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Abstract: The main aim of this paper is that for any second-order linear recurrence sequence, the
generating function of which is f (t) = 1

1+at+bt2 , we can give the exact coefficient expression of the
power series expansion of f x(t) for x ∈ R with elementary methods and symmetry properties. On the
other hand, if we take some special values for a and b, not only can we obtain the convolution formula
of some important polynomials, but also we can establish the relationship between polynomials
and themselves. For example, we can find relationship between the Chebyshev polynomials and
Legendre polynomials.
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1. Introduction

For any integer n ≥ 1 and any real number y, the Fibonacci polynomials Fn(y) and the Lucas
polynomials Ln(y) are defined by the second-order linear recurrence sequence

Fn+1(y) = yFn(y) + Fn−1(y)

and
Ln+1(y) = yLn(y) + Ln−1(y),

where the first two terms are F0(y) = 0, F1(y) = 1, L0(y) = 2 and L1(y) = y.

If we take α =
y+
√

y2+4
2 , β =

y−
√

y2+4
2 , according to the properties of the second-order linear

recurrence sequence, we have

Fn(y) =
αn − βn

α− β

and
Ln(y) = αn + βn.

For any integer n ≥ 0, the Fibonacci numbers Fn = Fn(1) can be defined by the generating function

1
1− t− t2 =

∞

∑
n=0

Fntn.
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For any integer n ≥ 0, the first and the second kind Chebyshev polynomials Tn(y) and Un(y) are
defined by the second-order linear recurrence sequence

Tn+2(y) = 2yTn+1(y)− Tn(y)

and
Un+2(y) = 2yUn+1(y)−Un(y),

where the first two terms are T0(y) = 1, T1(y) = y, U0(y) = 1 and U1(y) = 2y.
If we take α = y +

√
y2 − 1, β = y−

√
y2 − 1, according to the properties of the second-order

linear recurrence sequence, we have

Tn(y) =
αn + βn

2
and

Un(y) =
αn+1 − βn+1

α− β
.

On the other hand, the second kind Chebyshev polynomials Un(y) can be also defined by the
generating function

1
1− 2yt + t2 =

∞

∑
n=0

Un(y)tn.

Besides Fibonacci polynomials, Lucas polynomials and Chebyshev polynomials, other orthogonal
polynomials have also been studied by interested scholars.

For example, the Legendre polynomials Pn(y) are defined by the generating function

(
1

1− 2yt + t2

) 1
2
=

∞

∑
n=0

Pn(y)tn.

The Jacobi polynomials {P(α,β)
n (y)}0≤n<∞ are defined by the generating function

[
R(1 + R− t)α(1 + R + t)β

]−1
=

∞

∑
k=0

2−α−βP(α,β)
n (y)tn,

where R =
√

1− 2yt + t2, |t| < 1, α, β > −1.
The Gegenbauer polynomials {Cλ

n (y)}0≤n<∞ are defined by the generating function(
1

1− 2yt + t2

)λ

=
∞

∑
n=0

Cλ
n (y)t

n,
(

λ > −1
2

)
.

It is well know that polynomials and sequence occupy indispensable positions in the research
of number theory. Especially, Fibonacci and Lucas numbers, Chebyshev and Legendre polynomials
and others. These polynomials and numbers are closely related and there are a variety of meaningful
results which have been researched by interested scholars until now. For example, the identities of
Chebyshev polynomials can be found in [1–9], and the contents about Fibonacci and Lucas numbers
in [10,11]. Some authors have a research which connects Chebyshev polynomials and Fibonacci or
Lucas polynomials (see [12–14]).

In particular, we can find many significant results in the aspect of studying the calculating problem
of one kind sums of some important polynomials. For example, Yuankui Ma and Wenpeng Zhang
have calculated one kind sums of Fibonacci Polynomials (see [15]) as follows.
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Let h be a positive integer, for any integer n ≥ 0, they proved

∑
a1+a2+···+ah+1=n

Fa1(x)Fa2(x) · · · Fah+1(x) =
1
h!
·

h

∑
j=1

(−1)h−j · S(h, j)
x2h−j

×
(

n

∑
i=0

(n− i + j)!
(n− i)!

·
(

2h + i− j− 1
i

)
·
(−1)i · 2i · Fn−i+j(x)

xi

)
,

where the summation is over all h + 1-tuples with non-negative integer coordinates (a1, a2, · · · , ah+1
such that a1 + a2 + · · ·+ ah+1 = n, and S(h, i) is a second order non-linear recurrence sequence defined
by S(h, 0) = 0, S(h, h) = 1, and S(h + 1, i + 1) = 2 · (2h− 1− i) · S(h, i + 1) + S(h, i) for all positive
integers 1 ≤ i ≤ h− 1.

Yixue Zhang and Zhuoyu Chen have researched the calculating problem of one kind sums of the
second kind Chebyshev polynomials (see [16]) as follows.

Let h be a positive integer, for any integer n ≥ 0, they proved

∑
a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1(x)

=
1

2h · h!
·

h

∑
j=1

C(h, j)
x2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
(

2h + i− j− 1
i

)
·

Un−i+j(x)
xi ,

where C(h, i) is a second order non-linear recurrence sequence defined by C(h, 0) = 0, C(h, h) = 1,
C(h + 1, 1) = 1 · 3 · 5 · · · (2h− 1) = (2h− 1)!! and C(h + 1, i + 1) = (2h− 1− i) · C(h, i + 1) + C(h, i)
for all 1 ≤ i ≤ h− 1.

Shimeng Shen and Li Chen have studied the calculating problem of one kind sums of Legendre
Polynomials (see [17]) as follows.

For any positive integer k and integer n ≥ 0, they proved

(2k− 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pak (x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1− i− j)!
(n− i)!

·
(i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x)

where(2k − 1)!! = 1× 3× 5 · · · (2k − 1) = 2k( 1
2 )k, and C(k, i) is a recurrence sequence defined by

C(k, 1) = 1, C(k + 1, k + 1) = (2k− 1)!! and C(k + 1, i + 1) = C(k, i + 1) + (k− 1 + i) · C(k, i) for all
1 ≤ i ≤ k− 1.

They have converted the complex sums of Fn(x) into a simple combination of Fn(x), the complex
sums of Un(x) into a simple combination of Un(x), and the complex sums of Pn(x) into a simple
combination of Pn(x).

Very recently, Taekyun Kim and other people researched the properties of Fibonacci numbers
through introducing the convolved Fibonacci numbers pn(x) by generating function as follows
(see [18]): (

1
1− t− t2

)x
=

∞

∑
n=0

pn(x)
tn

n!
, (x ∈ R).

They researched some new and explicit identities of the convolved Fibonacci numbers for x ∈ N.
For example, for n ≥ 0 and r ∈ N, they have proved the recurrence relationship of pn(x) (see [18]):

pn(x) =
n

∑
l=0

pl(r)pn−l(x− r) =
n

∑
l=0

pn−l(r)pl(x− r).
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The convolved Fibonacci numbers pn(x) seems to be only connected with the simple power
square. In fact, it can establish the relationship between polynomials and themselves, so the further
research of pn(x) is very significant. They have provided us a new perspective to study the properties
of some vital polynomials. For example, Taekyun Kim and other people have proved the relationship
between pn(x) and the combination sums about Fibonacci numbers:

pn(r + 1)
n!

=
n

∑
l1=0

n−l1

∑
l2=0
· · ·

n−l1−···−lr−1

∑
lr=0

Fl1 Fl2 · · · Flr Fn−l1−l2−···−lr .

They have converted the complex sums of Fn(x) into a calculation problem of pn(x) and the
calculation method is easier and the expression is simpler.

Inspired by this article, in this paper, for any second-order linear recurrence sequence, the
generating function of which is f (t) = 1

1+at+bt2 , we can define(
1

1 + at + bt2

)x
=

∞

∑
n=0

pn(x)
tn

n!
, (a, b, x ∈ R). (1)

Firstly, we give a specific computational formula of pn(x) for x ∈ R using the elementary methods.
After that for any polynomial or sequence, the generating function of which is f (t) = 1

1+at+bt2 , we can
obtain its convolved formula easily and directly.

Secondly, if we take some special values for a, b in f (t) and x in pn(x), we can find some
relationship between special polynomials and themselves. For example, we will establish the
relationship between the convolved Fibonacci numbers and Lucas numbers, the relationship between
the convolved formula of the second kind Chebyshev polynomials and the first kind Chebyshev
polynomials, and the relationship between Legendre polynomials and the first kind Chebyshev
polynomials and others.

At last, through the computational formula of pn(x), especially for x ∈ N, we can also convert
the complex sums of Fn into a liner combination of Ln; and express the complex sums of Un(y) as a
liner combination of Tn(y). More importantly, the forms are more common and the calculations are
easier than previous results.

We will prove the main results as follows:

Theorem 1. Let f (t) = 1
1−t−t2 , for any integer n ≥ 0 and x ∈ R, we can obtain

pn(x) =
1
2

n

∑
i=0

(−1)i
(

n
i

)
〈x〉i〈x〉n−iLn−2i,

where 〈x〉n = x(x + 1)(x + 2) · · · (x + n− 1) and (x)0 = 1.

Theorem 2. Let f (t) = 1
1−2yt+t2 , for any integer n ≥ 0 and x, y ∈ R, we can obtain

pn(x; y) =
n

∑
i=0

(
n
i

)
〈x〉i〈x〉n−iTn−2i(y).

From Theorem 1 we can deduce the following:
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Corollary 1. For any positive integer k, we have the identity

∑
a1+a2+···+ak=n

Fa1 Fa2 · · · Fak

=
1

2((k− 1)!)2

n

∑
i=0

(−1)i (k + i− 1)!(k + n− i− 1)!
i!(n− i)!

· Ln−2i.

From Theorem 2 we can deduce the following:

Corollary 2. For any positive integer k, we have the identity

∑
a1+a2+···+ak=n

Ua1(y) ·Ua2(y) · · ·Uak (y)

=
1

((k− 1)!)2

n

∑
i=0

(k + i− 1)!(k + n− i− 1)!
i!(n− i)!

· Tn−2i(y).

Corollary 3. If x = 1
2 , we have the identity

Pn(y) =
1
2n

n

∑
i=0

(2i− 1)!!(2n− 2i− 1)!!
i!(n− i)!

· Tn−2i(y).

Corollary 4. If x = − 1
2 , we have the identity

R =
∞

∑
n=0

1
2n

n

∑
i=0

(2i− 3)!!(2n− 2i− 3)!!
i!(n− i)!

· Tn−2i(y) · tn.

Corollary 5. If x = λ > − 1
2 , we have the identity

Cλ
n (y) =

1
n!

n

∑
i=0

(
n
i

)
〈λ〉i〈λ〉n−iTn−2i(y).

Theorems 1 and 2 give the computational formula of pn(x) of some famous polynomials.
Especially, we know that polynomials are closely connected and they can be converted to each
other. According to these theorems, we can obtain the relationship between the polynomials easily. It
cannot only extend the application of orthogonal polynomials, but also make replacement calculations
according to its complexity. For example, if we make a calculation involving the Gegenbauer
polynomials, for simple calculations, we can convert it into Chebyshev polynomials according to
Corollary 5.

2. A Simple Lemma

In order to prove our theorems, we are going to introduce a simple lemma.

Lemma 1. For any integer n ≥ 0 and a, b, x ∈ R, we can obtain the equation

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(−a +
√

a2 − 4b
2

)n−2i

+

(
−a−

√
a2 − 4b

2

)n−2i
 .

Proof. Firstly, according Equation (1), we have

∞

∑
n=0

pn(x)
tn

n!
=

(
1

1 + at + bt2

)x
= (1− αt)−x(1− βt)−x. (2)
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We can easily know that α + β = −a, αβ = b and α = −a+
√

a2−4b
2 , β = −a−

√
a2−4b

2 are two roots of
1 + at + bt2 = 0.

Then, applying the properties of power series, we obtain

(1− αt)−x =
∞

∑
n=0

(
−x
n

)
(−1)n(αt)n =

∞

∑
n=0

(−x)n

n!
(−1)nαntn (3)

and

(1− βt)−x =
∞

∑
n=0

(
−x
n

)
(−1)n(βt)n =

∞

∑
n=0

(−x)n

n!
(−1)nβntn, (4)

where (x)n = x(x− 1)(x− 2) · · · (x− n + 1) and (x)0 = 1.
Combining Equations (2)–(4), we get

∞

∑
n=0

pn(x)
tn

n!
=

(
∞

∑
n=0

(−x)n

n!
(−1)nαntn

)(
∞

∑
n=0

(−x)n

n!
(−1)nβntn

)

=
∞

∑
n=0

(
n

∑
i=0

(−x)i(−1)iαiti

i!
· (−x)n−i(−1)n−iβn−itn−i

(n− i)!

)

=
∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−iα

iβn−i

)
tn. (5)

Similarly, according the symmetry of α and β, we can easily obtain

∞

∑
n=0

pn(x)
tn

n!
=

∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−iβ

iαn−i

)
tn. (6)

Then, combining Equations (5) and (6), we know that

∞

∑
n=0

pn(x)
tn

n!
=

1
2

∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−i(αβ)i

(
βn−2i + αn−2i

))
tn

=
1
2

∞

∑
n=0

1
n!

(
n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
βn−2i + αn−2i

))
tn. (7)

Comparing the coefficients of tn in Equation (7), we get

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
αn−2i + βn−2i

)

=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(−a +
√

a2 − 4b
2

)n−2i

+

(
−a−

√
a2 − 4b

2

)n−2i
 .

Now we have completed the proof of the Lemma 1.

3. Proof of the Theorem

Proof of Theorem 1. If we take a = −1 and b = −1 in Equation (1), we know that f (t) is the
generating function of Fibonacci number. That is,

f (t) =
1

1− t− t2 =
∞

∑
n=0

Fntn.
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The convolved Fibonacci numbers pn(x) are defined by the generating function as [18]

f x(t) =
(

1
1− t− t2

)x
=

∞

∑
n=0

pn(x)
tn

n!
. (8)

In this time, α = 1+
√

5
2 , β = 1−

√
5

2 .
According to the Lemma 1 and Ln = αn + βn, we can get

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(−a +
√

a2 − 4b
2

)n−2i

+

(
−a−

√
a2 − 4b

2

)n−2i


=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(1 +
√

5
2

)n−2i

+

(
1−
√

5
2

)n−2i


=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
αn−2i + βn−2i

)
=

1
2

n

∑
i=0

(−1)i
(

n
i

)
〈x〉i〈x〉n−iLn−2i. (9)

In this equation, pn(x) is expressed as a combined forms of Lucas number. The Proof of Theorem 1
has finished.

About the convolved Fibonacci numbers pn(x), Taekyun Kim and others have obtained its
some-recurrence formulae in reference [18]. Based on [18], we have given an exact computational
formula of pn(x) for any arbitrary x in Theorem 1. Compared with the results in [18], Theorem 1 is
more general and easier.

If we take x = k ∈ N in Equation (8), we get

∞

∑
n=0

pn(k)
tn

n!
=

(
1

1− t− t2

)k
=

(
∞

∑
n=0

Fntn

)k

=

(
∞

∑
a1=0

Fa1 · t
a1

)(
∞

∑
a2=0

Fa2 · ta2

)
· · ·
(

∞

∑
ak=0

Fak · t
ak

)

=

(
∞

∑
a1=0

∞

∑
a2=0
· · ·

∞

∑
ak=0

Fa1 · Fa2 · · · Fak · t
a1+a2···+ak

)

=
∞

∑
n=0

(
∑

a1+a2+···+ak=n
Fa1 · Fa2 · · · Fak

)
· tn,

and then combining Equation (9), we can obtain

∑
a1+a2+···+ak=n

Fa1 · Fa2 · · · Fak

=
1

2n!

n

∑
i=0

(−1)i
(

n
i

)
〈k〉i〈k〉n−iLn−2i

=
1

2((k− 1)!)2

n

∑
i=0

(−1)i (k + i− 1)!(k + n− i− 1)!
i!(n− i)!

Ln−2i.

The proof of Corollary 1 has finished.
For every Fal (1 ≤ l ≤ k), ∑a1+a2+···+ak=n Fa1 · Fa2 · · · Fak is symmetry.
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Proof of Theorem 2. If we take a = −2y and b = 1 in Equation (1), we all know f (t; y) is the
generating function of the second-kind Chebyshev polynomials Un(y)

f (t; y) =
1

1− 2yt + t2 =
∞

∑
n=0

Un(y)tn.

The convolved second-kind Chebyshev polynomials pn(x; y) are defined by the generating
function as [18]

f x(t; y) =
(

1
1− 2yt + t2

)x
=

∞

∑
n=0

pn(x; y)
tn

n!
. (10)

In this time, α = y +
√

y2 − 1, β = y−
√

y2 − 1.
According to the Lemma 1 and Tn(y) = 1

2 (α
n + βn), we can get

pn(x; y) =
n

∑
i=0

(
n
i

)
〈x〉i〈x〉n−iTn−2i(y). (11)

In this equation, pn(x; y) is expressed as a combined form of the first-kind Chebyshev polynomials
Tn(x).

If we take x = k ∈ N in Equation (10), and combining Equation (11) we can easily prove the
Corollary 2.

Take x = 1
2 in Equation (10), we know f

1
2 (t; y) is the generating function of the Legendre

polynomials Pn(x) as follows:

f
1
2 (t) =

(
1

1− 2yt + t2

) 1
2
=

∞

∑
n=0

Pn(y)tn =
∞

∑
n=0

pn

(
1
2

; y
)

tn

n!
.

According to Theorem 2, we can easily obtain

pn

(
1
2

; y
)

=
n

∑
i=0

(
n
i

)〈
1
2

〉
i

〈
1
2

〉
n−i

Tn−2i(y)

=
1

22n

n

∑
i=0

n!(2i)!(2(n− i))!
(i!)2((n− i)!)2 · Tn−2i(y)

=
n!
2n

n

∑
i=0

(2i− 1)!!(2n− 2i− 1)!!
i!(n− i)!

· Tn−2i(y).

In a word, we know the Legendre polynomials Pn(x) can be expressed as combined forms of the
first kind Chebyshev polynomials Tn(x) as follows:

Pn(y) =
1
2n

n

∑
i=0

(2i− 1)!!(2n− 2i− 1)!!
i!(n− i)!

· Tn−2i(y).

The proof of Corollary 3 has finished.
If we take x = − 1

2 in (10), then we can easily obtain

R =
∞

∑
n=0

p(−1
2

; y)
tn

n!
=

∞

∑
n=0

1
22n−2

n

∑
i=0

(2(i− 1))!(2(n− i− 1))!
i!(i− 1)!(n− i)!(n− i− 1)!

· Tn−2i(y) · tn

=
∞

∑
n=0

1
2n

n

∑
i=0

(2i− 3)!!(2n− 2i− 3)!!
i!(n− i)!

· Tn−2i(y) · tn.
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The proof of Corollary 4 has finished.
Taking x = λ > − 1

2 in Equation (10), we know f λ(t; y) is the generating function of the
Gegenbauer polynomials {Cλ

n (y)}0≤n<∞ as follows:(
1

1− 2yt + t2

)λ

=
∞

∑
n=0

Cλ
n (y)t

n = f λ(t; y) =
∞

∑
n=0

pn (λ; y)
tn

n!
.

According to Theorem 2, we can easily obtain

pn (λ; y) =
n

∑
i=0

(
n
i

)
〈λ〉i〈λ〉n−iTn−2i(y).

The proof of Corollary 5 has finished.
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