−i( p̃n′− p̃n)ze−ipny

− < 0SV | Qp(0)|n >< n|Ql(0)|n′ >< n′|φb(x)|0SV > e−i( p̃n− p̃n′ )zeipny

+ < 0SV |Ql(0)|n′ >< n′| Qp(0)|n >< n|φb(x)|0SV > e−i(pn′−pn)yei p̃n′ z 6= 0.

(41)

Here, Qp,k = Qp,m = Qm,p = Qk,p = Qp; Ql,m = Ql,a = Qa,l = Qm,l = Ql , and φb,a = φb,k =

φk,b = φa,b = φb in order to write the previous expression in a simplified notation. Here, we define
pn as the 4-momentum for the mode associated with one of the conserved charges. Meanwhile, p̃n

is the 4-momentum associated with the other operator in the same algebra. The equality pn = pn′

as well as p̃n = p̃n′ comes from spatial integrations after expressing the broken generators as density
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integrations Qb(y) =
∫

d3yjb(y). These conditions are then independent of the QYBE and they appear in
the thermodynamic limit [36,37]. In what follows, we will develop the expressions for two cases. Note
that eipy is a unitary operator related to spacetime translations and not an ordinary number. Note in
addition that y = (y0, y) corresponds to the spacetime index.

4.1. Pairs of Nambu-Goldstone Bosons Representing the Same Degree of Freedom

In this case, besides the conditions pn = pn′ and p̃n = p̃n′ , the condition n = n′ must be satisfied.
Then, Equations (35) and (39) are the same. After summing over the degenerate vacuum and factorizing
terms with common coordinates, then Equation (41) can be reduced to

∑0,n,n′ < 0DV |φb(x)|n >< n| Qp(0)|n′ >< n′|Ql(0)|0DV > 2e−iẼn′ z0 cos (p̃n · z)
− < 0DV | Qp(0)|n >< n|Ql(0)|n′ >< n′|φb(x)|0DV > 2eiEny0 cos (pn · y) = 0,

(42)

where we have used the result pny = Eny0 − ~pn ·~y, as well as the fact that both of the QYBE defined in
Equations (32) and (36) are the same under the condition n = n′. Note that, at the moment of grouping
common factors in Equation (42), we have taken into account that Equation (39) is the twist map of
Equation (35) and, as a consequence, both equations are time reversed with respect to each other. This can
be observed from Figures 3 and 4, where the arrows in the internal lines represent the flow of the
corresponding phase. Later, we will see how the phase convention can be arranged naturally just following
the QYBE in coordinate notation. Here, as a consequence of the condition n = n′, the momentum of the
intermediate particles approaches to zero quadratically at the lowest order in the expansion. From the
time-independence condition of Equation (42), the energy (frequency) approaches to zero linearly. Note
that here pn = p̃n, as well as En = Ẽn′ due to the condition n = n′ applied in Equation (41). By applying the
QYBE as they were defined in Equation (39) in simplified notation, the previous result can be expressed as

2 ∑0,n,n′ < 0DV |φb(x)|n >< n| Qp(0)|n′ >< n′|Ql(0)|0DV > (e−iẼn′ z0 cos (p̃n · z)×
−eiEnz0 cos (pn · y)) = 0,

(43)

under the equal time-commutation condition z0 = y0. In the limit y→ z, we have

4i ∑
0,n,n′

< 0DV |φb(x)|n >< n| Qp(0)|n′ >< n′|Ql(0)|0DV > sin(Enz0)cos (pn · z)y→z = 0. (44)

Here, we can see that En → 0 linearly and pn → 0 quadratically. The previous result is
consistent with the notion of trace of commutators. We can then conclude that the interaction of two
identical Nambu-Goldstone bosons have a direct correspondence with the QYBE if we sum over the
degenerate vacuum.
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Figure 3. The effect of exchanging n → n′. The upper relation corresponds to the QYBE defined in
Equation (32). The lower relation corresponds to Equation (36). The figures marked with the same color are
the twist map (mirror image) of each other. The arrows represent the flow of time for each phase.

Figure 4. The effect of exchanging n by n′. The figures connected by blue lines are the mirror image of
each other.

4.2. Pairs of Nambu-Goldstone Bosons Independent

When the Goldstone bosons are independent, we can still write the general result (41) since it
represents the standard spontaneous symmetry breaking condition. In this case, however, since n 6= n′,
then we cannot claim that Equations (32) and (36) are the same. Then, there are some pairs of terms in the
general expression (41) that we cannot factorize. This, in the end, will turn out to be the mathematical
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reason for getting a linear dispersion relation corresponding to the Nambu-Goldstone bosons. By following
similar arguments as in the previous case, we obtain the result

∑0,n,n′ < 0DV |φb(x)|n >< n| Qp(0)|n′ >< n′|Ql(0)|0DV > (e−i(pn−pn′ )ye−i p̃n′ z

−e−i( p̃n− p̃n′ )zeipny)− < 0DV |φb(x)|n′ >< n′| Ql(0)|n > ×
< n|Qp(0)|0DV > (e−i( p̃n′− p̃n)ze−ipny − e−i(pn′−pn)yei p̃n′ z) = 0.

(45)

Note that here we have used the QYBE in simplified notation defined in Equations (35) and (39) in
order to factorize some terms in Equation (41). In this case, the two mentioned equations, are completely
independent. Then, we cannot factorize all the terms in Equation (45) as we did for the previous case.
For this reason, in the neighborhood when the momentum and frequency go simultaneously to zero,
the dispersion relation is linear En v pn.

5. The Counting of Nambu-Goldstone Bosons Based on the Yang-Baxter Relations

Since the R-matrices represent interactions between n, n′ and 0DV , then their rank will be related to
the number of Goldstone bosons. Here, we have square matrices, then we will have as many degenerate
vacuums (0DV) as Goldstone bosons the system under study has. This is consistent with the fact that the
action of a broken generator over one vacuum is just to rotate it to a different one. This is demonstrated
in [37] by considering coherent states for the vacuum. In our analysis, if n = n′, then we have Rank(R) =
n + n′ = 2n = NBG and then NNG = (1/2)NBG. If n 6= n′, then NBG = NNG. The general relation
between the number of Nambu-Goldstone bosons and the number of broken generators is defined by

NNG =
1
2

Rank(Ri,j
k,l)n=n′ + Rank(Ri,j

k,l)n 6=n′ . Here, the first matrix Rn=n′ corresponds to the matrix formed

for the case where pairs of Goldstone bosons represent the same degree of freedom n = n′. The second
matrix Rn 6=n′ corresponds to the case where the Goldstone bosons are completely independent from each

other. Here, we can classify the Nambu-Goldstone bosons as TypeA : nA = Rank(Ri,j
k,l)n 6=n′ and TypeB :

nB =
1
2

Rank(Ri,j
k,l)n=n′ . Then, NNG = nA + nB and NBG = Rank(Ri,j

k,l)n=n′ + Rank(Ri,j
k,l)n 6=n′ = 2nB + nA

as it should be. The final formula relating NBG with NNG is defined in terms of the R-matrices as follows:

NNG = NBG −
1
2

Rank(Ri,j
k,l)n=n′ . (46)

Note the analogy with the situation described in [18]. However, in this paper, we remark that
the fundamental Mathematical objects are the R-matrices and all of the dynamics are governed by the
QYBE. Then, although the approach developed here is different to the one done in [18], in the sense
that it focuses on the dynamical constraints appearing from the QYBE, analogous results with respect to
previous approaches still appear, then showing consistency. Then, at least in the sense of the counting of
Nambu-Goldstone bosons, the role of the ρ matrix in [18] is assumed by the rank of the R-matrices here.
Alternatively, in the present formalism, the number of Nambu-Goldstone bosons can be found naturally
from the number of independent triangles (see the Figure 3) appearing from the Yang-Baxter expressions.

6. Sum of Vacuums and Theorems Connected with the Spontaneous Symmetry Breaking Phenomena

In the previous sections, we have demonstrated that the Yang-Baxter relations contain the
Nambu-Goldstone theorem and they also guarantee the appropriate counting of the Nambu-Goldstone
bosons. The correct dispersion relations are also obtained naturally. In this section, we will analyze this
issue in more detail and we will formulate a fundamental theorem related to the dispersion relations and
the counting of the Nambu-Goldstone bosons. We will also justify why the Yang-Baxter relations can be
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really considered as the appropriate formulation of the spontaneous symmetry breaking phenomena and
we will explain why it is possible to sum over the degenerate vacuum even if each vacuum expands in
principle a different Hilbert space. We start with the Lagrangian

£ = ∂µφ∗∂µφ−V(φ∗φ), (47)

where the potential is defined as

V(φφ∗) = −µ2φφ∗ + λ(φφ∗)2, λ > 0. (48)

The Lagrangian (47) is invariant under the global U(1) transformation defined as φ→ eiαφ. We can
extract from the full field φ the Nambu-Goldstone degree of freedom plus the order parameter field if
we define

φ =
1√
2
(φ1 + iφ2). (49)

We can identify φ2 as the Nambu-Goldstone mode with zero vacuum expectation value, namely
< 0SV |φ2|0SV >= 0. The order parameter then breaks the symmetry spontaneously as

< 0SV |φ1|0SV >= ±µ/
√

λ. (50)

6.1. The Justification behind the Sum over the Vacuums

Note that, in the previous example, for every positive value of the order parameter, there exists a
negative (averaged) value with the same magnitude. The sign taken by the order parameter as well as
its magnitude defines the selected vacuum. It is evident then that a sum over all possible vacuums is in
agreement with the expression (50)

∑
0
< 0DV |φ1|0DV >= φ̄1 − φ̄1 + φ̄2 − φ̄2 + ... + φ̄n − φ̄n =

N

∑
n=1

φ̄i = 0. (51)

The spontaneous symmetry breaking condition suggests that the vacuum expectation value of
the commutator between the Nambu-Goldstone field and the broken generator is proportional to the
order parameter

< 0SV |[Q, φ2]|0SV >= i < 0SV |φ1|0SV > . (52)

From Equations (51) and (52), we can conclude that

∑
0
< 0DV |[Q, φ2]|0DV >= 0. (53)

Figure 5 illustrates the essence of this result. The vertical axis on the left-hand side represents the
value taken by the field φ2 and the horizontal axis represents the value taken by the field φ1. Each point in
the circumference represents a vacuum state condition. If we select φ2 to be the Nambu-Goldstone field,
then its vacuum expectation value vanishes and the field φ1 has to be massive. This result corresponds
to the point marked in Figure 5 as SV. Note that the result (53) is equivalent to the expansion (40) after
summing over the degenerate vacuum. Equation (53) is also equivalent to the QYBE as can be seen from
the definitions given in Equation (32), which is equivalent to Equation (35) and from Equation (36), which
is equivalent to Equation (39). Then, the QYBE suggests that the sum of the expectation values of the order
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parameter over all the possible vacuums is equal to zero. An equivalent and more evident interpretation
is that, once we sum over the degenerate vacuum, it does not matter what the order of operation is over
the vacuum states. This means that we can operate either first with the Nambu-Goldstone field and
after with the broken generator or first with the broken generator and after with the Nambu-Goldstone
field, obtaining then identical results. We can conclude that the QYBE are naturally satisfied by the
systems where the symmetry is spontaneously broken before any selection of the vacuum is done. Once
the vacuum is selected due to small perturbations, in principle, the QYBE are not satisfied. However,
the results obtained before suggest that the Nambu-Goldstone bosons still keep some memory of the fact
that the real vacuum should be a superposition of all the possible available vacuums. The dispersion
relations of the Nambu-Goldstone bosons are then the evidence of this result. This statement makes
sense because, in fact, the Nambu-Goldstone bosons move along different vacuums and only an external
fluctuation is able to select some state. The Nambu-Goldstone field itself does not mind what kind of
vacuum is selected. In other words, what defines the correct dispersion relation of the Nambu-Goldstone
bosons is the space through which they can move and this is contained inside the QYBE. It might be
surprising to see the fact that we have to sum over the degenerate vacuum since each vacuum represents
a different Hilbert space in the thermodynamic limit (infinitie volume limit) [36,37]. This is not the case,
however, in the finite volume limit.

FIG. 5: The degenerate vacuum corresponding to the Nambu-potential. The Black line crossing

the circumference suggests that for each positive value of the order parameter on a given vacuum

(expectation value), there is a corresponding negative value with the same magnitude but defined

in a different vacuum. Then summing over the expectation values of the of the order parameters,

obtained along the degenerate vacuum gives a trivial (vanishing) result. The arrows illustrate the

direction of the sum. The right-hand side of the figure is the potential term defined in eq. (48)

and the left-hand side is the same potential observed over the ϕ1 − ϕ2 plane. The right-hand side

is partially taken from [23] and briefly modified.

where the potential is defined as

V (ϕϕ∗) = −µ2ϕϕ∗ + λ(ϕϕ∗)2, λ > 0. (48)

The Lagrangian (47) is invariant under the global U(1) transformation defined as ϕ → eiαϕ.
We can extract from the full field ϕ the Nambu-Goldstone degree of freedom plus the order
parameter field if we define

ϕ =
1√
2
(ϕ1 + iϕ2). (49)

We can identify ϕ2 as the Nambu-Goldstone mode with zero vacuum expectation value,
namely < 0SV |ϕ2|0SV >= 0. The order parameter then breaks the symmetry spontaneously
as

< 0SV |ϕ1|0SV >= ±µ/
√

λ. (50)

A. The justification behind the sum over the vacuums

Note that in the previous example for every positive value of the order parameter,
there exists a negative (averaged) value with the same magnitude. The sign taken by the
order parameter as well as its magnitude, defines the selected vacuum. It is evident then
that a sum over all possible vacuums is in agreement with the expression (50)

∑

0

< 0DV |ϕ1|0DV >= ϕ̄1 − ϕ̄1 + ϕ̄2 − ϕ̄2 + ... + ϕ̄n − ϕ̄n =
N∑

n=1

ϕ̄i = 0. (51)

The spontaneous symmetry breaking condition suggests that the vacuum expectation value
of the commutator between the Nambu-Goldstone field and the broken generator is propor-
tional to the order parameter
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Figure 5. The degenerate vacuum corresponding to the Nambu potential. The black line crossing the
circumference suggests that, for each positive value of the order parameter on a given vacuum (expectation
value), there is a corresponding negative value with the same magnitude but defined in a different vacuum.
Then, summing over the expectation values of the of the order parameters, obtained along the degenerate
vacuum gives a trivial (vanishing) result. The arrows illustrate the direction of the sum. The right-hand
side of the figure is the potential term defined in Equation (48) and the left-hand side is the same potential
observed over the φ1 − φ2 plane. The right-hand side is partially taken from [38] and briefly modified.

Further Justifications of the Sum over the Degenerate Vacuum

In this section, we have explained that summing the vacuum expectation value of the order parameter
over the degenerate vacuum gives a trivial result defined in Equation (53). This justifies the step going
from Equation (41) to Equation (42) and it is a natural consequence of the QYBE. In the thermodynamic
limit, the different vacuums are orthogonal because they belong to different Fock spaces (Hilbert spaces).
If we have a coherent vacuum state, for example, the broken generators cannot annihilate the vacuum, but
they rather rotate it toward a new one in the following form:

|θ >0→ Uθ′ |θ >0= |θ + θ′ > . (54)



Symmetry 2019, 11, 803 15 of 20

Here, Uθ = eiθQ, with Q representing the broken generator [37]. It can be demonstrated that, in the
thermodynamic limit,

| < θ′|θ >0 | → 0. (55)

Then, the vectors contained in the Fock space expanded around the vacuum |θ >0 are orthogonal
to the vectors in the Fock space expanded by the vacuum |θ′ >0. Then, the Hilbert spaces involved
are different in principle. The reality is that the symmetry is not spontaneously broken at finite
volume approximation and in reality the vacuums are never perfectly degenerate. In this limit,
the Nambu-Goldstone bosons can move from one vacuum to the next after tunneling through some
potential barriers [37]. The vacuums are almost degenerate at the infinite volume limit and in such a case
the Nambu-Goldstone bosons can move freely from one vacuum to the next as it is remarked in [36,37].
In this limit, any small perturbation selects one particular vacuum state. The calculations done in this
paper are valid in general. This is the case because, once we take the expectation value of the order
parameter over some specific vacuum, what we have is a number. Evaluating over other vacuums will
give us a complex number in general. Nothing forbids us to sum complex numbers. However, it is
interesting to analyze the physics behind the QYBE. In this sense, the Yang-Baxter diagrams for modeling
the spontaneous symmetry breaking phenomena can be considered to be valid either at the finite volume
approximation where a single Hilbert space can be assumed, after which at the end we can take the
thermodynamic limit, or we can consider the diagrams to be valid in the thermodynamic limit but under
the ideal absence of external perturbations. This is just an idealization and the Nambu-Goldstone bosons
keep the memories of this statement. In [36], the exact product between vacuums has been calculated to be

| < θ′|θ >0 | = e−Ω|θ−θ′ |2 , (56)

where Ω is just the volume of the system. This confirms that, at finite volume approximation, the vacuums
are non-orthogonal. In addition, in the same limit, the momentum of the intermediate particles is non-zero
as can be observed from the illustration given in Figure 6. Note that, on the left-hand side of Figure 6,
the slopes of the lines representing the Nambu-Goldstone bosons n and n′ are larger than the slopes taken
at the thermodynamic limit (right-hand side of the same figure). In the thermodynamic limit, the three
lines in the triangle are (almost) parallel and the Nambu-Goldstone bosons are gap-less particles. If there
is any external fluctuation at the thermodynamic limit, then the degeneracy of the vacuum is reduced
to only one arbitrarily selected vacuum as can be observed from Figure 7. In the same figure, when the
red-dotted line disappears, then there is no degeneracy of the vacuum. Independent of the situation
under analysis, nothing forbids us in summing over the degenerate vacuum and this can be interpreted
as a superposition of the different vacuum expectations value of the order parameter, which gives the
trivial result (53). The result has a direct correspondence with the QYBE. It is important to remark that the
spontaneous symmetry breaking condition is time-independent only in the thermodynamic limit [36].

6.2. The Theorems Contained inside the Yang-Baxter Relations

There are a series of theorems and rules already established around the dispersion relations as well as
on the number of Nambu-Goldstone bosons appearing in a system [18,36]. In this subsection, we want
to remark on some rules observed from the QYBE when they are applied to the spontaneous symmetry
breaking situation.
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FIG. 6: The triangular representation of the vacuum degeneracy. At the finite volume approxi-

mation, the triangles are large (left hand-side). At the infinite volume limit, the triangles become

narrow and the three lines (in the triangle) become almost parallel (right-hand side of the figure).

The equality between triangles in the figure represents the QYBE and each triangle corresponds

to one term in the expansion (41) after summing over the degenerate vacuum.

In this subsection we want to remark some rules observed from the QYBE when they are
applied to the spontaneous symmetry breaking situation. First, let’s note that eq. (53)
means that if we sum over the degenerate vacuum the result (40), then we obtain

∑

0

< 0DV | [ϕb,a(x), [Qp,k(y), Ql,m(z)]] |0DV >= 0. (57)

This expression, contains two different QYBE given by eqns. (32) and (36). In fact, if
we expand the previous result, we can express eq. (41) in terms of the R-matrices after
summing over all the possible vacuums. We can then obtain the result

Rn′,0
l,m Rk,n

n′,pR
b,a
0,ne

i(p̃0
n′z

0+p̃n′ ·z) − Rn,0
p,mRa,n′

n,l Rb,k
0,n′e

i(p0
ny0+p·y)

−R0,n
m,pR

n′,a
l,n Rk,b

n′,0e
i(p0

ny0−p·y) + R0,n′

m,l R
n,k
p,n′R

a,b
n,0e

i(p̃0
n′z

0−p̃n′ ·z) = 0. (58)

Here we have omitted the trivial phases containing differences in the four-momentum (pn −
pn′) and similar terms. In the infinite volume limit, they just represent energy-momentum
conservation. Note in addition that in eq. (58), the phases corresponding to the first two
terms in the expansion, appear in a time-reversed version. The reason for this comes out
naturally from the QYBE and it is determined by the order how the R-matrices appear.
Note that we are considering

Rn′,0
l,m Rk,n

n′,pR
b,a
0,n =

∑

0,n,n′

< 0DV |ϕb|n >< n|Qp(0)|n′ >< n′|Ql(0)|0DV >, (59)

Rn,0
p,mRa,n′

n,l Rb,k
0,n′ =

∑

0,n,n′

< 0DV |ϕb|n′ >< n′|Ql|n >< n|(0)Qp(0)|0DV > . (60)

Since the order of the R-matrices is reversed with respect to the operators which they
represent, then it is necessary to make the corresponding corrections to the phases in eq. (58).
Note that the product of the R-matrices and their equivalence with respect to the product of

18

Figure 6. The triangular representation of the vacuum degeneracy. At the finite volume approximation,
the triangles are large (left hand-side). At the infinite volume limit, the triangles become narrow and the
three lines (in the triangle) become almost parallel (right-hand side of the figure). The equality between
triangles in the figure represents the QYBE and each triangle corresponds to one term in the expansion (41)
after summing over the degenerate vacuum.

Figure 7. The effect of external perturbations. In the infinite volume approximation, any small external
perturbation selects only one vacuum arbitrarily. The left-hand side represents the situation before the
perturbation appears. In such a case, the QYBE are valid and we can sum over the degenerate vacuum.
Once the perturbation selects one particular vacuum, the degenerate vacuum disappears (red dotted line)
and we have the usual interaction of two particles (two Nambu-Goldstone bosons). The Nambu-Goldstone
bosons, however, only move through the degenerate vacuum. The slopes of the lines are exaggerated in the
figure, but, in the large volume limit, the lines are almost horizontal.

First, let’s note that Equation (53) means that, if we sum over the degenerate vacuum the result (40),
then we obtain

∑
0
< 0DV |

[
φb,a(x), [Qp,k(y), Ql,m(z)]

]
|0DV >= 0. (57)

This expression contains two different QYBE given by Equations (32) and (36). In fact, if we expand
the previous result, we can express Equation (41) in terms of the R-matrices after summing over all the
possible vacuums. We can then obtain the result

Rn′ ,0
l,m Rk,n

n′ ,pRb,a
0,nei( p̃0

n′ z
0+p̃n′ ·z) − Rn,0

p,mRa,n′
n,l Rb,k

0,n′ e
i(p0

ny0+p·y)

−R0,n
m,pRn′ ,a

l,n Rk,b
n′ ,0ei(p0

ny0−p·y) + R0,n′
m,l Rn,k

p,n′R
a,b
n,0ei( p̃0

n′ z
0−p̃n′ ·z) = 0.

(58)

Here, we have omitted the trivial phases containing differences in the four-momentum (pn − pn′ ) and
similar terms. In the infinite volume limit, they just represent energy-momentum conservation. Note in
addition that, in Equation (58), the phases corresponding to the first two terms in the expansion appear in
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a time-reversed version. The reason for this comes out naturally from the QYBE and it is determined by
the order of how the R-matrices appear. Note that we are considering

Rn′ ,0
l,m Rk,n

n′ ,pRb,a
0,n = ∑

0,n,n′
< 0DV |φb|n >< n|Qp(0)|n′ >< n′|Ql(0)|0DV >, (59)

Rn,0
p,mRa,n′

n,l Rb,k
0,n′ = ∑

0,n,n′
< 0DV |φb|n′ >< n′|Ql |n >< n|(0)Qp(0)|0DV > . (60)

Since the order of the R-matrices is reversed with respect to the operators which they represent, then
it is necessary to make the corresponding corrections to the phases in Equation (58). Note that the product
of the R-matrices and their equivalence with respect to the product of operators is determined by the
spaces defined by the lines in the triangular relations in the QYBE. In simple words, the index contractions
determine the correspondence between the R-matrices products and the product of operators. We can
then conclude that the triangles corresponding to the previous terms determine the appropriate phases
naturally. This is a remarkable property of the method presented in this paper. Due to the QYBE defined
in Equations (32) and (36), we only have two independent terms in Equation (58) and we can reduce
Equation (58) to

Rn′ ,0
l,m Rk,n

n′ ,pRb,a
0,n

(
ei( p̃0

n′ z
0+p̃n′ ·z) − ei(p0

ny0−p·y)
)

−Rn,0
p,mRa,n′

n,l Rb,k
0,n′

(
ei(p0

ny0+p·y) − ei( p̃0
n′ z

0−p̃n′ ·z)
)
= 0.

(61)

Having this expression, we can define the following theorems:

Theorem 1. If we have two broken generators in a system, which, together with the Nambu-Goldstone field, satisfy
the condition Rn′ ,0

l,m Rk,n
n′ ,pRb,a

0,n = Rn,0
p,mRa,n′

n,l Rb,k
0,n′ , under the definitions given in Equations (59) and (60), then there is

a quadratic dispersion relation for the Nambu-Goldstone bosons (Ep v p2) and there is one Nambu-Goldstone boson
corresponding to two broken symmetries.

Note that, in this theorem, the equality is done over the R-matrices, but it can be also expressed as

∑0,n,n′ < 0DV |φb|n >< n|Qp(0)|n′ >< n′|Ql(0)|0DV >=

∑0,n,n′ < 0DV |φb|n′ >< n′|Ql |n >< n|(0)Qp(0)|0DV >,
(62)

in agreement with the expressions (59) and (60). The theorem suggests clearly that, under the consecutive
action over the different vacuum states of the Nambu-Goldstone field plus a pair of broken generators, if
the order (of action) of the broken generators is not important, then both generators are redundant and
they both correspond to a single degree of freedom. We can also perceive this with the statement that we
only have one independent history of interaction in this case. This statement is consistent with the results
found in [18,36]. The second theorem to be formulated is just a corollary of the first one.

Corollary 1. If we have two broken generators in a system, which, together with the Nambu-Goldstone field, satisfy
the inequality condition Rn′ ,0

l,m Rk,n
n′ ,pRb,a

0,n 6= Rn,0
p,mRa,n′

n,l Rb,k
0,n′ , under the definitions given in Equations (59) and (60),

then there is a linear dispersion relation for the Nambu-Goldstone bosons (Ep v p) and there is one Nambu-Goldstone
boson for each broken generator.
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This corollary can be explained in the following way. Under the previous inequality condition, the pair
of terms appearing in the expansion (61) are independent and then each term must vanish separately.
This means that we have two independent conditions defined as

Rn′ ,0
l,m Rk,n

n′ ,pRb,a
0,n

(
ei( p̃0

n′ z
0+p̃n′ ·z) − ei(p0

ny0−p·y)
)
= 0,

Rn,0
p,mRa,n′

n,l Rb,k
0,n′

(
ei(p0

ny0+p·y) − ei( p̃0
n′ z

0−p̃n′ ·z)
)
= 0.

(63)

Here, we have naturally a linear dispersion relation if we evaluate the limit when the momentum
and energy go to zero simultaneously. This analysis is consistent with what we have described before
in Equation (45). The result (63) means that, under the consecutive action over the vacuum states of a
pair of broken generators plus the Nambu-Goldstone field, if the order of operation of the pair of broken
generators is important, then they are not redundant and each broken generator is related to a single
degree of freedom (Nambu-Goldstone boson). In [39,40], some preliminary and complementary analysis
with respect to the one developed in this paper were done. However, inside the knowledge of the
author, this is the first time that theorems related to the dispersion relation together with the number of
Nambu-Goldstone bosons are done by using the QYBE.

7. Conclusions

In this paper, we have derived a novel method for understanding the interaction, counting, as well
as the dispersion relations for the Nambu-Goldstone bosons in general. When the symmetry under
exchange n→ n′ is satisfied (n = n′), then the Equations (32) and (36) are equivalent. Then, a quadratic
dispersion relation will appear for the associated Goldstone bosons after including the corresponding
phases. The QYBE are then consistent with the the interactions of Goldstone bosons and they can be
interpreted with the fact that, under some circumstances, two Goldstone bosons with linear dispersion
relation interact in order to produce effectively a single one with quadratic dispersion relation. On the
other hand, if n 6= n′, then Equations (32) and (36) turn out to be different and then we will obtain a
linear dispersion relation. In addition, the rank of the R-matrices appearing in the QYBE is related to the
number of Nambu-Goldstone bosons and the number of broken generators. This is the case because the
R-matrices represent either the interaction between pairs of Goldstone bosons or the interaction between
Goldstone bosons and the degenerate vacuum. The result is summarized in Equation (46). In this paper,
we could formulate a theorem and a corollary connecting the R-matrices appearing in the QYBE with the
observed dispersion relations. The theorem simultaneously connects the number of broken generators
with the number of Nambu-Goldstone bosons. The implementation of the QYBE requires a sum over
the degenerate vacuum which is equivalent to a superposition of the vacuum expectation values of
the order parameter evaluated over all the possible (degenerate) vacuums. This sum is evidently zero.
We have made the corresponding mathematical justification for summing over the degenerate vacuum the
different expressions connected to the spontaneous symmetry breaking phenomena. The results show the
consistency of the QYBE with the symmetry breaking mechanism. Future interesting applications of this
method will be explored in coming papers. In the past, Watanabe, Brauner and Murayama worked over
some interesting approach to the problem of counting Nambu-Goldstone bosons as well as explaining
the observed dispersion relations [18]. The approach in this paper is different because it is based on
the dynamical constraints emerging from the QYBE. In [16–18], although the authors made remarkable
contributions to the problem, it was never mentioned by then the important role of the QYBE in the
solution of this important problem.
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