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Abstract: In this paper, we consider a stochastic representation of the epsilon–skew–Cauchy
distribution, viewed as a member of the family of skewed distributions discussed in
Arellano-Valle et al. (2005). The stochastic representation facilitates derivation of distributional
properties of the model. In addition, we introduce symmetric and asymmetric extensions of the
Cauchy distribution, together with an extension of the epsilon–skew–Cauchy distribution. Multivariate
versions of these distributions can be envisioned. Bivariate examples are discussed in some detail.

Keywords: Epsilon-skew-Normal; Epsilon-skew-Cauchy; bivariate densities; generalized Cauchy
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1. Introduction

Mudholkar and Hutson (2000) [1] studied an asymmetric normal distribution that they called
the epsilon–skew–normal {ESN(ε); |ε| < 1}, with asymmetry or skewness parameter ε. When the
parameter ε assumes the value 0, the distribution simplifies to become a standard normal distribution.
The family thus consists of a parameterized set of usually asymmetric distributions that includes the
symmetric standard normal density as a special case. Specifically, we say that X ∼ ESN(ε) if its
density is of the form:

g (x; ε) = φ

(
x

1− sgn (x) ε

)
where x ∈ R, φ is the standard normal density and sgn(·) is the sign function.

Arellano-Valle et al. (2005) [2] discuss extension of this model, together with associated inference
procedures. They consider a class of Epsilon-skew-symmetric distributions associated with a particular
symmetric density f (·) that is indexed by an asymmetry parameter ε with densities given by

h(x; ε) = f
(

x
1− sgn (x) ε

)
(1)

where x ∈ R and |ε| < 1.
If X has density of the form (1), then we say that X is an epsilon-skew-symmetric random

variable and we write X ∼ ES f (ε). Arellano-Valle et al. (2005) [2] extend this family to the model
epsilon-skew-exponential-power, a model that has major and minor asymmetry and kurtosis that
the ESN model. On the other hand Gómez et al. (2007) [3] study the Fisher information matrix for
epsilon-skew-t model, which was used before in the study a financial series by Hansen (1994) [4];
see also Gómez et al. (2008) [5]. Note that if in (1) we set f (t) = 1/

(
π
(
1 + t2)), we obtain the

epsilon–skew–Cauchy model.
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We will write X ∼ N(0, 1) to indicate that X has a standard normal distribution, and we will
write Y ∼ HN(0, 1) to indicate that Y has a standard half-normal distribution, i.e., that Y = |X| where
X ∼ N(0, 1).

The distribution of the ratio X/Y of two random variables is of interest in problems in biological
and physical sciences, econometrics, and ranking and selection. It is well known that if X ∼ N(0, 1),
Y1 ∼ N(0, 1) and Y2 ∼ HN(0, 1) are independent, then the random variables X/Y1 and X/Y2 both
have Cauchy distributions; see Johnson et al. (1994, [6] Chapter 16). Behboodian, et al. (2006) [7] and
Huang and Chen (2007) [8] study the distribution of such quotients when the component random
variables are skew-normal (of the form studied in Azzalini (1985) [9]). The principle objective of the
present paper is to study the behavior of such quotients when the component random variables have
epsilon-skew-normal distributions.

The paper is organized in the following manner. In Section 2, we describe a representation
of the epsilon–skew–Cauchy model. In Section 3, we consider the distribution of the ratio of two
independent random variables, one of which has an ESN (ε) distribution and the other a standard
normal distribution. In addition, an extension of the epsilon–skew–Cauchy (ESC) distribution is
introduced. Bivariate versions of these distributions are discussed in Section 4. Extensions to higher
dimensions can be readily envisioned, but are not discussed here. In Section 5, some of the bivariate
distributions introduced in this paper are considered as possible models for a particular real-world
data set.

2. Representation of the ESC (Epsilon–Skew–Cauchy) Model

Proposition 1. If X ∼ ESN (ε) and Y ∼ HN(0, 1) are independent random variables, then Z1
d
= X

Y has an
epsilon–skew–Cauchy distribution with asymmetry parameter ε and density given by

fZ1 (z; ε) =
1

π

[
1 +

(
z

1−sgn(z)ε

)2
] ,

where z ∈ R, |ε| < 1 and we write Z1 ∼ ESC(ε).

Proof. With the transformation Z1 = X/Y and W = Y, whose Jacobian |J| = w, we obtain

fZ1,W (z, w) =
w
π

exp

{
−1

2

[
z2

(1− sgn (z) ε)2 + 1

]
w2

}
,

where z ∈ R, w > 0.
It follows directly that

fZ1 (z; ε) =
∫ ∞

0
fZ1,W (z, w)dw =

1

π

[
1 +

(
z

1−sgn(z)ε

)2
] .

Figure 1 depicts the behavior of the ESC density for a variety of parameter values.
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Figure 1. Examples of the ESC(ε) density for : ε = 0 (green line), ε = −0.5 (blue line), ε = −0.8
(black line), ε = 0.5 (red line) and ε = 0.8 (pink line).

3. Generalized Cauchy Distribution

Proposition 2. If X ∼ ESN (ε1) and Y ∼ ESN (ε2) are independent random variables, then Z d
= X

Y has what
we call a generalized epsilon–skew–Cauchy (GESC) distribution with parameters ε1 and ε2 and with density
given by

fZ (z; ε1, ε2) =
1

2π

[(
1

1+ε2

)2
+
(

z
1+sgn(z)ε1

)2
] +

1

2π

[(
1

1−ε2

)2
+
(

z
1−sgn(z)ε1

)2
] ,

where z ∈ R, |ε1| < 1, |ε2| < 1 and we write Z ∼ GESC(ε1, ε2).

Proof. Arguing as in Proposition 1, we have that

fZ (z; ε1, ε2) =
∫ ∞

−∞

|w|
2π

exp

{
−1

2

[
z2

(1− sgn (zw) ε1)
2 +

1

(1− sgn (w) ε2)
2

]
w2

}
dw.

By considering separately the cases in which z ≥ 0 and z < 0, result follows directly.

From Proposition 2 two special cases are obtained directly,

1. If ε2 = 0 a generalized Cauchy (GC) distribution is obtained. In this case we write Z ∼ GC(ε),
and its pdf is given by

fZ (z; ε) =
1

2π

[
1 +

(
z

1+sgn(z)ε

)2
] +

1

2π

[
1 +

(
z

1−sgn(z)ε

)2
] ,
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where z ∈ R, 0 < ε < 1 and Z d
= X/Y where X ∼ ESN (ε) and Y ∼ N(0, 1) are independent

random variables.
2. If ε1 = ε2 = ε an epsilon–skew–Cauchy distribution is obtained. In this case we write Z ∼

ESC2(ε), and its pdf is given by

fZ (z; ε) =
1

2π

[(
1

1+ε

)2
+
(

z
1+sgn(z)ε

)2
] +

1

2π

[(
1

1−ε

)2
+
(

z
1−sgn(z)ε

)2
] ,

where z ∈ R, |ε| < 1 and Z d
= X/Y where X ∼ ESN (ε) and Y ∼ ESN (ε) are independent

random variables.

4. General Bivariate Mudholkar-Hutson Distribution

Define Z1, Z2, Z3 to be i.i.d. standard normal random variables. For i = 1, 2, 3 define

Ui =

{
−αi with probability γi
βi with probability 1− γi

where α1, α2, α3, β1, β2, β3 are positive numbers and 0 < γ1, γ2, γ3 < 1. So, the parameters αi and
βi indicate the propensity in which the discrete random variable takes negative and positive values,
respectively. The parameters γi control how often negative and positive values are taken by Ui.

In addition assume that all six random variables Z1, Z2, Z3, U1, U2 and U3 are independent,
and define

(X, Y) =
(

U1 |Z1|
U3 |Z3|

,
U2 |Z2|
U3 |Z3|

)
. (2)

The model (2) is highly flexible since it allows for different behavior in each of the four quadrants
of the plane. From (2) it may be recognized that only fractional moments of X and Y exist.

Note that if we define (W1, W2) =
(
|Z1|
|Z3|

, |Z2|
|Z3|

)
, it is readily verified that

fW1,W2 (w1, w2) =
2
π

(
1 + w2

1 + w2
2

)−3/2
I (w1 > 0, w2 > 0) , (3)

in which case we say that (W1, W2) has a standard bivariate half-Cauchy distribution.
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Using (3) and conditioning on U1, U2 and U3 we obtain the density of (X, Y) in the albeit
complicated form:

f (x, y) = 2
π

{
γ1γ2γ3

α2
3

α1α2

[
1 +

(
α3
α1

x
)2

+
(

α3
α2

y
)2
]−3/2

I(x > 0, y > 0)

}

+ 2
π

{
γ1γ2(1− γ3)

β2
3

α1α2

[
1 +

(
β3
α1

x
)2

+
(

β3
α2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 2
π

{
γ1(1− γ2)γ3

α2
3

α1β2

[
1 +

(
α3
α1

x
)2

+
(

α3
β2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 2
π

{
γ1(1− γ2)(1− γ3)

β2
3

α1β2

[
1 +

(
β3
α1

x
)2

+
(

β3
β2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 2
π

{
(1− γ1)γ2γ3

α2
3

β1α2

[
1 +

(
α3
β1

x
)2

+
(

α3
α2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 2
π

{
(1− γ1)γ2(1− γ3)

β2
3

β1α2

[
1 +

(
β3
β1

x
)2

+
(

β3
α2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 2
π

{
(1− γ1)(1− γ2)γ3

α2
3

β1β2

[
1 +

(
α3
β1

x
)2

+
(

α3
β2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 2
π

{
(1− γ1)(1− γ2)(1− γ3)

β2
3

β1β2

[
1 +

(
β3
β1

x
)2

+
(

β3
β2

y
)2
]−3/2

I(x > 0, y > 0)

}
.

(4)

Some special cases which might be considered include the following:

1. Mudholkar and Hutson type. For this we set: αi = 1 + εi, βi = 1− εi and γi = (1 + εi) /2 for
i = 1, 2, 3.

In this case the density (4) simplifies somewhat to become:

f (x, y) = 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1+ε1

x
)2

+
(

1+ε3
1+ε2

y
)2
]−3/2

I(x > 0, y > 0)

}

+ 1
4π

{
(1− ε3)

3
[

1 +
(

1−ε3
1+ε1

x
)2

+
(

1−ε3
1+ε2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1+ε1

x
)2

+
(

1+ε3
1−ε2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1− ε3)

3
[

1 +
(

1−ε3
1+ε1

x
)2

+
(

1−ε3
1−ε2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1−ε1

x
)2

+
(

1+ε3
1+ε2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1− ε3)

3
[

1 +
(

1−ε3
1−ε1

x
)2

+
(

1−ε3
1+ε2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1−ε1

x
)2

+
(

1+ε3
1−ε2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1− ε3)

3
[

1 +
(

1−ε3
1−ε1

x
)2

+
(

1−ε3
1−ε2

y
)2
]−3/2

I(x > 0, y > 0)

}
.

(5)

A further specialization of the density (5) can be considered, as follows.
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2. Homogenous Mudholkar and Hutson type. For this we set: αi = 1 + ε, βi = 1 − ε and
γi = (1 + ε) /2 for i = 1, 2, 3.
This homogeneity results in a little simplification of (4), thus:

f (x, y; ε) = 1
4π

{[
(1 + ε)3 + (1− ε)3] [1 + x2 + y2]−3/2 I(x > 0, y > 0)

}
+ 1

4π

{
(1− ε)3

[
1 +

(
1−ε
1+ε x

)2
+
(

1−ε
1+ε y

)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1 + ε)3

[
1 + x2 +

(
1+ε
1−ε y

)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1− ε)3

[
1 +

(
1−ε
1+ε x

)2
+ y2

]−3/2
I(x < 0, y > 0)

}

+ 1
4π

{
(1 + ε)3

[
1 +

(
1+ε
1−ε x

)2
+ y2

]−3/2
I(x < 0, y > 0)

}

+ 1
4π

{
(1− ε)3

[
1 + x2 +

(
1−ε
1+ε y

)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 + ε)3

[
1 +

(
1+ε
1−ε x

)2
+
(

1+ε
1−ε y

)2
]−3/2

I(x < 0, y < 0)

}
.

(6)

It is easy to see that the parameter ε is not identifiable in (6) because f (x, y; ε) = f (x, y;−ε).
An adjustment to ensure identifiability involves introducing the constraint ε ≥ 0.

3. Equal weights. In this case we assume that α1, α2, α3, β1, β2, β3 are positive numbers and γi = 1/2
for i = 1, 2, 3.

f (x, y) = 1
4π

{
α2

3
α1α2

[
1 +

(
α3
α1

x
)2

+
(

α3
α2

y
)2
]−3/2

+
β2

3
β1β2

[
1 +

(
β3
β1

x
)2

+
(

β3
β2

y
)2
]−3/2

}
×I (x > 0, y > 0)

+ 1
4π

{
β2

3
α1α2

[
1 +

(
β3
α1

x
)2

+
(

β3
α2

y
)2
]−3/2

+
α2

3
β1β2

[
1 +

(
α3
β1

x
)2

+
(

α3
β2

y
)2
]−3/2

}
×I (x < 0, y < 0)

+ 1
4π

{
α2

3
α1β2

[
1 +

(
α3
α1

x
)2

+
(

α3
β2

y
)2
]−3/2

+
β2

3
β1α2

[
1 +

(
β3
β1

x
)2

+
(

β3
α2

y
)2
]−3/2

}
×I (x > 0, y < 0)

+ 1
4π

{
α2

3
β1α2

[
1 +

(
α3
β1

x
)2

+
(

α3
α2

y
)2
]−3/2

+
β2

3
α1β2

[
1 +

(
β3
α1

x
)2

+
(

β3
β2

y
)2
]−3/2

}
×I (x < 0, y > 0) .

(7)

The pdf (7) is not identifiable because the values of αi can be interchanged with those of βi and
f (x, y) does not change. Moreover, multiplying all of the α’s and β’s by a constant does not
change f (x, y). So, one way to get identifiability in the model (7) is to set αi = βi (i = 1, 2, 3) and
α3 equal to 1. In that case, Equation (7) takes the form

f (x, y) =
1

2π

1
α1α2

[
1 +

(
x
α1

)2
+

(
y
α2

)2
]−3/2

.

However, this is then recognizable as being simply a scaled version of the standard bivariate
Cauchy density (compare with Equation (3)).

We now consider the marginal densities for the random variable (X, Y) defined by (2). From (2)
we have X = U1|Z1|

U3|Z3|
and Y = U2|Z2|

U3|Z3|
and the density of W1 = |Z1|

|Z3|
=
∣∣∣ Z1

Z3

∣∣∣ is a standard half-Cauchy

density, i.e., fW1(w1) =
2
π (1 + w2

1)
−1.
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Consequently, the density of X is of the form

fX (x) = 2
π γ1γ3

α3
α1

[
1 +

(
α3
α1

x
)2
]−1

I (x > 0) + 2
π γ1(1− γ3)

β3
α1

[
1 +

(
β3
α1

x
)2
]−1

I (x < 0)

+ 2
π (1− γ1)

{
γ3

α3
β1

[
1 +

(
α3
β1

x
)2
]−1

I (x < 0) + (1− γ3)
β3
β1

[
1 +

(
β3
β1

x
)2
]−1

I (x > 0)

}
,

which is a mixture of half-Cauchy densities. The density of Y is then of the same form with α1, β1

replaced by α2, β2.
To get a more direct bivariate version of the original Mudholkar-Hutson density in which the

α’s, β’s and γ’s were related to each other, we go back to the original representation, i.e., Equation (2),
but now we set α1 = (1 + ε1), β1 = (1− ε1), γ1 = (1 + ε1) /2, α2 = (1 + ε2), β2 = (1− ε2),
γ2 = (1 + ε2) /2 and α3 = β3 = γ3 = 1. So the density is of the form

f (x, y) =
1

2π

[
1 +

(
x

1 + ε1

)2
+

(
y

1 + ε2

)2
]−3/2

I (x > 0, y > 0)

+
1

2π

[
1 +

(
x

1 + ε1

)2
+

(
y

1− ε2

)2
]−3/2

I (x > 0, y < 0)

+
1

2π

[
1 +

(
x

1− ε1

)2
+

(
y

1 + ε2

)2
]−3/2

I (x < 0, y > 0)

+
1

2π

[
1 +

(
x

1− ε1

)2
+

(
y

1− ε2

)2
]−3/2

I (x < 0, y < 0)

with marginal density

fX (x) =
1
π

[
1 +

(
x

1 + ε1

)2
]−1

I (x > 0) +
1
π

[
1 +

(
x

1− ε1

)2
]−1

I (x < 0) .

A more general version of the density with γ3 = 1, is of the form: (without loss of generality set
α3 = 1)

f (x, y) =
2
π

γ1γ2
1

α1α2

[
1 +

(
x
α1

)2
+

(
y
α2

)2
]−3/2

I (x > 0, y > 0)


+

2
π

γ1(1− γ2)
1

α1β2

[
1 +

(
x
α1

)2
+

(
y
β2

)2
]−3/2

I (x > 0, y < 0)


+

2
π

(1− γ1)γ2
1

β1α2

[
1 +

(
x
β1

)2
+

(
y
α2

)2
]−3/2

I (x < 0, y > 0)


+

2
π

(1− γ1)(1− γ2)
1

β1β2

[
1 +

(
x
β1

)2
+

(
y
β2

)2
]3/2

I (x < 0, y < 0)


with corresponding marginal

fX (x) =
2
π

γ1
1
α1

[
1 +

(
x
α1

)2
]−1

I (x > 0) +
2
π
(1− γ1)

1
β1

[
1 +

(
x
β1

)2
]−1

I (x < 0) .
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Needless to say we can consider analogous models in which, instead of assuming that
(W1, W2) =

(
|Z1|
|Z3|

, |Z2|
|Z3|

)
has a density of the form (3) we assume that it has another bivariate density

with support R+ ×R+, e.g., bivariate normal restricted to R+ ×R+, or bivariate Pareto, etc.
Another general bivariate MH model which includes the bivariate skew-Cauchy distribution

given by (2) is the bivariate skew t model. This model can be obtained replacing |Z3| by V3 ∼ χ2
ν in

Equation (2). Thus, if we assume that all six random variables Z1, Z2
iid∼ N (0, 1), V3 ∼ χ2

ν; U1, U2 and
U3 are independent, and define

(X, Y) =
(

U1 |Z1|
U3
√

V3/ν
,

U2 |Z2|
U3
√

V3/ν

)
, (8)

then, because (W1, W2) =
(
|Z1|√
V3/ν

, |Z2|√
V3/ν

)
has density

fW1,W2 (w1, w2) =
2
π

(
1 +

w2
1 + w2

2
ν

)−(ν+2)/2

I (w1 > 0, w2 > 0) ,

the density of (X, Y) is

f (x, y) =
∫

f (x, y |u1, u2, u3 ) f (u1, u2, u3)du1du2du3

=
∫ u2

3
u1u2

fW1,W2

(
u3
u1

x, u3
u2

y
∣∣∣ u1, u2, u3

)
f (u1, u2, u3)du1du2du3

=
∫ 2

π
u2

3
u1u2

[
1 + 1

ν

(
u3
u1

x
)2

+ 1
ν

(
u3
u2

y
)2
]−(ν+2)/2

f (u1, u2, u3)du1du2du3

= 2
π

{
γ1γ2γ3

α2
3

α1α2

[
1 + 1

ν

(
α3
α1

x
)2

+ 1
ν

(
α3
α2

y
)2
]−(ν+2)/2

I(x > 0, y > 0)

}

+ 2
π

{
γ1γ2(1− γ3)

β2
3

α1α2

[
1 + 1

ν

(
β3
α1

x
)2

+ 1
ν

(
β3
α2

y
)2
]−(ν+2)/2

I(x < 0, y < 0)

}

+ 2
π

{
γ1(1− γ2)γ3

α2
3

α1β2

[
1 + 1

ν

(
α3
α1

x
)2

+ 1
ν

(
α3
β2

y
)2
]−(ν+2)/2

I(x > 0, y < 0)

}

+ 2
π

{
γ1(1− γ2)(1− γ3)

β2
3

α1β2

[
1 + 1

ν

(
β3
α1

x
)2

+ 1
ν

(
β3
β2

y
)2
]−(ν+2)/2

I(x < 0, y > 0)

}

+ 2
π

{
(1− γ1)γ2γ3

α2
3

β1α2

[
1 + 1

ν

(
α3
β1

x
)2

+ 1
ν

(
α3
α2

y
)2
]−(ν+2)/2

I(x < 0, y > 0)

}

+ 2
π

{
(1− γ1)γ2(1− γ3)

β2
3

β1α2

[
1 + 1

ν

(
β3
β1

x
)2

+ 1
ν

(
β3
α2

y
)2
]−(ν+2)/2

I(x > 0, y < 0)

}

+ 2
π

{
(1− γ1)(1− γ2)γ3

α2
3

β1β2

[
1 + 1

ν

(
α3
β1

x
)2

+ 1
ν

(
α3
β2

y
)2
]−(ν+2)/2

I(x < 0, y < 0)

}

+ 2
π

{
(1− γ1)(1− γ2)(1− γ3)

β2
3

β1β2

[
1 + 1

ν

(
β3
β1

x
)2

+ 1
ν

(
β3
β2

y
)2
]−(ν+2)/2

I(x > 0, y > 0)

}
.

(9)

The pair of variables in (8) allows one to model a wider variety of paired data sets than that given
in (2) because it also can model light and heavy “tails” in a different way for each quadrant of the
coordinate axis. Additionally, it is possible to compute the r−order moments.

Proposition 3. The expected value of (X, Y) in (8) is given by

E (X, Y) =
√

ν√
π
(β1 (1− γ1)− α1γ1, β2 (1− γ2)− α2γ2)

(
1− γ3

β3
− γ3

α3

)
Γ (ν/2− 1/2)

Γ (ν/2)
,

provided that ν > 1.
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Proof. For i = 1, 2 it is immediate that E (Ui)E (|Zi|) = (βi (1− γi)− αiγi)
√

2/
√

π and E
(

U−1
3

)
=

(1− γ3) /β3 − γ3/α3.
On the other hand, since V3 ∼ χ2

ν then

E
( √

ν√
V3

)
=
∫ ∞

0

√
ν√
x

xν/2−1

2ν/2Γ (ν/2)
e−x/2dx ν>1

=

√
νΓ (ν/2− 1/2)√

2Γ (ν/2)
.

Therefore, from (8) we have

E (X, Y) = (E (U1)E (|Z1|) ,E (U2)E (|Z2|))E
(

1
U3

)
E
( √

ν√
V3

)
and the result is obtained straightforward.

Following the proof of the previous proposition it is possible to obtain the r−order moments
provided that ν > r.

In applications, it will usually be appropriate to augment these models by the introduction of
location, scale and rotation parameters, i.e., to consider(

X̃, Ỹ
)
= µ + Σ1/2 (X, Y) ,

where µ ∈ (−∞, ∞)2 and Σ is positive definite.

5. Application

The data that we will use were collected by the Australian Institute of Sport and reported by Cook
and Weisberg (1994) [10]. The data set consists of values of several variables measured on n = 202
Australian athletes. Specifically, we shall consider the pair of variables (Ht,Wt) which are the height
(cm) and the weight (Kg) measured for each athlete.

We fitted the bivariate Mudholkar-Hutson distributions for five different cases. In addition to
the general case which is given by the pdf f (x, y; αi, βi, γi, ν, µ, Σ), based on (9), where i = 1, 2, 3,
and µ = (µ1, µ2)

′ is the location parameter and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

is the symmetric positive definite scale matrix, we also consider four special cases:

1. When the pdf is given by Equation (4). That is taking ν→ ∞ in the bivariate skew t MH model.
2. When the pdf is given by

f
(

x, y; εi, µj, Σ11, Σ22, Σ12
)
= f

(
x, y; 1 + εi, 1− εi,

1 + εi
2

, µ, Σ

)
,

which is the bivariate MH distribution specified using the special case (1.), where |εi| < 1 for all
i = 1, 2, 3.

3. When the pdf is given by

f
(

x, y; ε, µj, Σ11, Σ22, Σ12
)
= f

(
x, y; 1 + ε, 1− ε,

1 + ε

2
, µ, Σ

)
,

which is the bivariate MH distribution specified using the special case (2.), where |ε| < 1.
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4. When the pdf is given by

f
(

x, y; µj, Σ11, Σ22, Σ12
)
= f

(
x, y; 1, 1,

1
2

, µ, Σ

)
,

which is the bivariate Cauchy distribution (as in (3)).

All fits were done by maximizing the likelihood through numerical methods which combine
algorithms based on the Hessian matrix and the Simulated Annealing algorithm. Standard errors of
the estimations were computed based on 1000 bootstrap data samples.

To compare model fits, we used the Akaike criterion (see Akaike, 1974 [11]), namely

AIC = −2 ln
[
L
(
θ̂
)]

+ 2k,

where k is the dimension of θ which is the vector of parameters of the model being considered.
Table 1 displays the results of the fits for 100 women. In Table 1, we see the results of fitting the five

competing models. They are the general bivariate skew−t MH model with pdf given in Equation (9),
General bivariate MH with pdf given in Equation (4), Bivariate MH (1.) with pdf given in Equation (5),
Bivariate MH (2.) with pdf given in Equation (6) and Bivariate Cauchy. It shows the maximum
likelihood estimates (mle’s) of the five models. The last column shows the estimated standard errors
(se) of the estimates. Non identifiability of the bivariate skew−t MH model is evidenced by the huge
value of the estimated standard error of the estimate of ν. However, the AIC criterion indicates that
data are better fitted by the general bivariate skew−t MH (9) model. Figure 2 shows the contour lines
of the fitted pdf.

Table 1. Bivariate Mudholkar-Hutson fits for women.

Model AIC (αi, βi, γi, µ, Σ) Estimates Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 1354.5

(α1, α2, α3) = (13.48, 16.62, 1.25)
(β1, β2, β3) = (10.65, 36.47, 3.00)
(γ1, γ2, γ3) = (1.00, 0.97, 0.94)
ν = 10.93
(µ1, µ2) = (161.97, 52.50)
(Σ11, Σ22, Σ12) = (1.82, 1.67, 1.58)

(10.02, 29.96, 8.05)
(1.53, 17.79, 19.75)
(0.006, 0.02, 0.03)
168.56
(2.18, 2.22)
(17.80, 14.36, 14.33)

General bivariate
MH 1413.5

(α1, α2, α3) = (13.26, 16.04, 1.05)
(β1, β2, β3) = (10.64, 36.50, 4.99)
(γ1, γ2, γ3) = (1.00, 0.98, 0.94)
(µ1, µ2) = (161.69, 50.90)
(Σ11, Σ22, Σ12) = (1.13, 1.17, 1.09)

(2.70, 4.30, 0.90)
(0.92, 3.85, 3.64)
(0.003, 0.02, 0.02)
(1.79, 2.39)
(1.57, 1.59, 1.47)

Bivariate
MH (1.) 1429.4

(ε1, ε2, ε3) = (0.85, 0.83,−1.00)
(µ1, µ2) = (186.30, 83.80)
(Σ11, Σ22, Σ12) = (169.37, 334.65, 224.88)

(0.07, 0.08, 0.003)
(1.45, 1.47)
(33.30, 51.34, 36.83)

Bivariate
MH (2.) 1453.8

ε = 0.50
(µ1, µ2) = (171.60, 62.30)
(Σ11, Σ22, Σ12) = (32.49, 61.40, 33.96)

0.15
(1.86, 2.80)
(8.59, 16.41, 10.87)

Bivariate
Cauchy 1665.5 (µ1, µ2) = (177.21, 69.08)

(Σ11, Σ22, Σ12) = (77.84, 124.86, 41.53)
(1.64, 2.01)
(2.23, 1.39, 8.32)

Table 2 displays the results of the fits for 102 men. In Table 2 we again compare five competing
models. The maximum likelihood estimates (mle’s) of the five models, the corresponding Akaike
criterion values and estimated standard errors of the estimates are displayed in the table. Again,
the AIC indicates that the data are better fitted by the general bivariate skew−t MH (9) model. Figure 3
shows the contour lines of the fitted pdf. Non identifiability of the general bivariate skew−t MH (9)



Symmetry 2019, 11, 794 11 of 14

and General bivariate MH (4) models is shown by the large values of the estimated standard errors for
some estimates.

Table 2. Bivariate Mudholkar-Hutson fits for men.

Model AIC (αi, βi, γi, µ, Σ) Estimates Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 1396.9

(α1, α2, α3) = (13.43, 20.16, 2.62)
(β1, β2, β3) = (35.02, 11.84, 6.01)
(γ1, γ2, γ3) = (0.94, 0.96, 0.88)
ν = 9.99
(µ1, µ2) = (177.92, 70.30)
(Σ11, Σ22, Σ12) = (4.77, 4.71, 4.04)

(14.66, 5.34, 4.12)
(8.42, 1.82, 7.83)
(0.02, 0.02, 0.04)
64.18
(0.65, 1.22)
(1.89, 6.12, 1.83)

General bivariate
MH 1441.8

(α1, α2, α3) = (52.54, 52.17, 14.58)
(β1, β2, β3) = (29.83, 62.76, 31.76)
(γ1, γ2, γ3) = (0.96, 0.98, 0.96)
(µ1, µ2) = (174.60, 66.6)
(Σ11, Σ22, Σ12) = (9.32, 17.40, 11.78)

(0.89, 1.28, 0.43)
(1.52, 1.39, 0.59)
(0.01, 0.01, 0.02)
(1.13, 1.16)
(0.76, 0.50, 0.55)

Bivariate
MH (1.) 1456.2

(ε1, ε2, ε3) = (−0.87,−0.91,−1.0)
(µ1, µ2) = (172.70, 61.00)
(Σ11, Σ22, Σ12) = (195.26, 445.26, 279.93)

(0.06, 0.05, 0.00)
(1.39, 1.94)
(32.88, 62.62, 38.52)

Bivariate
MH (2.) 1512.6

ε = 0.17
(µ1, µ2) = (185.10, 80.54)
(Σ11, Σ22, Σ12) = (36.15, 70.27, 38.53)

0.21
(2.73, 3.54)
(14.66, 26.93, 19.09)

Bivariate
Cauchy 1775.2 (µ1, µ2) = (184.45, 79.36)

(Σ11, Σ22, Σ12) = (65.57, 155.19, 59.31)
(3.01, 3.43)
(3.62, 1.54, 8.29)

Ht (cm)
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Contour lines of fitted pdf

Figure 2. Female Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH.
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Figure 3. Male Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH.

Table 3 displays the results of the fits for the full set of n = 202 Australian athletes, regardless of
gender. Table 3 shows the maximum likelihood estimates (mle’s) of the five models together with the
corresponding Akaike criterion values and estimated standard errors of the estimates. The AIC here
also indicates that the data are better fitted by the general bivariate skew−t MH model (9). Figure 4
shows the contour lines of the fitted pdf. Thus, in all three cases, males, females and combined, the best
fitting model was the general bivariate skew−t MH.

Table 3. Bivariate Mudholkar-Hutson fits.

Model AIC (αi, βi, γi, µ, Σ) Estimates Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 2803.3

(α1, α2, α3) = (14.15, 17.35, 1.09)
(β1, β2, β3) = (49.35, 67.05, 1.62)
(γ1, γ2, γ3) = (0.98, 0.96, 0.91)
ν = 10.93
(µ1, µ2) = (171.09, 61.00)
(Σ11, Σ22, Σ12) = (1.01, 1.32, 1.04)

(8.18, 10.35, 3.57)
(5.22, 5.57, 6.86)
(0.01, 0.01, 0.02)
9.42
(0.24, 0.76)
(5.74, 7.75, 6.07)

General bivariate
MH 2901.4

(α1, α2, α3) = (15.42, 17.67, 2.25)
(β1, β2, β3) = (49.28, 66.53, 3.36)
(γ1, γ2, γ3) = (0.98, 0.96, 0.88)
(µ1, µ2) = (170.54, 60.95)
(Σ11, Σ22, Σ12) = (2.16, 3.02, 2.35)

(10.74, 12.92, 2.61)
(5.00, 5.97, 5.10)
(0.01, 0.02, 0.02)
(0.54, 1.02)
(1.55, 1.84, 1.32)

Bivariate
MH (1.) 2984.0

(ε1, ε2, ε3) = (1.00, 0.39,−0.13)
(µ1, µ2) = (181.06, 74.48)
(Σ11, Σ22, Σ12) = (11.41, 50.90, 18.73)

(0.01, 0.07, 0.06)
(0.76, 0.84)
(1.59, 5.00, 2.17)

Bivariate
MH (2.) 3022.2

ε = 0.70
(µ1, µ2) = (171.37, 61.32)
(Σ11, Σ22, Σ12) = (48.62, 103.69, 64.24)

0.10
(2.42, 3.07)
(53.89, 89.24, 68.07)

Bivariate
Cauchy 3536.9 (µ1, µ2) = (178.84, 71.81)

(Σ11, Σ22, Σ12) = (106.75, 199.84, 83.64)
(0.83, 1.55)
(2.16, 1.16, 5.53)
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Figure 4. Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH. Red point for
Men and sign + for women.

For the three real cases analyzed the general bivariate skew-t MH model (9) was indicated as
the best fitted. That means that it seems worth considering the more general model to explain the
variability of these data sets.

6. Concluding Remarks

The Mudholkar–Hutson skewing mechanism admits flexible extensions in both the univariate and
multivariate cases. Stochastic representations of such extended models typically have corresponding
likelihood functions that are somewhat complicated (for example Equations (4) and (9)). This is partly
compensated for by the ease of simulation for such models using the representation in terms of latent
variables ( the Ui’s and Zi’s in (2) or (8)). The data set analyzed in Section 5 illustrates the potential
advantage of considering the extended bivariate Mudholkar-Hutson model, since the basic bivariate
M-H model does not provide an acceptable fit to the “athletes” data. Needless to say, applying Occam’s
razor, it would always be desirable to consider the hierarchy of the five nested bivariate models that
were considered in Section 5, in order to determine whether one of the simpler models might be
adequate to describe a particular data set. Indeed there may be other special cases of the model (4),
intermediate between (4) and (5) say, that might profitably be considered for some data sets. However,
it should be remarked that selection of such sub-models for consideration should be done prior to
inspecting the data. The addition of the GBMH model to the data analysts tool-kit should provide
desirable flexibility for modeling data sets which exhibit behavior somewhat akin to, but not perfectly
adapted to, more standard bivariate Cauchy models.
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