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Abstract: The heat conduction equations with Caputo fractional derivative are considered in two joint
half-planes under the conditions of perfect thermal contact. The fundamental solution to the Cauchy
problem as well as the fundamental solution to the source problem are examined. The Fourier and
Laplace transforms are employed. The Fourier transforms are inverted analytically, whereas the
Laplace transform is inverted numerically using the Gaver–Stehfest method. We give a graphical
representation of the numerical results.
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1. Introduction

The conventional theory of heat conduction starts from the Fourier law and, coupled with the
energy conservation law, implies the conventional parabolic heat conduction equation. In bodies
exhibiting complex features, the usual Fourier law and heat conduction equation are not precise
enough, and nonstandard theories, in which these equations are substituted by extended (nonlocal)
equations, are elaborated.

Time nonlocal equations give an account of memory. Gurtin and Pipkin [1] suggested the general
relation between the heat flux vector q and the temperature gradient:

q = −k
∫ ∞

0
K(τ) grad T(t− τ)dτ. (1)

In Equation (1), k can be treated as the generalized thermal conductivity, T denotes temperature,
t stands for time, and K(τ) is the weight function.

Nigmatullin [2,3] proposed a similar version of Equation (1):

q = −k
∫ t

0
K(t− τ) grad T(τ)dτ, (2)

and obtained for temperature the equation with memory:

∂T
∂t

= a
∫ t

0
K(t− τ)∆T(τ)dτ. (3)

In Equation (3), a can be treated as the generalized thermal diffusivity coefficient.
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Different choices of the weight function K(t − τ) (“full sclerosis”, “short-tail” memory,
“middle-tail” memory, “long-tail” memory, and “full memory”) were analized in [4–8].

Though different time nonlocal generalizations of the Fourier law have a long history, they still
attract the attention of researchers (see, for example, Reference [9], and the extensive discussion
in [10]).

Fractional calculus (the theory of integrals and derivatives of non-integer order) has a large
number of uses in engineering, geophysics, physics, geology, chemistry, rheology, biology, finance, and
medicine (see [11–21], among many others).

Equation (2), written with the “long-tail” power kernel [4–8], can be represented in terms of
fractional calculus:

q(t) = −kD1−α
RL grad T(t), 0 < α ≤ 1, (4)

q(t) = −kIα−1grad T(t), 1 < α ≤ 2. (5)

In Equations (4) and (5), Iα f (t) and Dα
RL f (t) are the Riemann–Liouville fractional integral and

derivative of the order α [22–24]:

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0, (6)

Dα
RL f (t) =

dm

dtm

[
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1 f (τ)dτ

]
, m− 1 < α < m. (7)

In Equations (6) and (7), Γ(α) denotes the Gamma function.
It should be emphasized that in fractional calculus, there is no sharp boundary between integrals

and derivatives. This is why some authors [11,22] do not use a separate notation for the fractional
integral Iα f (t), which is designated as D−α

RL f (t) with α > 0. Making use of this notation, Equations (4)
and (5) can be depicted as one time-nonlocal relation:

q(t) = −kD1−α
RL grad T(t), 0 < α ≤ 2 . (8)

Coupled with the law of conservation of energy, the constitutive relation (8) implies the time
fractional heat conduction equation:

∂αT
∂tα

= a ∆T, 0 < α ≤ 2, (9)

with the Caputo fractional derivative:

dα f (t)
dtα

=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1 dm f (τ)

dτm dτ, m− 1 < α < m. (10)

The interested reader can find the details of obtaining the time fractional heat conduction
Equation (9) from the constitutive relation (8) in [25].

Equations (4) and (9) for 0 < α < 1 describe the so-called subdiffusion (slow diffusion), which is
characterized by the mean-squared displacement 〈x2〉 ∼ tα.

Recall the rules of the Laplace transform of fractional integrals and derivatives [22–24]:

L {Iα f (t)} = 1
sα

f ∗(s), (11)

L {Dα
RL f (t)} = sα f ∗(s)−

m−1

∑
k=0

Dk Im−α f (0+)sm−1−k, m− 1 < α < m, (12)
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L
{

dα f (t)
dtα

}
= sα f ∗(s)−

m−1

∑
k=0

f (k)(0+)sα−1−k, m− 1 < α < m. (13)

In Equations (11)–(13), the asterisk marks the transform, and s stands for the Laplace
transform variable.

A variety of boundary conditions for the time fractional heat conduction equation were analyzed
in [8,20,26,27]. If the surfaces of two bodies are in perfect thermal contact, the temperatures at their
joint boundary S and the heat fluxes through this boundary are the same for both bodies, and we
arrive at the following boundary conditions:

T1

∣∣∣
S
= T2

∣∣∣
S
, (14)

k1D1−α
RL

∂T1

∂n

∣∣∣∣∣
S

= k2D1−β
RL

∂T2

∂n

∣∣∣∣∣
S

, 0 < α ≤ 2, 0 < β ≤ 2, (15)

where subscripts 1 and 2 mark bodies 1 and 2, respectively, and n is the common normal at the joint
surface. In Equation (15), it is assumed that in the general case, the heat conduction in one of the
bodies is described by the equation with the Caputo derivative of the order α, whereas in the second
body, the process is governed by the equation with the Caputo derivative of the order β.

In previous publications [27–29], the problems of fractional heat conduction in composed bodies
were investigated for one spatial coordinate. In the present paper, heat conduction with the Caputo
fractional derivative is considered in two joint half-planes under the conditions of perfect thermal
contact in the case of two spatial coordinates. The fundamental solutions to the Cauchy and source
problems are studied. The Fourier and Laplace transforms are employed. The Fourier transforms are
inverted analytically, and the Laplace transform is inverted numerically, employing the Gaver–Stehfest
method [30–33]. The interested reader is also referred to the recent paper [34] on numerical inversion
of the Laplace transform for solving fractional deifferenetial equations, where additional references
can be found.

2. The Fundamental Solution to the Cauchy Problem

Consider the time fractional heat conduction equations in two half-planes:

∂αT1(x, y, t)
∂tα

= a1

[
∂2T1(x, y, t)

∂x2 +
∂2T1(x, y, t)

∂y2

]
,

0 < x < ∞, −∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2,
(16)

∂βT2(x, y, t)
∂tβ

= a2

[
∂2T2(x, y, t)

∂x2 +
∂2T2(x, y, t)

∂y2

]
,

−∞ < x < 0, −∞ < y < ∞, 0 < t < ∞, 0 < β ≤ 2.
(17)

We assume the initial conditions:

t = 0 : T1(x, y, t) = p0 δ (x− l) δ (y) , 0 < x < ∞, −∞ < y < ∞, 0 < α ≤ 2, (18)

t = 0 :
∂T1(x, y, t)

∂t
= 0, 0 < x < ∞, −∞ < y < ∞, 1 < α ≤ 2, (19)

t = 0 : T2(x, y, t) = 0, −∞ < x < 0, −∞ < y < ∞, 0 < β ≤ 2, (20)

t = 0 :
∂T2(x, y, t)

∂t
= 0, −∞ < x < 0, −∞ < y < ∞, 1 < β ≤ 2, (21)
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and the conditions of perfect thermal contact:

x = 0 : T1(x, y, t) = T2(x, y, t), −∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2, 0 < β ≤ 2, (22)

x = 0 : k1D1−α
RL

∂T1(x, y, t)
∂x

= k2D1−β
RL

∂T2(x, y, t)
∂x

,

−∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2, 0 < β ≤ 2 . (23)

The temperatures should also satisfy the zero conditions at infinity:

lim
x→∞

T1 (x, y, t) = 0, lim
y→±∞

T1 (x, y, t) = 0, (24)

lim
x→−∞

T2 (x, y, t) = 0, lim
y→±∞

T2 (x, y, t) = 0, (25)

lim
t→∞

T1 (x, y, t) = 0, lim
t→∞

T2 (x, y, t) = 0. (26)

We introduce the unknown function:

ϕ (y, t) = k1D1−α
RL

∂T1(x, y, t)
∂x

∣∣∣∣
x=0

= k2D1−β
RL

∂T2(x, y, t)
∂x

∣∣∣∣
x=0

. (27)

In the subsequent text, we employ the following cos-Fourier transforms with respect to the
coordinate x: for x > 0:

Fc { f (x)} = f̃ (ξ) =
∫ ∞

0
f (x) cos (xξ)dx, (28)

F−1
c

{
f̃ (ξ)

}
= f (x) =

2
π

∫ ∞

0
f̃ (ξ) cos (xξ)dξ, (29)

Fc

{
d2 f (x)

dx2

}
= −ξ2 f̃ (ξ)− d f (x)

dx

∣∣∣∣
x=0+

, (30)

and for x < 0:

Fc { f (x)} = f̃ (ξ) =
∫ 0

−∞
f (x) cos (xξ)dx, (31)

F−1
c

{
f̃ (ξ)

}
= f (x) =

2
π

∫ 0

−∞
f̃ (ξ) cos (xξ)dξ, (32)

Fc

{
d2 f (x)

dx2

}
= −ξ2 f̃ (ξ) +

d f (x)
dx

∣∣∣∣
x=0−

. (33)

Applying to the initial boundary value problem (16)–(27) the Laplace transform with respect to
time t, the exponential Fourier transform with respect to the coordinate y, and the foregoing cos-Fourier
transforms with respect to the coordinate x, in the transform domain we get is:

˜̃T∗1 (ξ, η, s) =
p0√
2π

cos (lξ)
sα−1

sα + a1 (ξ2 + η2)
− a1

k1
ϕ̃∗ (η, s)

sα−1

sα + a1 (ξ2 + η2)
, (34)

˜̃T∗2 (ξ, η, s) =
a2

k2
ϕ̃∗ (η, s)

sβ−1

sβ + a2 (ξ2 + η2)
. (35)

All the Fourier transforms are marked by the tilde, ξ denotes the cos-Fourier transform variable,
and η stands for the exponential Fourier transform variable.
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Inversion of the cos-Fourier transforms with taking into account the integral below [35]:∫ ∞

0

1
ξ2 + c2 cos (xξ)dξ =

π

2c
exp (−c|x|) , c > 0, (36)

gives:

T̃∗1 (x, η, s) =
p0√
2π

sα−1

2a1

1√
η2 + sα/a1

{
exp

[
−
√

η2 +
sα

a1
(x + l)

]
+ exp

[
−
√

η2 +
sα

a1
|x− l|

]}
− sα−1

k1
ϕ̃∗ (η, s)

1√
η2 + sα/a1

exp
(
−
√

η2 +
sα

a1
x
)

, x > 0,

(37)

T̃∗2 (x, η, s) =
sβ−1

k2
ϕ̃∗ (η, s)

1√
η2 + sβ/a2

exp

−
√

η2 +
sβ

a2
|x|

 , x < 0. (38)

The perfect thermal contact boundary condition (19) written in the transform domain:

T̃∗1 (0, η, s) = T̃∗2 (0, η, s) (39)

makes it possible to determine the function: ϕ̃∗ (η, s):

ϕ̃∗ (η, s) =
p0k1k2√

2π a1

√
η2 + sβ/a2

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

exp

(
−

√
η2 +

sα

a1
l

)
, (40)

and obtain the expressions for temperatures:

T̃∗1 (x, η, s) =
p0√
2πa1

sα−1√
η2 + sα/a1

{
1
2

exp
[
−
√

η2 +
sα

a1
(x + l)

]
+

1
2

exp
[
−
√

η2 +
sα

a1
|x− l|

]

−
k2

√
η2 + sβ/a2

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

exp
[
−
√

η2 +
sα

a1
(x + l)

]}
, x > 0,

(41)

T̃∗2 (x, η, s) =
p0√

2π a1

k1sβ−1

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

× exp

−√η2 +
sβ

a2
|x| −

√
η2 +

sα

a1
l

 , x < 0.

(42)

The inverse transforms give:

T1 (x, y, t) =
p0

2πa1
L−1

〈 ∫ ∞
−∞

sα−1√
η2 + sα/a1

{
1
2

exp
[
−
√

η2 +
sα

a1
(x + l)

]
+

1
2

exp
[
−
√

η2 +
sα

a1
|x− l|

]

−
k2

√
η2 + sβ/a2

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

exp
[
−
√

η2 +
sα

a1
(x + l)

]}
cos (yη)dη

〉
, x > 0,

(43)
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T2 (x, y, t) =
p0k1

2πa1
L−1

{ ∫ ∞
−∞

sβ−1

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

× exp

−√η2 +
sβ

a2
|x| −

√
η2 +

sα

a1
l

 cos (yη)dη

}
, x < 0.

(44)

Temperatures in joint half-planes are presented in Figures 1–6 for varied combinations of
parameters. Calculations have been carried out with the following nondimensional quantities:

x̄ =
x
l

, ȳ =
y
l

, κ =

√
a1 tα/2

0
l

, T̄ =
a1tα

0
p0

T, (45)

where t0 is the characteristic time of the process. In all the figures, the values α = β = 0.5 and κ = 1
have been taken.

Figure 1. Behavior of the solution (43) and (44) versus time; x̄ = 1, y = 0, k1 = k2.

Figure 2. Behavior of the solution (43) and (44) versus time; x̄ = 1, y = 0, a1 = a2.
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Figure 3. Dependence of the solution (43) and (44) on the coordinate x; ȳ = 0, t̄ = 1, k1 = k2.

Figure 4. Dependence of the solution (43) and (44) on the coordinate x; ȳ = 0, t̄ = 1, a1 = a2.

Figure 5. Dependence of the solution (43) and (44) on the coordinate y; x̄ = 1, t̄ = 1, k1 = k2.
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Figure 6. Dependence of the solution (43) and (44) on the coordinate y; x̄ = 1, t̄ = 1, a1 = a2.

3. The Fundamental Solution to the Source Problem

Next, we consider the time fractional heat conduction equation with the source term in the domain
x > 0:

∂αT1(x, y, t)
∂tα

= a1

[
∂2T1(x, y, t)

∂x2 +
∂2T1(x, y, t)

∂y2

]
+ g0 δ (x− l) δ (y) δ (t) ,

0 < x < ∞, −∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2,
(46)

and the corresponding equation in the region x < 0:

∂βT2(x, y, t)
∂tβ

= a2

[
∂2T2(x, y, t)

∂x2 +
∂2T2(x, y, t)

∂y2

]
,

−∞ < x < 0, −∞ < y < ∞, 0 < t < ∞, 0 < β ≤ 2.
(47)

We assume the zero initial conditions:

t = 0 : T1(x, y, t) = 0, 0 < x < ∞, −∞ < y < ∞, 0 < α ≤ 2, (48)

t = 0 :
∂T1(x, y, t)

∂t
= 0, 0 < x < ∞, −∞ < y < ∞, 1 < α ≤ 2, (49)

t = 0 : T2(x, y, t) = 0, −∞ < x < 0, −∞ < y < ∞, 0 < β ≤ 2, (50)

t = 0 :
∂T2(x, y, t)

∂t
= 0, −∞ < x < 0, −∞ < y < ∞, 1 < β ≤ 2, (51)

and the conditions of perfect thermal contact at the joint boundary:

x = 0 : T1(x, y, t) = T2(x, y, t), −∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2, 0 < β ≤ 2, (52)

x = 0 : k1D1−α
RL

∂T1(x, y, t)
∂x

= k2D1−β
RL

∂T2(x, y, t)
∂x

,

−∞ < y < ∞, 0 < t < ∞, 0 < α ≤ 2, 0 < β ≤ 2. (53)
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Using the integral transform technique, we finally obtain:

T1 (x, y, t) =
g0

2πa1
L−1

〈 ∫ ∞
−∞

1√
η2 + sα/a1

{
1
2

exp
[
−
√

η2 +
sα

a1
(x + l)

]
+

1
2

exp
[
−
√

η2 +
sα

a1
|x− l|

]

−
k2

√
η2 + sβ/a2

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

exp
[
−
√

η2 +
sα

a1
(x + l)

]}
cos (yη)dη

〉
, x > 0,

(54)

T2 (x, y, t) =
g0k1

2πa1
L−1

{ ∫ ∞
−∞

sβ−α

sβ−αk1
√

η2 + sα/a1 + k2

√
η2 + sβ/a2

× exp

−√η2 +
sβ

a2
|x| −

√
η2 +

sα

a1
l

 cos (yη)dη

}
, x < 0.

(55)

The numerical results according to Equations (54) and (55) with α = β = 0.5, κ = 1 are presented
in Figures 7–12. The nondimensional temperature is introduced as:

T̄ =
a1t0

g0
, (56)

while other nondimensional quantities are the same as in Equation (45).

Figure 7. Behavior of the solution (54) and (55) versus time; x̄ = 1, y = 0, k1 = k2.

Figure 8. Behavior of the solution (54) and (55) versus time; x̄ = 1, y = 0, a1 = a2.
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Figure 9. Dependence of the solution (54) and (55) on the coordinate x; ȳ = 0, t̄ = 1, k1 = k2.

Figure 10. Dependence of the solution (54) and (55) on the coordinate x; ȳ = 0, t̄ = 1, a1 = a2.

Figure 11. Dependence of the solution (54) and (55) on the coordinate y; x̄ = 1, t̄ = 1, k1 = k2.
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Figure 12. Dependence of the solution (54) and (55) on the coordinate y; x̄ = 1, t̄ = 1, a1 = a2.

4. Conclusions

We studied the heat conduction equations with the Caputo fractional derivatives in two joint
half-planes under conditions of perfect thermal contact (the equality of temperatures and heat fluxes
at the contact surface). It should be emphasized that due to the constitutive Equation (8), the proper
boundary conditions should be stated in terms of the heat fluxes, not in terms of the normal derivatives
of temperature alone. Introducing the auxiliary function φ(x, t) allows us to use the cos-Fourier
transforms in two contact regions. The fundamental solutions permit obtaining various solutions to
the Cauchy and source problems in the convolution form.
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