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Abstract: In this work, the Sieve of Eratosthenes procedure (in the following named Sieve procedure)
is approached by a novel point of view, which is able to give a justification of the Prime Number
Theorem (P.N.T.). Moreover, an extension of this procedure to the case of twin primes is formulated.
The proposed investigation, which is named Limited INtervals into PEriodical Sequences (LINPES)
relies on a set of binary periodical sequences that are evaluated in limited intervals of the prime
characteristic function. These sequences are built by considering the ensemble of deleted (that
is, 0) and undeleted (that is, 1) integers in a modified version of the Sieve procedure, in such a
way a symmetric succession of runs of zeroes is found in correspondence of the gaps between
the undeleted integers in each period. Such a formulation is able to estimate the prime number
function in an equivalent way to the logarithmic integral function Li(x). The present analysis is then
extended to the twin primes, by taking into account only the runs whose size is two. In this case, the
proposed procedure gives an estimation of the twin prime function that is equivalent to the one of the
logarithmic integral function Li2(x). As a consequence, a possibility is investigated in order to count
the twin primes in the same intervals found for the primes. Being that the bounds of these intervals
are given by squares of primes, if such an inference were actually proved, then the twin primes could
be estimated up to infinity, by strengthening the conjecture of their never-ending.

Keywords: prime numbers; Prime Number Theorem (P.N.T.); modified Sieve procedure; binary
periodical sequences; prime number function; prime characteristic function; limited intervals;
logarithmic integral estimations; twin prime numbers

1. Introduction

The Sieve procedure is able to achieve heuristic justifications of the Prime Number Theorem
(P.N.T.) [1]. Such a theorem gives the asymptotic trend of the prime number function π(x), where
π(x) denotes the quantity of prime numbers p less or equal to x ∈ R, that is,

π(x) = number of primes p, p ≤ x. (1)

Let log(x) be the natural logarithm of x. If the real functions A(x) and B(x) are asympthotically
equal, that is, lim

x→∞
A(x)/B(x) = 1, then we say that A(x) and B(x) are equivalent as x → ∞, and

we write A(x) ∼ B(x). Consequently, the P.N.T. can be written as

π(x) ∼ x/ log(x). (2)
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After the infinitude of primes was recognized since ancient times, the estimation (2) was
conjectured by Gauss [2] and Legendre [3] at the end of the 18th century. Gauss himself improved
Equation (2), by considering the logarithmic integral function Li(x), which is defined as

Li(x) =
∫ x

2

dt
log t

. (3)

Again, the function (3) is such that

π(x) ∼ Li(x) (4)

but the approximation (4) is much more precise than (2). In fact, it can be demonstrated that the piece
x/ log(x) is only the first term of the series expansion of (3). The aim of this work is to introduce a
novel heuristic procedure (LINPES, Limited INtervals into PEriodical Sequences) that is equivalent to
the Li(x) approximation, in the sense of Equation (4), apart from a simple multiplicative constant, by
exploiting some binary periodic sequences, and related symmetrical runs. Pieces of these sequences
compose limited intervals of the prime characteristic function ξp(n), which is defined as

ξp(n) =

{
1 if n is prime

0 otherwise.
(5)

As a matter of fact, a topic that is very much discussed nowadays in the literature just concerns
the possible discovering of some regularities and periodicities in the distribution of the primes in
certain intervals of the integer sequence [4]. In this work, the implications of the LINPES procedure
are also investigated, in particular with an extension to the twin primes, whose distribution is given by
a function known as twin prime function π2(x), which is similar to (1), that is,

π2(x) = number of pairs of twin primes (p, p + 2), p ≤ x. (6)

Unlike the case of primes, the infinitude of twin primes is still unproved. However, analogously to
the P.N.T., the density of the twin primes has been conjectured [5], by considering that the probability
to be a prime of an integer n is equal to 1/ log(n). Consequently, the probability that n and n + 2 are
both prime can be computed, in such a way the strong twin prime conjecture[6] gives an equivalence
between the twin prime function π2(x) and the logarithmic integral function Li2(x), that is,

π2(x) ∼ C Li2(x) (7)

where Li2(x) is defined as

Li2(x) =
∫ x

2

dt

(log t)2 (8)

and C = 2 Π2 ' 1.3203 is a multiplicative constant that takes into account the statistical dependence
of the primes n and n + 2 [5]. The related constant Π2 ' 0.6602 is named twin prime constant, that is,

Π2 = ∏
p>2, p prime

(
1− 1

(p− 1)2

)
. (9)

As it will be shown later, the proposed LINPES procedure is able to estimate the twin prime
function in an equivalent way as the Li2(x) function, apart from a multiplicative constant. However,
this is made by admitting that a basic relation, which is true for the primes, is also valid for the twin
primes. In this case, the contribution of the present work will be a more probable assertion of the
infinitude of twin primes.

Before starting our discussion, we itemize the variables utilized in this paper
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• π(x): prime number function (1)
• Li(x): logarithmic integral function (3), which leads to an estimation of π(x)
• π2(x): twin prime number function (6)
• Li2(x): logarithmic integral function (8), which leads to an estimation of π2(x)
• π(N): prime number function computed in the fixed integer N
• p: generic prime number
• p(n): arithmetic function that gives the succession of primes
• ξp(n): arithmetic function that gives the characteristic function of primes (5)
• Rs(n): number of residual integers in the n− th step of the Sieve procedure
• πR(N): estimation of π(N) given by the heuristic method of Section 2
• ξ(k, n): approximation of ξp(n) after the k− th step of the Sieve procedure
• ψ(k, n): periodic binary sequence obtained in the k− th step of the modified Sieve procedure
• T(k): period of the periodic binary sequence ψ(k, n)
• J(k, n): sliding interval whose size is the same of I(k) and whose initial point is given by n
• S(k): size of the interval I(k)
• R(k): number of residual runs of zeroes in each period T(k)
• L(m, k): size of the m− th run of zeroes in each period T(k)
• I(k) = [p(k)2, p(k + 1)2): interval of ξp(n) where a piece of ψ(k, n) is stored
• D(k, n): local density of the residual runs of zeroes by moving a sliding interval J(k, n) in T(k)
• D(k): average density of the residual runs of zeroes in the period T(k)
• P(k): estimated number of primes in the interval I(k) by using the proposed procedure
• L(k): estimated number of primes in I(k) by using the logarithmic integral function Li(x)
• π(k): real number of primes in the interval I(k)
• πP(N): estimation of π(N) by using the proposed procedure
• Li(N): estimation of π(N) by using the logarithmic integral function Li(x)
• π̃P(N): corrected version of the estimation πP(N)

• R2(k): number of runs sized 2 in each period T(k)
• D2(k): average density of the residual runs 2 in the period T(k)
• P2(k): estimated number of twin primes in the interval I(k) by using the proposed procedure
• π2P(N): estimation of π2(N) by using the proposed procedure
• Li2(N): estimation of π2(N) by using the logarithmic integral function Li2(x)
• L2(k): estimated number of twin primes in I(k) by using the logarithmic integral function Li2(x)
• π̃2P(N): corrected version of the estimation π2P(N)

• π2(k): real number of twin primes in the interval I(k).

This paper is organized as follows: Section 2 reports a well-known heuristic method, which is able
to estimate the prime number function π(x) in the sense of (2), apart from a multiplicative constant.
Section 3 shows instead how the LINPES procedure is able to obtain an estimation of π(x) that is
equivalent to the logarithmic-integral function Li(x) . Section 4 extends the proposed procedure to the
case of twin primes. Finally, future research and conclusive remarks are provided in Section 5.

2. A Heuristic Estimation of π(x) Equivalent to the x/ log(x) Function

In this section, a well-known heuristic method to justify the P.N.T. in a probabilistic way is briefly
resumed, by starting from the Sieve procedure, which splits the primes from the composites in a list
of integers up to a given number N. The Sieve procedure is the most common way to obtain the
primes, and it is also presently a research topic in order to improve its efficiency [7]. Let p(n) be the
arithmetic function whose n-th element is the n-th prime, with n ∈ N [8,9]. The Sieve procedure can be
summarized by the following steps:
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• Step 1: List the integers in the interval IN = (1, N], with N ∈ N, then put n = 1 and start from
the lowest prime p(n) = p(1) = 2.

• Step 2: Cancel all the multiples of p(n) not yet struck out, by starting from p(n)2 up to N.
• Step 3: Go to the next remaining integer q > p(n) in the list. If q2 > N, the procedure ends,

otherwise increase n to n + 1.
• Step 4: Put p(n) = q and return to Step 2.

In order to directly compute the characteristic function of primes ξp(n), we can memorize the
status of each integer in a binary vector ranging from 1 to IN . In practice, we associate the value 0
to an integer that has been struck out by the procedure, and the value 1 otherwise. Such a vector
is initialized by all 1 values, because no integer is deleted when the procedure starts. Then, in each
iteration of the Sieve procedure, a 0 value is assigned to the cells that identify the deleted integers (that
is, the composite integers). At the end of the procedure, only the cells related to the prime numbers
will retain the initial 1 value.

The Sieve procedure is able to obtain heuristic justifications of the relation (2) by considering
purely probabilistic considerations [10]. To show this, let be N an integer whose order of magnitude is
large enough to allow sufficiently robust statistics. In the first step (n = 1), the multiples of p(1) = 2
are struck out, starting from p(1)2 = 4, and the number of deleted integers is approximately given by⌊

N
2

⌋
− 1 ' N

2
. (10)

Therefore, the quantity of residual integers is about Rs(1) ' N/2. In the following step (n = 2),
the multiples of p(2) = 3 are struck out. Given the independence of the congruences modulo p,
where p is a prime, about 1/3 of the residual integers will be deleted (for the Chinese Remainder
Theorem [9]). The updated number of the residual integers Rs(2) will be given by

Rs(2) '
(

1− 1
2

)
×
(

1− 1
3

)
× N. (11)

In general, about 1− 1/p(k) of the residual integers will be struck out in the k− th step of the
Sieve procedure. The procedure ends when the greatest prime number not exceeding N1/2 is reached,
that is, p(K), where K is such that p(K)2 is the greatest prime square lower than N. At this point,
we obtain an estimation πR(N) of the number of residual integers Rs(K), and consequently of the
quantity of primes π(N), that is,

πR(N) =

(
1− 1

2

)
×
(

1− 1
3

)
×
(

1− 1
p(K)

)
× N = N ×

K

∏
k=1

(
1− 1

p(k)

)
= N ×

K

∏
k=1

p(k)− 1
p(k)

.

(12)
Let us apply the Merten’s Third Theorem [11] to the reciprocal of the product structure (12), by

taking the limit as N → ∞, that is, as K → ∞. We obtain

lim
K→∞

K

∏
k=1

p(k)
p(k)− 1

× 1
log (p(K)2)

=
1
2
× eγ ' 1

2
× 1.7811 ' 0.8905 (13)

where γ is the Eulero-Mascheroni constant. Consequently, we can get the limit of πR(N) as N → ∞,
that is, an approximation of the limit of π(N) , by considering

lim
N→∞

πR(N) = lim
N→∞

N ×
K

∏
k=1

p(k)− 1
p(k)

= lim
N→∞

N × c
log N

= lim
N→∞

c N
log N

(14)
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that is, πR(N) ∼ c N
log N , with c = 2 e−γ ' 1/0.8905 ' 1.1229, and being lim

N→∞
N = lim

K→∞
p(K)2.

Noticeably, from the relations (2) and (14), the real quantity of prime numbers in the interval IN =

[1, N], is overestimated, as N → ∞, by a factor c, due to the previous approximations.
As a conclusion, this heuristic procedure gives a justification of the P.N.T. that is equivalent to

the relation (2), except for the c constant [10,12]. In Section 3, the proposed LINPES procedure will
be described, which gives a justification of the P.N.T. that is instead equivalent to the more precise
estimation (4), by means of a procedure that is not purely probabilistic, but that is also featured by
analytic considerations, which can be shared with other scientific sectors.

3. The LINPES Estimation of π(x) Equivalent to the Li(x) Function

In this section, the novel heuristic LINPES procedure is described, by showing that it can give an
estimation of the prime number function π(x). To this end, an ensemble of periodic binary sequences
will be considered in limited intervals of the prime characteristic function ξp(n). Such a topic is of
a great interest because the distribution of primes in short intervals has been deeply investigated in
literature, up to the present [13,14]. The proposed procedure is also able to provide useful insights into
the estimation of the trend of the twin prime number function π2(x). In this analysis, we denote in the
following p(0) = 1 for convenience, even if the integer 1 is not considered to be a prime.

3.1. Periodic Binary Sequences Inside the Prime Characteristic Function ξp(n)

The occurrence of pieces of periodic binary sequences inside the prime characteristic function
ξp(n) is discussed here. To this end, both the Sieve procedure and a modified version of it are
investigated step-by-step, where each step is labelled with the progressive index k, with k = 0
denoting the beginning of the two procedures. The difference between the modified and the true Sieve
procedure is simply that in the Sieve procedure, in each step k ≥ 1, only the multiplies of the prime
p(k) are struck out, but not the prime itself, whereas in the modified Sieve procedure the prime itself
is also deleted. As previously stated, the status of each integer (0→deleted, 1→undeleted) is stored
in a N-size vector, which is initialized with all 1 values. The outputs of the Sieve procedure and its
modified version are denoted as ξ(k, n) and ψ(k, n), respectively, for each step k > 0. Consequently,
the deletion of an integer from the true or the modified Sieve procedure simply means that a 0 value
replaces a 1 value in the two previous sequences. In the case of the Sieve procedure, the sequence
ξ(k, n) is an approximation at the step k of the prime characteristic function ξp(n).

At the beginning of the procedures ( k = 0), we have two equal periodic sequences of all 1 values,
that is, ξ(0, n) and ψ(0, n), whose period is T(0) = 1. In the first step of the modified Sieve procedure
(k = 1), the multiples of p(1) = 2 are struck out, including p(1) itself. Consequently, we obtain a
sequence ψ(1, n), which is still periodic, with alternating 1 and 0 symbols. The period of ψ(1, n) is
given by the prime value p(1) itself, that is, T(1) = 2. In the following, T(k) will denote the period
of the sequence ψ(k, n). Conversely, in the Sieve procedure, the prime p(1) is not deleted. In this case,
the output sequence ξ(1, n) is not periodic, but includes a piece of the periodic sequence ψ(1, n), by
starting from the square p(1)2 = 4. Before such a value, the previous sequence ξ(0, n) is preserved,
which coincides with ψ(0, n). It follows that ξ(1, n) is a mixed sequence, being composed by pieces of
both ψ(0, n) and ψ(1, n), that is,

ξ(1, n) =

{
ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if n ≥ p(1)2.
(15)

Similarly, in the second step of the modified Sieve procedure ( k = 2), every multiple of p(2) = 3,
which is not yet struck out, is deleted, including the prime itself, to give the new sequence ψ(2, n).
Therefore, this sequence comes from the deletion of all the multiplies of the primes p(1) and p(2),
including the primes themselves. It follows that the sequence ψ(2, n) is periodic, with a period equal
to the product of p(1) and p(2), as it will be demonstrated in Theorem 1. If we consider the second
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step of the Sieve procedure, where the primes p(1) and p(2) have not been deleted, we obtain the
sequence ξ(2, n). This is again a mixed sequence, where a piece of the periodic sequence ψ(2, n) is
introduced, by starting from the square p(2)2 = 9, whereas the previous binary values are saved
before this square. Consequently, we have

ξ(2, n) =


ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if p(1)2 ≤ n < p(2)2

ψ(2, n) if n ≥ p(2)2.

(16)

In general, the multiples of the prime p(k), which are not yet struck out in the previous steps, are
deleted in the k-th step of the modified Sieve procedure, including the prime p(k) itself. Consequently,
after performing all the first k steps, we obtain the periodic sequence ψ(k, n), as shown in Theorem 1.
In the case of the original Sieve procedure, after the k-th step, we obtain the sequence ξ(k, n), which is
an approximation of the prime characteristic function until the prime p(k). Such an approximation
differs from the previous one ξ(k− 1, n), only by starting from the square p(k)2. In fact, after this
point, a piece of the periodic sequence ψ(k, n) is recognizable. It follows that ξ(k, n) can be eventually
written as a mixed sequence, which is a generalization of Equations (15) and (16), that is,

ξ(k, n) =



ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if p(1)2 ≤ n < p(2)2

. . .

ψ(k− 1, n) if p(k− 1)2 ≤ n < p(k)2

ψ(k, n) if n ≥ p(k)2.

(17)

By evaluating the expression (17), we can recognize that subsets of the periodic binary sequences
ψ(k, n) are present, for each k, in the related intervals I(k) = [p(k)2, p(k + 1)2) of the prime
characteristic function. This happens until the end of the Sieve procedure, because each k − th
interval is not influenced by the deletions done in the following steps. We now show that the sequences
ψ(k, n) are periodic and that their periods are given by the product of all the primes up to p(k).

Theorem 1. Let be given the binary sequences ψ(k, n), which are generated by the deletion of the multiplies of
all the primes up to p(k), including the primes themselves. Then, the sequences ψ(k, n) are periodic, and their
periods T(k) are given by the product of all the primes up to p(k), that is,

T(k) =
k

∏
i=1

p(i) (18)

Proof. The deletion of the multiplies of all the primes up to p(k) gives all the sets, as a function of k, of
reduced residue systems modulo T(k), where T(k) is given by Equation (18). Each set is composed by
all the positive integers relatively prime to T(k), that is, by all the numbers such that gcd (n, T(k)) = 1.
The quantity of integers in each set is given by the Euler phi function φ(T(k)), which computes the
number of positive integers less than T(k) and relatively prime to T(k). However, the sets of reduced
residue systems are abelian groups, so that each of them is associated to a principal Dirichlet character
function. This is an arithmetical function χ1(k, n), which is nothing but ψ(k, n), being defined as

χ1(k, n) =

{
1 if gcd(n, T(k)) = 1

0 if gcd(n, T(k)) > 1.
(19)
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In [8], it is proven that χ1(k, n) is a periodic sequence, and in particular that

χ1(k, n + T(k)) = χ1(k, n) ∀n (20)

This completes the proof.

Table 1 reports the periods T(k) of the sequences ψ(k, n), k = 0, . . . , 7, in comparison with the
sizes S(k) = p(k + 1)2 − p(k)2 of the intervals I(k), where subsets of each ψ(k, n) are recognizable.
The pseudo-prime p(0) = 1 is put in brackets.

Table 1. Periods T(k) of the sequences ψ(k, n), for primes p(k) ≤ p(7), in comparison with the sizes
S(k) of the intervals I(k). The ratios S(k)/T(k) are rapidly decreasing as the prime p(k) grows.

k p(k) p(k + 1) I(k) S(k) T(k) S(k)/T(k)

(0) (1) 2 [1, 4) 3 1 3.000000
1 2 3 [4, 9) 5 2 2.500000
2 3 5 [9, 25) 16 6 2.666667
3 5 7 [25, 49) 24 30 0.800000
4 7 11 [49, 121) 72 210 0.342857
5 11 13 [121, 169) 48 2 310 0.020779
6 13 17 [169, 289) 120 30 030 0.003996
7 17 19 [289, 361) 72 510 510 0.000141

By considering the ratios S(k)/T(k), it is evident that the periods T(k) increase much faster than
the width of the intervals S(k). This makes sense because the periodicity of the sequences ψ(k, n) is
hardly recognizable by simply investigating the subsets of each ψ(k, n) in the intervals I(k).

3.2. The Symmetric Sequences of the Runs of Zeroes in the Periods T(k)

In Section 3.1, the prime distribution has been represented as the intersection of an endless number
of periodic binary sequences ψ(k, n), whose periods T(k) rapidly grow, and such that subsets of these
sequences can be found in limited intervals I(k) of the prime characteristic function ξp(n). In particular,
each of these intervals ranges between the squares of a prime p(k) and of the successive p(k + 1).
Consequently, the real primes in each interval I(k) are given by the 1 values of the correspondent
sequence ψ(k, n). In order to complete this analysis, we now consider the gaps between these primes,
by following an established trend in literature. In particular, we are interested to investigate the
distributions of the runs of zeros R(k) in each period T(k), being the binary sequences ψ(k, n)
composed by isolated ones followed by strings, more or less large, of zeroes. It follows that the
quantity R(k) also gives the number of undeleted integers (i.e., isolated ones) in each period T(k),
because the quantity T(k), for k ≥ 1, is an even number, so that the last digit of each period is a zero.

Let us consider the Sieve procedure described step-by-step in Section 3.1 and the number of runs
of zeroes R(k) in each period T(k) of the binary sequences ψ(k, n). For k = 0, 1, we have only one run
(R(0) = R(1) = 1), whose sizes are L(1, 0) = 1 and L(1, 1) = 2, respectively. For k = 2, the deletion
of both the multiples of p(1) and p(2) give two runs (R(2) = 2) in the period T(2) = 6, whose sizes
are L(1, 2) = 4 and L(2, 2) = 2, respectively, and so on. Table 2 reports the number of runs R(k) and
their sizes L(m, k), for k ≤ 4, where the index m identifies the specific run and k gives the step of the
Sieve procedure. Noticeably, the runs of each period T(k) are symmetrical around a symmetry center
given by a run sized 4, except for a final run that is sized 2. Such a trend is expected to be a rule also
for the successive steps.
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Table 2. Runs of zeroes in the periods T(k) of the sequences ψ(k, n), for primes p(k) ≤ p(4). For each
k, the number of runs R(k) and their sizes L(m, k) are reported, with m = 1, . . . , R(k). Let us notice
the symmetry of the runs in each period T(k). By starting from k = 2, the symmetry center is given by
a run of length 4, whereas the final run of length 2 is out of symmetry.

k p(k) T(k) R(k) L(m, k)

(0) (1) 1 1 1

1 2 2 1 2

2 3 6 2 4 2

3 5 30 8 6 4 2 4
2 4 6 2

4 7 210 48 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4
2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

3.3. The Relation Between the Primes in an Interval I(k) and the Runs in a Period T(k)

For evidencing the relation between each period T(k) and the correspondent number of runs of
zeroes R(k), we report in Table 3 the scores of R(k) for k ≤ 7.

Table 3. Periods T(k) and related runs of zeroes R(k) for the primes p(k) ≤ p(7). The special prime
p[0] = 1 is put in round brackets.

k p(k) T(k) R(k)

(0) (1) 1 1
1 2 2 1
2 3 6 2
3 5 30 8
4 7 210 48
5 11 2310 480
6 13 30,030 5760
7 17 510,510 92,160

Such scores also give the number of the integers that have not been struck out by the modified
Sieve procedure in the period T(k), which in turn can be related to the number of undeleted integers
(and consequently of the primes) in the correspondent interval I(k). We will show in Theorem 2 that a
correlation exists between T(k) and R(k), in such a way the number of primes in each interval I(k)
can be inferred. According on the theory of congruences, Theorem 2 gives the quantity of the integers
that have not been struck out (i.e., R(k)) in each period T(k), that is,

Theorem 2. Let be given the periodic binary sequences ψ(k, n) defined in Theorem 1, and whose periods are
T(k) = ∏k

i=1 p(i). Then, the number of undeleted integers, that is, the number of runs of zeroes R(k), in a
period T(k), for k ≥ 1, is given by

R(k) =
k

∏
i=1

(p(i)− 1) , k ≥ 1 (21)

Proof. The number of undeleted integers in each period T(k) is given by the number of integers in
the reduced residue systems modulo T(k), that is, the number of positive integers less than T(k) and
relatively prime to T(k). Such a value is given by the Euler phi function φ(T(k)), once computed in
T(k), that is [8]



Symmetry 2019, 11, 775 9 of 22

φ(T(k)) = T(k) ·∏p|T(k)

(
1− 1

p

)
= T(k) ·∏p|T(k)

(
p−1

p

)
= T(k) · ∏k

i=1 (p(i)−1)

∏k
i=1 p(i)

= ∏k
i=1 (p(i)− 1) (22)

where p(i), i = 1, . . . , k, are the primes dividing T(k).

By starting from p(4) = 7, Table 1 shows that the interval I(k) is included in the first period of
the sequence ψ(k, n). Consequently, a subset of the undeleted integers R(k) in each period T(k) lies
in the correspondent interval I(k), where they are just primes. Therefore, we can infer the quantity
of primes P(k) in each I(k), by starting from the quantity R(k) in the correspondent period T(k).
As a first approximation, a simple proportional relationship is investigated. Let us consider the local
density D(k, n) of the undeleted integers in the period T(k), where D(k, n) is computed in sliding
intervals J(k, n) whose size is the same of I(k) = [p(k)2, p(k + 1)2), that is, p(k + 1)2 − p(k)2. In this
context, the index n represents the starting point of each J(k, n). If such intervals span the whole
period T(k), we assume that the density D(k, n) is not a function of n. In this case, it is equal to the
average density D(k) over T(k), and we have

D(k, n) = D(k) =
R(k)
T(k)

=
∏k

i=1 (p(i)− 1)

∏k
i=1 p(i)

=
k

∏
i=1

p(i)− 1
p(i)

, k ≥ 1 (23)

It is noteworthy that the product structure in Equation (23) is the same as in Equation (12). Let
us suppose that the previous assumption holds. Then, an estimation of the local density D(k, n) in
each interval I(k) (that is, for n = p(k)2), will be just the average density D(k) over the period T(k).
Consequently, we can write

D
(

k, p(k)2
)
' D(k), k ≥ 1. (24)

Therefore, by starting from Equation (23), we can estimate the quantity of primes P(k) in each
interval I(k), for k ≥ 1. To this end, the average density D(k) is multiplied by the size S(k) =

p(k + 1)2 − p(k)2, that is,

P(k) = D(k) · S(k) = (p(k + 1)2 − p(k)2) ·
k

∏
i=1

p(i)− 1
p(i)

, k ≥ 1. (25)

Evidently, Equation (25) is analogous to Equation (12), apart from the size N of the global interval
IN , where N ∈ IK = [p(K)2, p(K + 1)2), that is changed into the size p(k + 1)2 − p(k)2 of the local
interval I(k).

3.4. The Novel LINPES Estimation of the Prime Number Function π(x)

Equation (25) gives a succession of estimations P(k) of the real number of primes π(k) in each
interval I(k) = [p(k)2, p(k + 1)2). Therefore, the next step will be to blend all these scores to compute
a global estimation πP(N) of the quantity of the primes up to N, where N ∈ I(K), analogously to
Equation (12). In theory, πP(N) is simply computable by adding all the contributions P(k) of Equation
(25), for k = 1, . . . , K, where p(K) is the greatest prime number not exceeding N1/2. However, such
a procedure includes the term p(K + 1), which is unknown. In order to overcome this issue, the
computation of πP(N) has to involve only the terms up to P(K− 1), plus a final term P(K, N), where
the interval IK is only partially considered. Consequently, we obtain

πP(N) =
K−1

∑
k=0

P(k) + P(K, N) = P(0) +
K−1

∑
k=1

[(
p(k + 1)2 − p(k)2

)
·

k

∏
i=1

p(i)− 1
p(i)

]
+ P(K, N) (26)
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where P(0) = p(1)2 − p(0)2, and P(K, N) =
(

N − p(K)2) ·∏K
i=1

p(i)−1
p(i) . Let us notice that Equation

(26) includes as many contributions as the primes are, where each term is given by a relation similar to
Equation (12), with the global size N that is replaced by the size of the interval I(k). Each contribution
includes an average number of primes that is given by ∏k

i=1
p(i)−1

p(i) , so that the average distance

p(k + 1)− p(k) between two consecutive primes is ∏k
i=1

p(i)
p(i)−1 , which is of the order of magnitude

of log(p(k)). For the Cramér conjecture [15], this average distance is p(k + 1)− p(k) = O(log2(p(k)).
Another conjecture by Cramér, by starting from the Riemann’s hypothesis, was p(k + 1)− p(k) =
O(
√

p(k) log(p(k)) [12,16]. Consequently, the error given by neglecting the partial term P(K, N) is
smaller than the loading term of the Cramér conjectures, so that the partial term P(K, N) could be
omitted.

3.5. The Corrected LINPES Estimation by Using the Equivalence with the Li(x) Function

We want now to show that Equations (3) and (26) are related. To this end, we write the logarithmic
integral function Li(N) as a summation of integrals, each of them is computed in the interval I(k) =
[p(k)2, p(k + 1)2), that is,

Li(N) =
∫ p(1)2

2

dt
log t

+
K−1

∑
k=1

∫ p(k+1)2

p(k)2

dt
log t

+
∫ N

p(K)2

dt
log t

, (27)

where the first term starts from 2 to cope with a possible improper integral, and p(K)2 is the greatest
square of a prime less than N. Consequently, the Li(N) function is expressed by Equation (27) as a
succession of estimations L(k), in a similar way to Equation (26), that is,

Li(N) = L(0) +
K−1

∑
k=1

L(k) + L(K, N), (28)

where L(0) =
∫ p(1)2

2
dt

log t , L(K, N) =
∫ N

p(K)2
dt

log t , and

L(k) =
∫ p(k+1)2

p(k)2

dt
log t

. (29)

We now apply the Mean Value Theorem to each interval I(k) in Equation (27), that is,

Li(N) =
p(1)2 − 2
log (ς0)

+
K−1

∑
k=1

p(k + 1)2 − p(k)2

log (ς(k))
+

N − p(K)2

log (ςK)
, (30)

where ς0 ∈ I(0), I(0) = [p(0)2, p(1)2), ς(k) ∈ I(k), k = 1, . . . , K− 1, and ςK ∈ I(K, N), I(K, N) =

[p(K)2, N). In order to show the equivalence between the Equations (26) and (30), we also consider
the lower bound p(k)2 of the interval I(k). By taking, in the two summations, the ratio between the
two terms multiplying the interval size S(k) = p(k + 1)2 − p(k)2, we can write

∏k
i=1

p(i)−1
p(i)

1
log(ς(k))

=

∏k
i=1

p(i)
p(i)−1

log (ς(k))

−1

(31)

From Equation (13), we have

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (ς(k))
= lim

k→∞

∏k
i=1

p(i)
p(i)−1

log (p(k)2)
×

log
(

p(k)2)
log (ς(k))

 =
1
2
× eγ × lim

k→∞

log
(

p(k)2)
log (ς(k))

(32)
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where ς(k) ∈ I(k) = [p(k)2, p(k + 1)2), so that its maximum distance from p(k)2 is p(k + 1)2 − p(k)2.
However, we know that the k− th prime p(k) is given asymptotically by p(k) ∼ k log(k) [9]. Therefore,
p(k)2 ∼ k2 · log(k)2 and p(k + 1)2 ∼ (k + 1)2 · log(k + 1)2 ∼ k2 log(k)2, so that for each point ς(k) ∈
[p(k)2, p(k + 1)2) we have ς(k) ∼ k2 log(k)2. It follows that

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (ς(k))
=

1
2
× eγ × lim

k→∞

log
(

p(k)2)
log (ς(k))

=
1
2
× eγ =

1
c
' 0.8905 (33)

and consequently Equation (31) gives, for each fixed k,

∏k
i=1

p(i)−1
p(i)

1
log(ς(k))

= cI(k) where lim
k→∞

cI(k) = c = 2× e−γ ' 1.1229. (34)

It follows that the trends of the two estimations (26) and (30) are the same as k→ ∞, apart from
the constant coefficient c. Due to this multiplicative factor, the proposed estimation (26) overestimates
the prime number function π(N) with respect to Equation (30), and in this sense it is similar to the
heuristic procedure described in Section 2. However, it has to be noticed that this last one is completely
probabilistic, whereas the proposed method is also based on an analytical procedure, that is, the
recognition of an infinite number of binary periodical sequences and related intervals of the prime
characteristic function. In order to correct this discrepancy, we relax the conjecture of Section 3.3, in
such a way the trend of the local density D(k, n) becomes a function of n. Experimentally, the values
of the local density D(k, p2

k) in the interval I(k) are lower than those of the average density D(k). The
following conjecture is then proposed, which links D(k, p2

k) and D(k) by means of the constant c of
the Third Mertens’ Theorem [11].

Conjecture 1. The local density D(k, n) of the undeleted integers in the period T(k), if computed in sliding
intervals whose size is the same of I(k) = [p(k)2, p(k + 1)2), is a function of the starting point n of the sliding
interval. In particular, the average density D(k) is greater than the local density D

(
k, p(k)2) in the interval

I(k), in such a way the succession cI(k) of their ratios exceeds the unity. Moreover, the limit value as k→ ∞
of cI(k) is equal to the constant c = 2 · e−γ ' 1.1229 of the Third Mertens’ Theorem, that is,

lim
k→∞

D(k)
D
(
k, p2

k
) = c. (35)

The typical trend of D(k, n) = D(16, n) = D(n), for k = 16 and varying n, is plotted in Figure 1,
together with the average density D(k) = D(16) = D in the period T(k) = T(16). Let us notice that,
as it will be discussed in the following, such a trend is less appreciable for small values of the primes.

Figure 1 can be explained as follows. Let us consider the sequences ψ(k, n) defined in Section 3.1,
where the multiples of the primes up to p(k) have been struck out, included the primes themselves.
In each of these sequences, all the undeleted integers are just primes in the range [p(k + 1), p(k + 1)2],
whereas the undeleted integers greater than p(k + 1)2 can be indifferently primes or composites,
because the multiples of the primes greater than p(k) have not yet been struck out.

At the beginning of the modified Sieve procedure (k = 0), the local density D(k, n) of the
undeleted integers is not a function of n, because no integer has been still struck out. In the first
step (k = 1), only the even integers (i.e., the multiplies of p(1) = 2) have been struck out, so that
D(k, n) is still a constant value up to infinity. Noticeably, the multipliers (i.e. the integers multiplying
p(1) to give the deleted multiplies) are equal to the undeleted integers when the procedure starts
(i.e., all the integers). This rule also holds for the following steps, that is, the multipliers of the prime
p(k) in the k − th step of the modified Sieve procedure are equal to the undeleted integers in the
previous (k− 1)− th step. It follows that the multipliers of p(2) = 3 are all the odd integers, whose
distribution is again uniform. Some of these multipliers (that is, 3, 5, 7) are just primes in the interval
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[
p(2), p(2)2), but they can also be composites beyond p(2)2. In this case, the distribution of the

composite multipliers exactly compensate the decreasing trend of the distribution of the multipliers
that are also prime numbers. If the primes p(k) are sufficiently small, such a compensation happens
quickly, because it starts from p(k)2. In these cases, the distribution of the local density D(k, n) is
still approximately uniform. However, as p(k) grows, a transient state is noticeable, because, for
such values of k and small values of n, the local density D(k, n) is greater than the average density
D(k). In fact, for such n values, only a portion of the multiplies of the primes p(i), i = 1, . . . , k, have
been struck out, because the deletion of the multiplies of the prime p(i), i < k, starts only from p(i)2,
apart from the prime p(i) itself. This means that the deletion of the multiplies of p(i), i = 1, . . . , k, is
completed only at the lower bound of the interval I(k), that is, p(k)2. Consequently, after this point,
the transient state ends and the stationary state begins, where the local density D(k, n) fluctuates
around the average density D(k).

n
0 2000 4000 6000 8000 10000

D
en

si
ty

 V
al

ue
s

0.12

0.14

0.16
D(k, n)

D(k)
Fit of D(k, n)

Figure 1. Typical trend (in black), with k = 16, p(16) = 53 and p(17) = 59, of the local density of the
non-deleted integers D(n) by varying n in sliding intervals whose size is S(16) = 3481− 2809 = 672.
Notice that it is shown only the initial part of the period T(16), whose order of magnitude is 1019,
in such a way the symmetrical trend of the period falls outside the figure. The red line reports a
polynomial fitting of the density D(k, n), whereas the blue line concerns the average density D(k) in
the period T(k). The minimum value of the local density is just reached at the lower bound of the
interval I(k), that is, p(16)2 = 2809.

Figure 1 shows the trend of the local density D(k, n) in the case of p(k) = 16. Starting
approximately from this value of k, we can notice a minimum value D(k, p(k)2) for the distribution
of D(k, n), which is located immediately after the transient state, that is, at the lower bound of the
interval I(k). Such a minimum value is about a 10 percent lower than the average density D(k). In
fact, as previously explained, the multipliers of the prime p(k) are just primes up to p(k)2, whereupon
they can be even composites. It follows that the distribution of the composite multipliers compensate
the decreasing distribution of the multipliers that are prime numbers only starting from the multiple
p(k)3 = p(k)2 · p(k). Therefore, as k → ∞, such a compensation is delaying, in such a way the ratio
between D(k) and D(k, n) more and more grows up to the c value of Equation (35). As a matter of
fact, if all the multipliers were primes, their distribution would decrease by following a logarithmic
trend, so that D(k, n) would augment with the same trend, by starting from the minimum value in the
interval I(k). In the real case, however, the compensation given by the composite multipliers has the
effect that the local density does not grow indefinitely, but tends to the limit value c · D(k, p(k)2). Let
us notice that, if we stop the procedure to a finite value of k, the ratio between D(k) and D(k, n) is
cI(k) · D(k, p(k)2), where the succession cI(k) is increasing and tends to the limit value c as k→ ∞.

In order to evaluate the effect of the compensation delay for the small primes p(k), k = 1, . . . , 7, in
comparison with the case of p(16) = 53, Table 4 reports: a) the multipliers f I such that the multiples
f I · p(k) lie in the interval I(k) = [p(k)2, p(k + 1)2), and b) the first multiplier that is a composite
number, that is, fc = p(k)2, whose correspondent multiple is p(k)2 · p(k) = p(k)3. Evidently, as k
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grows, the difference between the upper bound p(k + 1)2 of I(k) and p(k)3 becomes so large that
the compensation effect of the composite multipliers is no longer noticeable in the interval itself.

Table 4. Prime numbers p(k), k = 1, . . . , 7, and k = 16, and the related intervals I(k), together with: a)
the multipliers f I such that the multiples f I · p(k) lie inside the intervals I(k); b) the first multiplier
fc that is a composite number. Let us notice that the difference between fc and the multipliers f I

rapidly grows, so that the distance between the multiple fc · p(k) and the upper bound of the interval
I(k) becomes larger and larger.

k p(k) I(k) fI |( fI · p(k)) ∈ I(k) fc fc · p(k)

1 2 [4, 9) 2; 3 4 8
2 3 [9, 25) 3; 5; 7 9 27
3 5 [25, 49) 5; 7 25 125
4 7 [49, 121) 7; 11; 13; 17 49 343
5 11 [121, 169) 11; 13 121 1331
6 13 [169, 289) 13; 17; 19 169 2197
7 17 [289, 361) 17; 19 289 4913

16 53 [2809, 3481) 53; 59; 61 2809 148,877

Figure 2 shows the trend of the succession cI(k), as k approaches infinity. Evidently, such a
succession tends to the constant value c. The x-axis is in a logarithmic scale, in such a way the values
of p(k)2 can be visualized up to 1015.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.1

1.105

1.11

1.115

1.12
1.122919

log
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k
2)

c k

 

 

(log
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(p
k
2); c

k
)

c

Figure 2. Trend of the succession cI(k) whose elements are the ratios between the average densities
D(k) in the period T(k) and the local densities D(k, n) in the correspondent interval I(k). For k→ ∞,
such a succession asymptotically approximates the constant c. In the x-axis, a base-10 logarithmic scale
has been chosen for a better visualization.

Finally, Table 5 highlights the equivalence between the proposed estimation (26) and the
logarithmic-integral one (3). To this end, a number of linear regressions have been computed between
the occurrences P(k) (25) in each interval I(k) of the proposed estimation versus the correspondent
ones L(k) (29) of the integral-logarithmic function. Each row of Table 5 is referred to the prime squares
p(k)2 ranging from a power-of-ten to the following one, except the first raw, which includes all the
squares lower than 106, in order to elaborate a sufficient number of points. For each of these ranges, we
report the coefficients m1 and q1 of the linear regressions yi = m1 xi + q1, together with the coefficient
of determination R2

1, which is a measure of the fitting between the two estimations. Evidently, the
coefficient of determination tends very fast to its optimal value, that is 1, despite that the number of
observations has increased. Let us notice that the intercept q1 is practically negligible with respect to
the full-scale level, whereas the slope m1 is approaching the constant value 1/c.
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For comparison, Table 5 also reports the parameters and the coefficient of determination in the
case of the linear regressions yi = m2 xi + q2 concerning the occurrences P(k) versus the targets π(k).
These scores are defined as the number of primes in each interval I(k). Even in this case, the fitting
between P(k) and π(k) is impressive, as shown by the coefficient of determination R2

2. Noticeably,
the slope m2 still approaches the value 1/c, because the P.N.T. guarantees that the logarithmic-integral
function and the prime number function goes to infinity in the same way.

Table 5. Parameters and coefficients of determination of the linear regressions yi = m1 xi + q1 of the
proposed estimations P(k) versus the logarithmic-integral ones L(k), together with the parameters
and coefficients of determination of the linear regressions yi = m2 xi + q2 of P(k) versus the true
number of primes π(k). Each point is computed in an interval I(k).

k p(k)2 m1 q1 R2
1 m2 q2 R2

2

[1, 168] (1, 106) 0.894209 1.2846 0.9999932989 0.894649 0.2597 0.9996747582
[169, 446] (106, 107) 0.892762 0.7754 0.9999985384 0.894052 −2.5697 0.9998452835
[447, 1229] (107, 108) 0.891565 1.0381 0.9999997462 0.891906 −2.2200 0.9999418064
[1230, 3401] (108, 109) 0.891025 2.1044 0.9999999196 0.891016 2.0534 0.9999821107
[3402, 9592] (109, 1010) 0.890801 2.2963 0.9999999842 0.890751 5.6943 0.9999941659

[9593, 27,293] (1010, 1011) 0.890657 4.9719 0.9999999945 0.890664 2.8478 0.9999981622
[27,294, 78,498] (1011, 1012) 0.890606 5.7853 0.9999999989 0.890606 5.6440 0.9999993974

[78,499, 227,647] (1012, 1013) 0.890570 10.3672 0.9999999997 0.890569 13.0142 0.9999998112
[227,648, 664,579] (1013, 1014) 0.890555 14.8795 0.9999999999 0.890555 13.7581 0.9999999398

[664,580, 1,951,957] (1014, 1015) 0.890546 20.1618 1.0000000000 0.890546 27.3660 0.9999999808

From the previous analysis, it follows that, for a given N, the proposed approximation πP(N)

overestimates the prime number function π(N) by a factor cN , which can be computed by considering
that we have an overestimation for each interval I(k) that can be computed by considering a factor in
the finite set cI(k), k = 1, . . . , K , where K is such that N ' p(K)2 (see Equation (34)). If N → ∞, the
overestimation factor cN tends to the constant c. Being cN unknown, an adjusted version (36) of (26)
can be defined by means of the correction factor 1/c, that is,

π̃P(N) =
1
c
·
(

P0 +
K−1

∑
k=1

P(k) + PK,N

)
=

=
1
c
·
(

p(1)2 − p(0)2
)
+

1
c
·

K−1

∑
k=1

[(
p(k + 1)2 − p(k)2

)
·

k

∏
i=1

p(i)− 1
p(i)

]
+

1
c
·
(

N − p(K)2
)
·

K

∏
i=1

p(i)− 1
p(i)

.

(36)

Clearly, the corrected version π̃P(N) = 1
c · πP(N) is able to give better estimations than πP(N)

as N approaches infinity. In order to give a quantitative assessment, Table 6 reports the scores
of πP(N ) (26) and of its adjusted version π̃P(N) (36), in comparison with the logarithmic integral
estimation Li(N) (27), and with the prime number function π(N). The range of each row of Table 6
starts from a power-of-ten and ends to the following one up to 1015.

It can be noticed that the scores of π̃P(N) slightly underestimate both the true number of primes
π(N) and the logarithmic integral function Li(N), which, in turn, is such that the sign of its difference
with π̃P(N) changes infinitely many times [17,18], by showing some irregularities in the distribution
of the primes [19], which have been investigated by considering differences in some subsets of the
primes themselves [20]. Concerning the previous underestimation, this is due to the fact that the limit
value c is an upper bound for the succession cI(k). Evidently, π̃P(N) would be perfectly accurate if
the terms cI(k) were available for the computation of (36), by considering the real number of primes
in each interval I(k).
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Table 6. The proposed estimation πP(N) and its adjusted version π̃P(N) in comparison with the
logarithmic integral estimation Li(N), and the prime number function π(N). The scores of Li(N)

have been computed by using the MATLAB R© toolbox. The scores of πP(N) and π̃P(N) have been
rounded to the nearest integer.

N = 10i π(N) Li(N) πP(N) π̃P(N)

101 4 6 4 4
102 25 30 27 24
103 168 178 181 161
104 1229 1246 1348 1 200
105 9592 9630 10,639 9 474
106 78,498 78,628 87,688 78 090
107 664,579 664,918 744,175 662,715
108 5,761,455 5,762,209 6,460,497 5,753,306
109 50,847,534 50,849,235 57,056,721 50,811,064
1010 455,052,511 455,055,615 510,796,987 454,883,106
1011 4,118,054,813 4,118,066,401 4,623,402,885 4,117,306,712
1012 37,607,912,018 37,607,950,281 42,226,535,908 37,604,250,381
1013 346,065,536,839 346,065,645,810 388,584,655,120 346,048,624,432
1014 3,204,941,750,802 3,204,942,065,692 3,598,796,310,868 3,204,857,671,495
1015 29,844,570,422,669 29,844,571,475,288 33,512,578,849,645 29,844,157,918,447

4. An Extension of the Procedure to the Twin Prime Numbers

4.1. Preliminary Concepts

Two prime numbers p and q are twin primes if |p − q| = 2, which is the lowest possible
distance between primes, apart from p = 2 and q = 3, where |p − q| = 1. Let us note that two
consecutive pairs of twin primes do not ever occur, apart from the case {3, 5} and {5, 7}. In fact, one
number in the sequence {n, n + 2, n + 4} is certainly a multiple of 3. The gaps between consecutive
primes have been extensively investigated in literature [13,15,21]. However, differently from the
primes, it is presently unknown whether there are infinitely many pairs of twin primes. In any case, a
preliminary counting shows that the twin primes are relatively abundant into the sequence of primes,
and, consequently, it is reasonable to infer the so-called twin prime conjecture, which states that there
are infinitely many pairs of twin primes. This conjecture is strengthened by the fact that the distribution
of the primes does not change abruptly. Recently, significant progress has been made by showing
that lim inf

k→∞
[p(k + 1)− p(k)] = ` < ∞, that is, a finite upper bound exists for the limit inferior of

the difference between consecutive primes. In particular, Zhang found that ` ≤ 7 · 107 [22], and this
bound has been successively improved by Maynard to ` ≤ 600 [23]. Finally, the Polymath’s project,
whose aim is to collect all the various efforts that try to put the bound lower as much as possible,
has reached the value of ` ≤ 246 [24]. Evidently, in order to demonstrate the twin prime conjecture,
a bound of ` = 2 should be obtained. In this work, we try to give a contribution to the discussion
of this conjecture, by following a different strategy, that is, by exploiting the concepts previously
introduced for the primes. Consequently, as for the primes, the approach is not merely probabilistic,
but also analytic, so constituting a possible significant step for further advancements, as in the case
of approaches based on periodic functions [25]. The distribution of the twin primes is commonly
characterized by using the twin prime function π2(x) (6). Such a distribution decays more rapidly
than the distribution of the primes. In fact, Brun demonstrated in 1919 [26] that, if ST is the set of twin
primes given by ST = {p : p prime and p + 2 prime}, the related series of the reciprocals converges to
the finite limit B ' 1.9022 [1], that is,

∑
p∈ST

(
1
p
+

1
p + 2

)
= B (37)
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regardless of the fact of whether the number of summation terms is infinite or not, whereas the same
summation instead diverges for the primes.

Analogously to the P.N.T., a possible function for approximating the twin prime function π2(x)
has been proposed [5] as the logarithmic integral function Li2(x) (8). As for the primes, we want to
obtain an equivalent procedure and investigate possible consequences.

4.2. A Possible Relation Between the Twin Primes in the Intervals and the Undeleted Integers in the Periods

In Section 3.2, the distribution of the runs into each period T(k) has been investigated. In the
present analysis, the same investigation can be made for the particular case in which the size of the
runs is 2. Evidently, such an investigation can potentially give an estimation of the quantity of twin
primes, similarly to the one given by the Equation (26) for the primes. In fact, we will suggest that the
number of the runs sized 2 in the interval I(k) is equal to the quantity of twin primes in the same
interval. Such a number is equal to the number of {101} sequences, if the sequence {10} is completely
included in the interval. However, such a sequence cannot occur across two intervals, because each
interval, apart from the first one, ends with an even number (that is, a 0), because it is followed by
a square of an odd prime (that is, another 0), which is an odd number. For the sake of clarity, in the
following we denote the runs sized 2 as runs 2. Let us notice that this procedure can be extended to
run-lengths of whatever size, by following the Hardy-Littlewood conjecture B [6]. Such a topic will be the
object of future explorations.

Table 7 reports the number R2(k) of the runs 2 in each period T(k) for p(k), k = 0, . . . , 7. As for
the total number of runs R(k) (21) in the same period, a correlation can be found between R2(k) and
the prime number p(k). In particular, the scores of Table 7 suggest the following conjecture for R2(k)

R2(k) =
k

∏
i=2

(p(i)− 2), k ≥ 2. (38)

Table 7. Number of runs 2, denoted as R2(k), that are included in the periods T(k) , for p(k), k =

0, . . . , 7. These scores are compared with the total number of runs R(k). The special prime p(0) = 1 is
put in round brackets.

k p(k) T(k) R(k) R2(k)

(0) (1) 1 1 0
1 2 2 1 1
2 3 6 2 1
3 5 30 8 3
4 7 210 48 15
5 11 2310 480 135
6 13 30,030 5760 1485
7 17 510,510 92,160 22,275

Equation (38) can be investigated by taking the modified Sieve procedure. At the start of the
procedure (k = 0), we have no run 2. In the first step (k = 1), the multiples of p(1) = 2 are struck out,
in such a way the sequence ψ(1, n) is made by runs 2 only. In particular, a single run 2 is included in
the period T(1) = 2, so that R2(1) = 1. For k = 2, we delete the multiples of p(2) = 3, so that the
period T(2) = 6 becomes three times greater. This implies that the number of runs 2 could increase
from 1 to 3, but the deletion in the point n = 3 vanishes two of these runs. Let us notice that the
cancellation of one multiple vanishes two runs 2 only in this step, being all the runs 2 consecutive,
but this does not happen in the following steps, where only one run 2, or even none, is deleted at the
time. It follows that R2(2) = 1, as in the previous step. On the whole, we obtain that the deleted runs
2 in the period T(2) are a fraction 2/3 = 2/p(2) of the total number of runs 2 in the same period if
no cancellations were made.



Symmetry 2019, 11, 775 17 of 22

Similarly, for k = 3, the multiples of p(3) = 5 are struck out, so that the period T(3) becomes
five times greater. It follows that the number of runs 2 would grow from 1 to 5, but two cancellations
(for n = 5, 25) vanish two of the five runs 2. Consequently, we obtain R2(3) = 3 and the fraction
of the deleted runs 2 is 2/5 = 2/p(3) of the total runs in this period if no cancellation were made.
In this step, all the cancellations imply the deletion of one run 2, but this will not also be a rule for
the following steps. In fact, for k = 4, we have eight cancellations in the period T(4), but only six of
them stroke out a run 2. However, the fraction of the deleted runs 2 in the period is still given by
6/21 = 2/7 = 2/p(4) of the pre-existing ones before the cancellations, being R2(4) = 3 · 7− 6 = 15.

In the case of primes, it follows from the relation (21) that we struck out, in each step, a fraction
1/p(k) of the total number of runs in the period T(k) if no cancellations were made, which is given
by the product of the prime p(k) by the actual number of runs in the previous period T(k− 1). By
considering the scores of Table 7, a similar relation can be conjectured for the runs 2 in the case of twin
primes, in order to link the number of cancelled runs 2 and the total number of runs 2 in the period
T(k) if no cancellations were made. Unfortunately, in general, the actual number of the deleted runs 2
is not easily computable, by starting from the total number of cancellations in T(k). However, in the
same way of the primes, our conjecture is that the deletion of the multiples of p(k) has the effect to
exactly cancel a fraction 2/p(k) of the runs 2 in the period T(k).

If this conjecture holds, Equation (38) follows by induction. In fact, it is true for p(2) = 3. Let us
suppose that Equation (38) holds for p(k− 1) and show that it is also true for p(k). By the induction
hypothesis, the number of runs 2 in the period T(k− 1) is given by R2(k− 1) = ∏k−1

i=2 (p(i)− 2). We
must show that the number of runs 2 in the period T(k) is R2(k) = ∏k

i=2 (p(i)− 2). Given R2(k− 1),
the number of runs 2 in the new period T(k) becomes p(k) · R2(k− 1), because T(k) is p(k) times
greater than T(k− 1). By taking the previous conjecture, a fraction 2/p(k) of the runs 2 is struck
out, in such a way we have a fraction of residual runs 2 given by (p(k) − 2)/p(k) · R2(k − 1) =

(p(k)− 2)/p(k) ·∏k−1
i=2 (p(i)− 2) = ∏k

i=2 (p(i)− 2) = R2(k).

4.3. A Heuristic Estimation of π2(x) Equivalent to the Li2(x) Approximation

From Equation (38), we can give an estimation π2P(N) of the twin prime function π2(x), which
is equivalent to the approximation given by the Li2(x) function (8). Such an estimation can be viewed
as a generalization of Equation (26) to the case of the twin primes. To this end, analogously to Equation
(23) for the primes, we compute the average density D2(k) of the number of runs 2 in a period T(k).
By starting from the total number of runs 2 R2(k) in the period T(k), the average density D2(k) is
given by the relation

D2(k) =
R2(k)
T(k)

=
∏k

i=2 (p(i)− 2)

∏k
i=1 p(i)

=
1
2
×

k

∏
i=2

p(i)− 2
p(i)

, k ≥ 2. (39)

As for the primes, we can initially approximate the local density D2(k, n) in the interval I(k) as
the average density D2(k), that is, D2

(
k, p(k)2) ' D2(k). In this case, the estimated number of twin

primes P2(k) in I(k), for k ≥ 2, is given by

P2(k) = D2(k)× S(k) = (p(k + 1)2 − p(k)2)× 1
2
×

k

∏
i=2

p(i)− 2
p(i)

, k ≥ 2 (40)

The total estimation π2P(N) is then obtained by adding all the contributions P2(k), that is,

π2P(N) = ∑K−1
k=0 P2(k) + P2(K, N) = P2(0) + P2(1) + ∑K−1

k=2

[(
p(k + 1)2 − p(k)2) · 1

2 ·∏
k
i=2

p(i)−2
p(i)

]
+ P2(K, N) (41)

where P2(0) = p(1)2 − p(0)2, P2(1) = 1
2 · (p(2)2 − p(1)2), P2(K, N) =

(
N − p(K)2) · 1

2 ·∏
K
i=2

p(i)−2
p(i) ,

and K is the greatest prime number not exceeding N1/2. As for the primes, Equation (41) overestimates
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the true π2(N) scores, because the local density D2(k, n) is not actually constant in the period T(k),
but it is a function of n. However, the offset of the local density in the interval I(k) with respect to
the average density is greater than for the primes. Experimentally, each P2(k) value (40) overtakes
the true quantity of twin primes computed in I(k) of about 20%, that is, more or less a double of the
percentage previously found for the primes, and reported in Figure 1, even if the trends of the local
densities are similar. Quantitatively, the ratio between the average density D2(n) and the local density
D2
(
k, p(k)2) seems to approximate the constant c2 as k→ ∞, that is, the square of c.
To evidence this statement, let us consider the estimation given by the Li2(x) function, that is,

C Li2(x), for x = N, from Equation (8), that is, C Li2(N), as a summation of integrals, each of them is
computed in the interval I(k) = [p(k)2, p(k + 1)2)

C Li2(N) = C
∫ p(1)2

2

dt
log2 t

+ C
K−1

∑
k=1

∫ p(k+1)2

p(k)2

dt
log2 t

+ C
∫ N

p(K)2

dt
log2 t

(42)

being p(K)2 the greatest square of a prime less than N. Similarly to Equation (28), we can write
Equation (42) as a succession of estimations L2(k) in each interval I(k), that is,

C Li2(N) = C L2(0) + C
K−1

∑
k=1

L2(k) + C L2(K, N), (43)

where L2(0) =
∫ p(1)2

2
dt

log2 t
, L2(K, N) =

∫ N
p(K)2

dt
log2 t

and

L2(k) =
∫ p(k+1)2

p(k)2

dt
log2 t

. (44)

Then, we apply the Mean Value Theorem for Integrals to Equation (42) in each interval I(k)

C Li2(N) = C
p(1)2 − 2
log2 (ς0)

+ C
K−1

∑
k=1

p(k + 1)2 − p(k)2

log2 (ς(k))
+ C

N − p(K)2

log2 (ςK)
, (45)

where the point ς0 belongs to the interval I(0) = [p(0)2, p(1)2), ς(k) belongs to the interval I(k), k =

1, . . . , K − 1, and ςK belongs to the interval I(K, N) = [p(K)2, N). As for the primes, we have to
consider the lower bound p(k)2 of the interval I(k). Let us take the ratio between the two terms
multiplying the size S(k) = p(k + 1)2 − p(k)2, in the summations of the Equations (41) and (45), so
that we obtain

1
2 ·∏

k
i=2

p(i)−2
p(i)

C
log2(ς(k))

=

2C ·∏k
i=2

p(i)
p(i)−2

log2 (ς(k))

−1

(46)

If we consider the lower bound p(k)2 of the interval I(k), we have

2C ·∏k
i=2

p(i)
p(i)−2

log2 (ς(k))
=

2C ·∏k
i=2

p(i)
p(i)−2

log2 (p(k)2)
·

log2 (p(k)2)
log2 (ς(k))

(47)

Let us notice that the ratio p(i)−2
p(i) can be split as

p(i)− 2
p(i)

=
p(i)− 2

(p(i)− 1)2×
(p(i)− 1)2

p(i)
=

p(i)2 − 2 p(i)
(p(i)− 1)2 ×

(p(i)− 1)2

p(i)2 =
(p(i)− 1)2 − 1
(p(i)− 1)2 × (p(i)− 1)2

p(i)2

=⇒ p(i)− 2
p(i)

=
p(i)− 1

p(i)
× p(i)− 1

p(i)
×
(

1− 1
(p(i)− 1)2

) (48)



Symmetry 2019, 11, 775 19 of 22

Consequently, we obtain

k

∏
i=2

p(i)
p(i)− 2

=
k

∏
i=2

 p(i)
p(i)− 1

× p(i)
p(i)− 1

× 1
1− 1

(p(i)−1)2

 (49)

Then, we define C(k) = 2×∏k
i=2

(
1− 1

(p(i)−1)2

)
, k ≥ 2

C(1) = C(0) = 1.
(50)

From Equation (49) and considering that lim
k→∞

log2(p(k)2)
log2(ς(k))

= 1 (see Section 3.5), the limit, as k→ ∞,

of the ratio (47) is given by

lim
k→∞

2C×∏k
i=2

p(i)
p(i)−2

log2(p(k)2)
× log2(p(k)2)

log2(ς(k))
= lim

k→∞

2C×∏k
i=2

p(i)
p(i)−2

log2(p(k)2)
= lim

k→∞

2C× 2
C(k)×∏k

i=2

[
p(i)

p(i)−1×
p(i)

p(i)−1

]
log2(p(k)2)

. (51)

We noticed in the Equation (33) that

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (p(k)2)
=

1
2
× eγ ' 1

c
' 0.8905. (52)

Evidently, we have

lim
k→∞

k

∏
i=2

p(i)
p(i)− 1

=
1
2
× lim

k→∞

k

∏
i=1

p(i)
p(i)− 1

(53)

and, consequently, from Equation (9),
lim
k→∞

C(k) = C. (54)

Finally, from Equation (51), we obtain the limit of the ratio (47)

lim
k→∞

4×∏k
i=2

[
p(i)

p(i)−1 ×
p(i)

p(i)−1

]
log2 (p(k)2)

= 4×
(

1
2c

)2
=

1
c2 ' 0.89052 = 0.7931 (55)

and Equation (46) gives

1
2 ×∏k

i=2
p(i)−2

p(i)
C

log2(ς(k))

= c2I(k) where lim
k→∞

c2I(k) = c2 ' 1.2609. (56)

For a given N, the proposed approximation π2P(N) overestimates the twin prime number
function π2(N) by a factor c2N , which can be computed by considering that we have an overestimation
for each interval I(k) that can be computed by considering a factor in the finite set c2I(k), k = 1, . . . , K,
where K is such that N ' p(K)2. Equations (55) and (56) show that the succession c2I(k) tends to the
constant c2 as N → ∞. Consequently, we can define a corrected version π̃2P(N) (57) of the proposed
estimation π2P(N), by multiplying Equation (41) by the factor 1/c2 ' 0.7931, that is,

π̃2P(N) =
1
c2 ×

(
P2(0) + P2(1) +

K−1

∑
k=2

P2(k) + P2(K, N)

)
=

1
c2 ×

(
p(1)2 − p(0)2

)
+

1
2c2 ×

(
p(2)2 − p(1)2

)
+

+
1

2c2 ×
K−1

∑
k=2

[(
p(k + 1)2 − p(k)2

)
×

k

∏
i=2

p(i)− 2
p(i)

]
+

1
2c2 ×

(
N − p(K)2

)
×

K

∏
i=2

p(i)− 2
p(i)

.

(57)

As for the primes, Equation (57) is expected to improve the estimation of π2(N) as N approaches
infinity. This is evidenced in the scores of Table 8, where a comparison is made between the proposed
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estimation π2P(N ) and its adjusted version π̃2P(N) with the estimation C Li2(N) given by the
logarithmic integral function (8) and the twin prime number function π2(N). The ranges of N are the
same as Table 6.

Table 8. The proposed estimation π2P(N) and its adjusted version π̃2P(N) in comparison with the
logarithmic integral estimation C Li2(N) and the prime number function π2(N). The scores of the
logarithmic integer function have been computed by using the MATLAB R© toolbox. The scores of
π2P(N) and π̃2P(N) have been rounded to the nearest integer.

N = 10i π2(N) C Li2(N) π2P(N) π̃2P(N)

101 2 2 4 3
102 8 11 12 10
103 35 43 48 38
104 205 212 250 198
105 1224 1246 1522 1207
106 8169 8246 10,252 8131
107 58,980 58,751 73,579 58,353
108 440,312 440,365 553,514 438,977
109 3,424,506 3,425,306 4,312,478 3,420,314
1010 27,412,679 27,411,414 34,537,569 27,390,848
1011 224,376,048 224,368,862 282,810,653 224,289,776
1012 1,870,585,220 1,870,559,864 2,358,205,655 1,870,231,592
1013 15,834,664,872 15,834,598,303 19,964,600,235 15,833,405,367
1014 135,780,321,665 135,780,264,892 171,202,650,560 135,776,370,890
1015 1,177,209,242,304 1,177,208,491,858 1,484,356,543,022 1,177,204,581,001

The connection between the π2P(N) estimation (41) and the C Li2(N) estimation (42) is
investigated in Table 9, by considering the parameters and the coefficient of determination of the linear
regressions yi = m1 xi + q1 between the occurrences of P2(k) (40) versus those of C L2(k), where
L2(k) is given by (44), in each interval I(k). As for the primes, an excellent fitting is given by the linear
relationship between P2(k) and C L2(k). This is confirmed by the coefficient of determination R2

1,
which rapidly tends to 1 as k grows. On the other hand, the intercept q1 is negligible, whilst the
slope m1 approaches the limit value 1/c2.

The fitting of the linear regressions yi = m2 xi + q2 between the occurrences of P2(k) (40) versus
those of the twin prime number function π2(k), if computed in the same interval I(k), is also reported
in Table 9. Even if less impressive than in the case of Table 5 for the primes, the goodness of the fitting
is clearly shown by the coefficient of determination R2

2, which is practically at its best value. As for
m1, the slope m2 seems to approximate the limit value 1/c2.

Table 9. Parameters and coefficients of determination of the linear regressions yi = m1 xi + q1 of the
proposed estimations for the twin primes P2(k) versus the logarithmic-integral ones C L2(k), together
with the parameters and coefficients of determination of the linear regressions yi = m2 xi + q2 of P2(k)
versus the true number of twin primes π2(k). Each point is computed in an interval I(k).

p(k)2 m1 q1 R2
1 m2 q2 R2

2

(1, 106) 0.799120 0.3205 0.9999525356 0.784981 0.6900 0.9819305687
(106, 107) 0.797052 0.1191 0.9999935927 0.807148 −0.8767 0.9947532680
(107, 108) 0.794901 0.1435 0.9999989157 0.792818 0.7199 0.9983424066
(108, 109) 0.793935 0.2629 0.9999996567 0.794232 −0.5788 0.9992892724
(109, 1010) 0.793529 0.2602 0.9999999326 0.793309 1.2422 0.9998094846
(1010, 1011) 0.793273 0.5082 0.9999999770 0.793336 −0.0376 0.9999152638
(1011, 1012) 0.793180 0.5523 0.9999999955 0.793186 0.6827 0.9999711368
(1012, 1013) 0.793115 0.9036 0.9999999988 0.793125 0.0544 0.9999902660
(1013, 1014) 0.793088 1.2179 0.9999999997 0.793089 0.9592 0.9999967269
(1014, 1015) 0.793072 1.5449 0.9999999999 0.793072 2.4024 0.9999988979
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In summary, the proposed approach estimates the true number of twin primes by considering the
number of runs 2 in each interval I(k) =

[
p(k)2, p(k + 1)2), in such a way each estimation P2(k) fits

the correspondent one given by C L2(k). Consequently, in the case the conjecture (38) holds, we can
infer that the distribution of the twin primes follows the same trend in all the intervals I(k). Because
these intervals are a function of the squares of both the prime p(k) and its successive one, it follows
that, being the primes are a never-ending succession, the unproved hypothesis of the infinitude of the twin primes
would be further strengthened.

5. Conclusions and Future Developments

In this work, an original heuristic procedure in order to obtain the distribution of the prime number
function π(x) is proposed and investigated, which gives estimations of the scores of π(x) equivalently
to the logarithmic integral function Li(x). However, this approach is not fully probabilistic, but it is
also based on analytical concepts, that is, a set of infinitely many binary periodic sequences is found
by means of a modified Sieve procedure, whose periods have a subset that is included in limited and
disjoint intervals I(k) of the prime characteristic function. In each period T(k), these binary sequences
define a succession of 1 values, which are separated by runs of consecutive zeroes. Starting from
the number of runs of zeroes in a period T(k), an estimation of the total number of primes can be
found, which is linked to the logarithmic integral estimation by the constant c of the Third Mertens’
Theorem. Noticeably, the succession of the runs of zeroes, whose elements are the gaps between two
consecutive primes, is symmetric in each period T(k). As a result, the proposed LINPES procedure
estimates the prime number function in each interval I(k), whose bounds are the squares of a prime
number and of the successive one. As a particular case, this procedure is also specialized to the case of
the twin primes, in such a way only the runs sized 2 are considered in each period. Consequently, a
heuristic relation for the number of these runs in a period T(k) is formulated, whose trend is linked
to the relation previously found for the total number of runs in the case of primes. Therefore, such a
relation gives an estimation of the twin prime number function π2(x) in each interval I(k), which is
equivalent to the estimation of the logarithmic integral function Li2(x), by means of the square of the
constant c. Being the bounds of these intervals given by squares of primes, their number is infinite.
As a consequence, the proposed procedure could give a contribution to the presumed infinity of the
succession of the twin primes. Future developments will further investigate the relation of the number
of runs 2 in a period T(k), together with the symmetry of the succession of the runs of zeroes.
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