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Abstract: Classifying semantic relations between entity pairs in sentences is an important task in
natural language processing (NLP). Most previous models applied to relation classification rely on
high-level lexical and syntactic features obtained by NLP tools such as WordNet, the dependency
parser, part-of-speech (POS) tagger, and named entity recognizers (NER). In addition, state-of-the-art
neural models based on attention mechanisms do not fully utilize information related to the entity,
which may be the most crucial feature for relation classification. To address these issues, we propose
a novel end-to-end recurrent neural model that incorporates an entity-aware attention mechanism
with a latent entity typing (LET) method. Our model not only effectively utilizes entities and their
latent types as features, but also builds word representations by applying self-attention based on
symmetrical similarity of a sentence itself. Moreover, the model is interpretable by visualizing applied
attention mechanisms. Experimental results obtained with the SemEval-2010 Task 8 dataset, which is
one of the most popular relation classification tasks, demonstrate that our model outperforms existing
state-of-the-art models without any high-level features.

Keywords: relation extraction; entity-aware attention; latent entity typing; end-to-end learning; visualization

1. Introduction

Classifying semantic relations between entity pairs in sentences plays a crucial role in various
NLP tasks, such as information extraction, question answering, and knowledge base population [1].
A task in relation classification is defined as predicting a semantic relationship between two tagged
entities in a sentence. For example, given a sentence with the tagged entity pair, crash and attack,
this sentence is classified into the relation Cause-Effect(e1,e2), one of the pre-defined relation classes in
the SemEval-2010 Task 8 [2], as shown as Figure 1.

Figure 1. A Sample of Relation Classification.

The classification models relying on high-level lexical and syntactic features obtain by NLP tools
suffer from the propagation of implicit error of the tools and they are computationally expensive.
Therefore, many recent studies have proposed end-to-end neural models without high-level features.
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Among these, attention-based neural models that focus on semantically important parts of a sentence
show state-of-the-art results in a lot of NLP tasks. Given that these models are mainly proposed for
solving translation and language modeling tasks, they are not capable of fully utilizing the information
of tagged entities in the relation classification task. However, tagged entity pairs could provide
powerful hints for solving relation classification task. For example, even if we do not consider other
words except crash and attack, we intuitively know that the entity pair has a relation Cause-Effect(e1,e2)
instead of Component-Whole(e1,e2) from Figure 1.

To address these issues, we propose a novel end-to-end recurrent neural model, which incorporates
an entity-aware attention mechanism with a latent entity typing (LET). To capture the context of sentences,
we obtained word representations by self-attention mechanisms and build the recurrent neural architecture
with bidirectional long short-term memory (LSTM) networks. Entity-aware attention focuses on the most
important semantic information by considering entity pairs with along their latent type representation
obtained by LET which constructs a latent type vector of entity according to its characteristic.

The contributions of our work are summarized as follows: (1) We propose a novel end-to-end
recurrent neural model and an entity-aware attention mechanism with a LET which focuses on
semantic information of entities and their latent types. (2) Our model obtains an 85.2% F1-score
using the SemEval-2010 Task 8 dataset and outperforms existing state-of-the-art models without any
high-level features. (3) We show that our model is more interpretable by visualizing the attention
mechanisms applied to our model.

2. Related Work

Several studies have been conducted to solve the relation classification task. Early methods used
handcrafted features through a series of NLP tools or manually designed kernels [3]. These approaches
use high-level lexical and syntactic features obtained from NLP tools and manually designed kernels,
but the classification models relying on such features suffer from propagation of the implicit error
contained the tools [4].

On the other hand, deep neural networks have outperformed previous models by using
handcrafted features. In particular, many researchers attempted to solve this problem based on
end-to-end models using only raw sentences and pre-trained word representations learned by
Skip-gram and Continuous Bag-of-Words [5–7]. Zeng et al. employed a deep convolutional neural
network (CNN) for extracting lexical and sentence level features [8]. Dos Santos et al. proposed a
model for learning vector for each relation class using ranking loss to reduce the impact of artificial
classes [9]. Zhang and Wang used the bidirectional recurrent neural network (RNN) to learn long-term
dependency between entity pairs [10]. Furthermore, Zhang et al. proposed a bidirectional LSTM
network (BLSTM) utilizing the position of words, POS tags, named entity information, and dependency
parse [11]. This model-resolved vanishing gradient problem appeared in RNNs by using a BLSTM.

Recently, some researchers have proposed attention-based models that can focus to the most
important semantic information in a sentence. Zhou et al. combined attention mechanisms with a
BLSTM [4]. Xiao and Liu split the sentence into two entities and used two attention-based BLSTMs
hierarchically [12]. Shen and Huang proposed an attention-based CNN using word-level attention
mechanism that can focus on more influential parts in the sentence [13].

In contrast with the end-to-end models, several studies proposed models utilizing the shortest
dependency path (SDP) between entity pairs of dependency parse trees. The SDP-LSTM model
proposed by Yan et al. and the deep recurrent neural networks (DRNNs) model proposed by Xu et
al. eliminate irrelevant words out of SDP and use the neural network based on meaningful words
composing the SDP [14,15].

3. Model

In this section, we introduce in detail a novel recurrent neural model that incorporates an
entity-aware attention mechanism with a LET method. As shown in Figure 2, our model consists of
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four main components: (1) Word Representation,mapping each word in a sentence into corresponding
vector representations. (2) Self-Attention, capturing the meaning of the correlation between words
based on multi-head attention [16]. (3) BLSTM, which sequentially encodes the representations of the
self-attention layer. (4) Entity-aware Attention, which calculates attention weights with respect to the
entity pairs, word positions relative to these pairs, and their type representations obtained by our LET
that constructs a latent type representation vector of entity according to the characteristic of each entity
based on attention mechanism. The obtained features are then averaged along time steps to produce
sentence-level features.

Figure 2. The architecture of our model (best viewed in color). Entity 1 and 2 corresponds to the 3 and
(n− 1)-th words, respectively, which are fed into the LET.

3.1. Word Representations

Let an input sentence be denoted by S = {w1, w2, ..., wn}, where n denotes the number of words.
We transform each word into a vector representation by looking up the word embedding matrix
Wword ∈ Rdw×|V|, where dw is the dimension of the vector and |V| is the size of vocabulary. Then,
the word representations X = {x1, x2, ..., xn} are obtained by mapping wi, the i-th word, to a column
vector xi ∈ Rdw , which are then fed into the next layer.

3.2. Self-Attention

The word representations are fixed for each word, even though meanings of words vary depending
on the context. Many neural models encoding a sequence of words may expect to learn implicitly of
the contextual meaning, but they may not learn well because of long-term dependency problems [17].
In order for the representation vectors to capture the meaning of the words with consideration of the
context, we employ a self-attention, a special case of attention mechanisms, which only requires a
single sequence and builds a symmetrical similarity matrix of a sentence itself. Self-attention has been
widely applied to many NLP tasks such as machine translation, language understanding, and semantic
role labeling [16,18,19].

We adopt the multi-head attention formulation [16], one of the methods for implementing the
self-attention. Figure 3 illustrates the multi-head attention mechanism that consists of several linear
transformations and the scaled dot-product attention mechanism corresponding to the center block of
the figure.
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Figure 3. Multi-Head Self-Attention. For self-attention, the Q (query), K (key), and V (value), inputs
of multi-head attention, should be the same vectors. In our work, they are equivalent to X, the word
representation vectors.

Given a matrix of n vectors, query Q, key K, and value V, the scaled dot-product attention is
calculated using the following equation:

Attention(Q, K, V) = softmax(
QK>√

dw
)V (1)

In multi-head attention, the scaled dot-product attention with linear transformations is performed
on r parallel heads to pay attention to different parts. Then, the formulation of multi-head attention is
defined by the follows:

MultiHead(Q, K, V) = WM[head1; ...; headr] (2)

headi = Attention(WQ
i Q, WK

i K, WV
i V) (3)

where [;] depicts row concatenation and r is the number of heads. The weights WM ∈ Rdw×dw ,
WQ

i ∈ Rdw/r×dw , WK
i ∈ Rdw/r×dw , and WV

i ∈ Rdw/r×dw are learnable parameters for linear
transformation. WM denotes concatenation outputs of scaled dot-product attention, and the other
three above-mentioned weights denote query, key, and value of i-th head, respectively.

Because our work requires self-attention, the input matrices of multi-head attention, Q, K, and V
are all equivalent to X, the word representation vectors. As a result, outputs of multi-head attention are
denoted by M = {m1, m2, ..., mn} = MultiHead(X, X, X), where mi is the output vector corresponding
to i-th word. The output of the self-attention layer is the sequence of representations that include
informative factors of the input sentence.

3.3. Bidirectional LSTM Network

To sequentially encode the output of the self-attention layer, we use a BLSTM [20,21] consisting of
two sub LSTM networks: a forward LSTM network, which encodes the context of an input sentence,
and a backward LSTM network, which encodes the context of the reversed sentence. More formally,
BLSTM works as follows:

−→
ht =

−−−→
LSTM(mt) (4)

←−
ht =

←−−−
LSTM(mt) (5)

ht = [
−→
ht ;
←−
ht ] (6)
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The representation vectors M obtained from the self-attention layer are forwarded into to the
network step by step. At the time step t, the hidden state ht ∈ R2dh of a BLSTM is obtained by
concatenating

−→
ht ∈ Rdh , the hidden state of forward LSTM network, and

←−
ht ∈ Rdh , the hidden state of

the backward LSTM network, where dh is dimension of each LSTM’s state.

3.4. Entity-Aware Attention Mechanism

Many models with attention mechanisms achieved state-of-the-art performance in various NLP
tasks. In relation classification, these models also show good performance, but they do not fully
utilize entity information which could be powerful hints for solving the task. To address this issue, we
propose a novel entity-aware attention mechanism for fully utilizing informative factors in given entity
pairs. Entity-aware attention uses two additional features: (1) Relative position features; (2) Entity
features with latent types. The relative position features help to build contextual representation that
takes into account entity pairs [22]. On the other hand, the entity features are composed of BLSTM’s
hidden states corresponding to positions of entity pairs, and their latent type vectors obtained by our
latent entity typing (LET) method. These are formulated as shown in left and right term of Equation (7),
respectively. The final sentence representation z, resulting from this attention mechanism, is computed
as follows:

ui = tanh(WH [hi; pe1
i ; pe2

i ] + WE[he1 ; t1; he2 ; t2]) (7)

αi =
exp(v>ui)

∑n
j=1 exp(v>uj)

(8)

z =
n

∑
i=1

αihi (9)

3.4.1. Relative Position Features

In relation classification, the position of each word relative to the entities has been widely used for
word representations [1,8,13]. Recently, position-aware attention was published as a way to use relative
position features more effectively [22]. It is a variant of the attention mechanisms, which use not only
outputs from BLSTM but also the relative position features when calculating attention weights.

We adopt this method with a slightly modification as shown in Equation (7). In the equation,
pe1

i ∈ Rdp and pe2
i ∈ Rdp corresponds to the position of the i-th word relative to the first entity (e1-th

word) and second entity (e2-th word) in a sentence respectively, where ej∈{1,2} is an index of the j-th
entity. Similar to word embeddings, relative positions are converted to vector representations by
looking up in the learnable embedding matrix Wpos ∈ Rdp×(2L−1), where dp is the dimension of the
relative position vectors and L is the maximum sentence length. Finally, representations of the BLSTM
layer consider the context and the positional relationship of entities by concatenating hi, pe1

i , and pe2
i .

The representation is linearly transformed by WH ∈ Rda×(2dh+2dp), as in the Equation (7).

3.4.2. Entity Features with Latent Types

Since entity pairs present powerful hints for solving the relation classification task, we involve
representation of entity pairs and their types in our attention mechanism more directly.
The representation of entity is obtained from BLSTM’s hidden state corresponding to its position. These
are denoted by hej ∈ R2dh , where ej is the index of j-th entity. To leverage richer entity information, many
models for various NLP tasks [23] use predefined entity types such as PER, LOC, and ORG obtained by
NER [24]. However, it is not appropriate for our approach based on end-to-end learning to use it directly.
To address this issue, we propose a latent entity typing(LET) that trains latent representations of entity
types instead of using predefined entity types from NER. LET builds the latent variable c ∈ R2dh×K that
represents unrevealed entity types on the latent vector space, where K is the number of latent entity
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types. The latent type representation tj of j-th entity is calculated by weighting c against the similarity to
hej , representation of j-th entity, based on an attention mechanism. In Figure 2, the box at the top right
illustrates mechanism of LET, and the mathematical formulation is as follows:

aj
i =

exp((hej)
>ci)

∑K
k=1 exp((hej)

>ck)
(10)

tj∈{1,2} =
K

∑
i=1

aj
ici (11)

where ci is the i-th latent type vector. Our LET is inspired by latent topic clustering, a method for
predicting the latent topic of texts in the question answering task [25].

Consequently, entity features are constructed by concatenating the hidden states corresponding to
entity positions and latent type representations of entity pairs. After linear transformation of the entity
features, they are added to the representations of the BLSTM layer with relative position feature shown
as in Equation (7), and the representation of sentence z ∈ R2dh is computed by Equations from (7) to (9).

3.5. Classification and Training

The sentence representation obtained from the entity-aware attention z is fed into a fully connected
softmax layer for classification. It generates the conditional probability p(y|S, θ) over all relation types:

p(y|S, θ) = softmax(WOz + bO) (12)

where y is a target relation class and S is the input sentence. The θ denotes learnable parameters in the
entire network including WO ∈ R|R|×2dh , bO ∈ R|R|, where |R| is the number of relation classes. A loss
function L is the cross entropy between the predictions and the ground truths, which is defined as:

L = −
|D|

∑
i=1

log p(y(i)|S(i), θ) + λ||θ||22 (13)

where |D| is the size of training dataset and (S(i), y(i)) is the i-th sample in the dataset. We minimize
the loss L using the AdaDelta optimizer [26] to compute the parameters θ of our model.

To alleviate overfitting, we constrain the L2 regularization with the coefficient λ [27]. In addition,
the dropout method is applied after the word embedding, LSTM network, and entity-aware attention
to prevent co-adaptation of feature detectors [28,29].

4. Experiments

4.1. Dataset and Evaluation Metrics

We evaluate our model on the SemEval-2010 Task 8 dataset, a commonly used benchmark for
relation classification [2], and compare the results with the state-of-the-art models in this area. The dataset
contains 10 distinguished relations, Cause-Effect, Instrument-Agency, Product-Producer, Content-Container,
Entity-Origin, Entity-Destination, Component-Whole, Member-Collection, Message-Topic, and Other. The former
9 relations have two directions, whereas Other is not directional, such the total number of relations is 19.
There are 10,717 annotated sentences which consist of 8000 samples for training and 2717 samples for
testing. We adopt the official evaluation metric of the SemEval-2010 Task 8 dataset, which is based on the
macro-averaged F1-score (excluding Other), and takes into account the directionality.

4.2. Implementation Details

We tune the hyperparameters of our model on the development set of randomly sampled 800
sentences for validation. The best hyperparameters in our proposed model are listed in Table 1.
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Table 1. Hyperparameters of Our Model.

Hyper-parameter Description Value

dw Size of Word Embeddings 300
r Number of Heads 4

dh Size of Hidden Layer 300
dp Size of Position Embeddings 50
da Size of Attention Layer 50
K Number of Latent Entity Types 3

batch_size Size of Mini-Batch 20
η Initial Learning Rate 1.0

dropout rate
Word Embedding layer 0.3

BLSTM layer 0.3
Entity-aware Attention layer 0.5

λ L2 Regularization Coefficient 10−5

We use pre-trained weights of the publicly available GloVe model [7] to initialize word
embeddings in our model, and other weights, which are randomly initialized from the zero-mean
Gaussian distribution [30].

4.3. Experimental Results

Table 2 compares our Entity-aware Attention LSTM model with state-of-the-art models on this
relation classification dataset. We divide the models into three groups; Non-Neural Model, SDP-based
Model, and End-to-End Model.

Table 2. Comparison with Previous Results on SemEval-2010 Task 8 test dataset, where the WN, WAN,
PF, and DEP are WordNet (hypernyms), words around nominals, position features, and dependency
features, respectively.

Model F1-Score

Non-Neural Model SVM [3] 82.2

SDP-based Model

MVRNN [31] 82.4
FCM [32] 83.0

DepNN [33] 83.6
depLCNN + NS [34] 85.6

SDP-LSTM [14] 83.7
DRNNs [15] 86.1

End-to-End Model

CNN [8] 82.7
CR-CNN [9] 84.1

Attention-CNN [13] 84.3
+ POS, WN, WAN 85.9

BLSTM [11] 82.7
+ PF, POS, NER, DEP, WN 84.3

Attention-BLSTM [4] 84.0
Hier-BLSTM [35] 84.3

Our Model 84.7
+ Latent Entity Typing 85.2

First, the SVM [3], Non-Neural Model, was on top of the SemEval-2010 task during the official
competition period. To train an SVM classifier, it used many handcrafted features such as WordNet,
ProBank, and FrameNet that are usually not robust and computationally intensive [1]. As a result,
it achieved an F1-score of 82.2%. The second is a SDP-based Model such as the MVRNN [31], FCM [32],
DepNN [33], depLCNN + NS [34], SDP-LSTM [14], and DRNNs [15]. The SDP is a reasonable
feature for detecting the semantic structure of sentences. Actually, SDP-based models show high
performance, but SDP may not always be accurate and the parsing time exponentially increases with
long sentences [36]. The last model is the End-to-End Model, where automatically learned internal
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representations can occur between original inputs and final outputs in deep learning. For this task,
there are CNN-based models such as CNN [1,8], CR-CNN [9], and Attention-CNN [13] and RNN-based
models such as BLSTM [11], Attention-BLSTM [4], and Hierarchical-BLSTM (Hier-BLSTM) [35].

Our proposed model with LET achieves a F1-score of 85.2% which outperforms all competing
state-of-the-art approaches except depLCNN + NS, DRNNs, and Attention-CNN. However, these
models have a defect that is heavy dependence on high-level lexical features such as WordNet,
dependency parse trees, POS tags, and NER tags from NLP tools.

Experimental results in the Table 2 show that the LET is effective for relation classification by
improving the performance by 0.5% (absolutely) on the test dataset. To apply the LET, the number of
latent types, one of the model hyperparameters, should be fixed, so we have conducted an additional
experiment to obtain the optimal number of them, as shown in Figure 4.
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85.6

85.8
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F 1
-s
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)

Figure 4. Performance by the Number of Latent Types.

5. Analysis and Discussion

5.1. Ablation Study

We perform an ablation study on development set of SemEval-2010 Task 8 in order to evaluate the
impact of each feature and component applied to our entity-aware attention model, as shown in Table 3.
We set the attention-based bidirectional LSTM [4] as the baseline model, and it achieves a F1-score of
82.8%. The F1-score improves remarkably when new features and components are added. We use
GloVe model, one of the most popular pre-trained word embeddings, to initialize the embeddings,
and it contributes about F1-score of 1.2%. The newly added components, self-attention, entity-aware
attention, and latent entity typing, in our proposed model achieved a F1-score of 85.5% which is 1.3%
higher than baseline model with pre-trained embeddings and relative position features. These results
show that our proposals are effective enough.

Table 3. Ablation study for the contribution of each feature applied to our model.

Model Dev F1

Baseline(Att-BLSTM) 82.8
+ Pre-trained word embeddings 84.0
+ Relative position features 84.2
+ Self-attention 84.5
+ Entity-aware attention 84.8
+ Latent entity typing 85.5
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5.2. Visualization

There are two different visualizations that demonstrate that the model proposed in this paper
is interpretable. First, the visualization of self-attention shows the focus of each word as part of the
sentence. By showing the words that the entity pair deals with, we can find the words that well
represent the relation between them. Second, the entity-aware attention visualization shows where the
model pays attention to a sentence. This visualization result highlights important words in a sentence,
which are usually important keywords for classification.

5.2.1. Self-Attention

We can obtain richer word representations by using self-attention. These word representations
are considered as the context, based on the correlation between words in a sentence. The Figure 5
illustrates the results of self-attention in the sentence, “the <e1> pollution </e1> was caused by the <e2>
shipwrek </e2>”, which is labeled as Cause-Effect(e2,e1). There are visualizations of the two heads in the
multi-head attention applied for self-attention. The color density indicates attention values, results of
Equation 1, which implies how much an entity focuses on each word in a sentence.

Figure 5. Visualization of Self-Attention.

In Figure 5, the left side represents the words that pollution, the first entity, focuses on and the
right represents the words that shipwreck, the second entity, focuses on. We can recognize that the
entity pair is commonly concentrated on was, caused, and each other. Actually, these words play the
most important role in semantically predicting the Cause-Effect(e2,e1), which is the relation class of this
entity pair.

5.2.2. Entity-Aware Attention

Figure 6 shows where the model focuses on the sentence to compute relations between entity
pairs, which is the result of visualizing alpha vectors in Equation (8). The important words in a
sentence are highlighted in yellow, meaning the lighter the color, the more important it is to the
sentence. For example, in the first sentence, the inside is strongly highlighted, which presents the
best word representing the relation Component-whole(e1,e2) between the given entity pair. As another
example, in the third sentence, the highlighted words, assess and using, represent well the relation
Instrument-Agency(e2,e1) between entity pair, analysts and frequency. We can see that the word using is
more highlighted than the word assess, because the former represents the relation better.
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Figure 6. Visualization of Entity-aware Attention.

5.3. Assessment of Latent Entity Type

For qualitative evaluation of methods, we extract the 10 nearest entities to each latent type vectors,
and Table 4 summarizes the results of the extraction. This allows us to roughly understand what
characteristics latent types have. We set the number of latent types to three, because it shows the best
performance. The words nearest to the first type vector are related to human’s jobs and foods, while the
nearest words to the second type vector are related to machines and engineering. On the other hand,
in case of type 3, there are many negative meaning words associated with disasters and drugs. As a
result, we can see that words of similar type are well clustered around each latent type vector, therefore,
the latent type representation of each word obtained by our LET seems to be sufficiently effective to
indicate its characteristics.

Table 4. Sets of Entities grouped by Latent Types

Latent Type 10 Nearest Entities to Latent Types

Type 1 worker, chairman, author, king, potter, cuisine, spaghetti, restaurant,
bananas, salas

Type 2 systems, engine, trucks, valve, hinge, assembly, woofer, mainspring,
circuit, motor

Type 3 virus, tsunami, accident, drugs, riot, pandemic, pollution, earthquake,
contamination, marijuana

6. Conclusions

In this paper, we proposed an entity-aware attention mechanism with latent entity typing
and a novel end-to-end recurrent neural model, which incorporates this mechanism for relation
classification. Our model achieves an 85.2% F1-score in SemEval-2010 Task 8 using only raw sentence
and word embeddings without any high-level features from NLP tools, and it outperforms existing
state-of-the-art methods. In addition, we show that our model is interpretable by visualizing where the
model focuses to solve the relation extraction task. We expect our model to be extended to not only the
relation classification task but also to other tasks in which entity plays an important role. In particular,
latent entity typing can be effectively applied to sequence modeling task using entity information
without NER. In future studies, we plan to propose a new method in question answering or knowledge
base population, based on relations between entities extracted from the presented model.
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