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Abstract: The Internet of Things (IoT) makes our lives much easier, more valuable, and less stressful
due to the development of many applications around us including smart cities, smart cars, and
smart grids, offering endless services and solutions. Protecting IoT data of such applications at rest
either on the objects or in the cloud is an indispensable requirement for achieving a symmetry in
the handling and protection of the IoT, as we do with data created by persons and applications.
This is because unauthorised access to such data may lead to harmful consequences such as linkage
attacks, loss of privacy, and data manipulation. Such undesired implications may jeopardise the
existence of IoT applications if protection measures are not taken, and they stem from two main
factors. One is that IoT objects have limited capabilities in terms of memory capacity, battery life,
and computational power that hamper the direct implementation of conventional Internet security
solutions without some modifications (e.g., traditional symmetric algorithms). Another factor is
the absence of widely accepted IoT security and privacy guidelines for IoT data at rest and their
appropriate countermeasures, which would help IoT stakeholders (e.g., developers, manufacturers)
to develop secure IoT systems and therefore enhance IoT security and privacy by design. Toward this
end, we first briefly describe the main IoT security goals and identify IoT stakeholders. Moreover,
we briefly discuss the most well-known data protection frameworks (e.g., General Data Protection
Regulation (GDPR), Health Insurance Portability (HIPAA)). Second, we highlight potential attacks
and threats against data at rest and show their violated security goals (e.g., confidentiality and
integrity). Third, we review a list of protection measures by which our proposed guidelines can be
accomplished. Fourth, we propose a framework of security and privacy guidelines for IoT data at
rest that can be utilised to enhance IoT security and privacy by design and establish a symmetry with
the protection of user-created data. Our framework also presents the link between the suggested
guidelines, mitigation techniques, and attacks. Moreover, we state those IoT stakeholders (e.g.,
manufacturers, developers) who will benefit most from these guidelines. Finally, we suggest several
open issues requiring further investigation in the future, and we also discuss the limitations of our
suggested framework.

Keywords: Internet of Things (IoT); security guidelines; privacy guidelines; countermeasures;
security goals; attacks; IoT data at rest

1. Introduction

The Internet of Things (IoT) is a network of objects equipped with sensors, actuators, electronics,
and connectivity protocols enabling object interaction without human intervention [1]. The IoT is
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involved in the creation of a variety of applications and services around us, for example in smart cities,
smart cars, smart grids, quality of life applications, and electronic gadgets—all of which make our
lives more productive and less stressful. For instance, the authors in [2] proposed an loT system which
can be used to manage students’ stress. It is unquestionable that such IoT applications and services
provide a huge benefit for human life, yet they may come with a massive cost for individual privacy
and security protection. This is because the IoT inherits most of the issues of the Internet associated
with location awareness, security, quality of service [3], and most likely amplifies them due to the
direct connection with physical objects [4,5].

As IoT applications can store their data locally on objects or remotely in the cloud, based on their
storage capabilities, protecting their data at rest is of paramount importance. Several IoT applications
may cooperate with each other to accomplish specific tasks or services. If the data integrity of a single
IoT application at rest has been compromised, then there is a huge risk of dealing with a cascading
effect of the data compromise. For instance, the authors in [6] state that a thermostat deployed in
a smart home relies heavily on a smoke detector’s data to shut a heating system down in case of
danger. However, access of the smoke detector’s data by unauthorised objects may put the entire smart
home at risk. A countermeasure ensuring the data integrity across multiple Cloud Storage Services
(CSSs) was proposed by [7], where reliance on the Third-Part Auditor (TPA) for data verification was
eliminated the by use of a decentralised blockchain-based integrity management service. Furthermore,
once an Internet of Things (IoT) system stores its data in the cloud, there is no assurance that only
authorised objects or users will have access to their data. An example was given by European Union
Agency for Network and Information Security (ENISA) (https://www.enisa.europa.eu/), where an
employee at the SharpLocks company, attacker, was capable (due to given access rights) to send a
malicious update from the company’s server to all connected Internet of Things (IoT) objects [8].

However, most security and privacy issues of Internet of Things (IoT) data at rest, such as
unauthorised access and weak or absent encryption schemes, arise from two principal reasons. IoT
objects have limited capabilities in terms of computational power, memory, and bandwidth [9]. Because
of these limitations, a direct implementation of traditional security mechanisms in IoT objects tends
to be very difficult without some modifications. This is why a new breed of lightweight IoT security
techniques and protocols (e.g., a secure system of uploading and replicating IoT data suggested in [10])
has been developed [11,12]. The second reason, which motivates us to conduct this work, is the lack of
widely-accepted security and privacy guidelines for IoT at data at rest, along with their appropriate
mitigation techniques. The main objective of such guidelines and countermeasures is to improve IoT
security and privacy by design by giving IoT stakeholders (e.g., manufacturers, developers) a chance
to embrace such guidelines and countermeasures from the early stages of IoT system development [13].
If IoT stakeholders overlook these guidelines when dealing with IoT data at rest, the appearance of
attacks and threats is inevitable.

It is clear that the unauthorised access and privacy violations of individuals, associated with
data at rest, will appear repeatedly in IoT systems unless the mindset of all IoT stakeholders shifts to
properly integrate security and privacy guidelines for IoT data at rest, along with their corresponding
countermeasures, at early stages. The first step towards this paradigm shift is the development of a
comprehensive set of security and privacy guidelines. However, there is a complete lack of research
efforts conducted specifically toward this objective. To the best of our knowledge, there is no paper
or document clearly addressing security and privacy guidelines for IoT data at rest along with their
mitigation strategies. The existing research proposals [14-21] focus primarily on IoT guidelines in
general. They neither provide comprehensive guidelines for IoT data at rest, nor discuss their proper
countermeasures. A detailed explanation of such efforts along with a brief comparison between our
suggested guidelines for IoT data at rest and theirs is presented in Section 2.

The main contributions of this work are the following:

1. To highlight IoT security goals as well as IoT stakeholders.
2. To summarise the attacks and threats against IoT data at rest.
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3. To review a set of implementation techniques by which our suggested guidelines can be
implemented and also state those IoT stakeholders who would benefit from these guidelines.

4.  To propose a framework of security and privacy guidelines for IoT data at rest that can be utilised
to reinforce IoT security and privacy by design.

5. To discuss open issues, limitations, and future work.

The rest of this article is structured as follows. In Section 2, we present the current research studies
on IoT guidelines with focus on data at rest, describe the most popular data protection frameworks,
and highlight the IoT security goals and distinguish IoT stakeholders. Section 3 discusses threats and
attacks on IoT data at rest. We identify the appropriate techniques for mitigating the identified attacks
on IoT data at rest in Section 4. A proposed framework on security and privacy guidelines is presented
in Section 5. Finally, we discuss open issues for further investigation for future work in Section 6.

2. Related Work

In this section, we outline the current state of the art related to IoT security guidelines, existing
frameworks on data protection, and identify the involved stakeholders specific for the [oT environment.
We limit our discussion to the guidelines on protecting IoT data at rest as the main topic of this work.

2.1. Research Efforts on IoT Guidelines

In [14], the authors propose a set of security and privacy guidelines for IoT data at
rest, such as minimising data storage, minimising data retention, encrypting data storage, and
implementing time-period data aggregation. Furthermore, attacks and threats against IoT data at rest
are analysed. Having said that, the authors do not provide a comprehensive set of guidelines for IoT
data at rest, nor do they state the required implementation techniques to achieve their guidelines.

In [15], the IoT suggests a list of security and privacy guidelines for IoT data at rest like minimising
data storage, encrypting data storage, removing sensitive data, and ensuring data availability. However,
the IoT does not offer a thorough set of guidelines for IoT data at rest, nor does it identify the
countermeasures required to carry out its guidelines. Furthermore, threats and attacks against IoT
data at rest remain unchecked.

In [16], the Open Web Application Security (OWASP) suggests different security and privacy
guidelines for IoT data at rest, such as minimising data storage, minimising data retention, ensuring
authorised access, and preventing physical access. In addition, the OWASP states IoT stakeholders
like manufacturers, developers, and customers who may use its guidelines to protect IoT data at
rest. Nevertheless, the OWASP neither recognised the required countermeasures to implement its
guidelines, nor distinguished possible attacks and threats against IoT data at rest.

In [17], the ENISA proposes several security and privacy guidelines for IoT data at rest, such as
minimising data retention, encrypting data storage, defining recovery strategies, informing customers,
and ensuring proper data destruction. However, the ENISA does not recognise the IoT stakeholders
who may utilise its guidelines, nor does it identify proper solutions to apply its guidelines. Moreover,
the ENISA uncovers attacks and threats against IoT data at rest.

In [18], the IoTA suggests a list of security and privacy guidelines for IoT data at rest, including
encrypting data storage, informing customers, and removing sensitive data. That said, [oTA neither
distinguishes the required implementation techniques to fulfil its guidelines, nor does it point out
IoT stakeholders who may use its guidelines. Attacks and threats against IoT data at rest also are
left unidentified.

In [19], the IoT Security Foundation (IoTSF) proposes a set of security and privacy guidelines
for IoT data at rest, such as the use of distributed data storage, defining recovery strategies, ensuring
proper data destruction, and searching on encrypted data. However, the IoTSF neither recognises
suitable countermeasures to realise its guidelines, nor distinguishes attacks and threats against IoT
data at rest.
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In [21], the authors propose a comprehensive set of security and privacy guidelines for the first
two levels of CISCO’s reference model (i.e., edge nodes and communication). Even though their
guidelines are not meant specifically for protecting IoT data at rest, only three of these guidelines (i.e.,
ensure authorised access, remove or hide sensitive data, and search on encrypted data) can be used to
do so. The authors identify all possible threats and attacks against edge nodes and communication,
state those IoT stakeholders who may use their guidelines, and recognise suitable implementation
techniques to implement them.

2.2. Data Protection Frameworks

The lack of efficient standards, regulation, and weak governance is a cause of IoT security and
privacy issues. However, some initiatives at a national level have been proposed, which we briefly
present in the following;:

General Data Protection Regulation (GDPR): In December of 2016, the European Union (EU)
voted to use the GDPR as a replacement for the outdated Data Protection Directive (DPD) proposed
in 1996. The main goal of the DPD was to preserve individuals’ personal information within the EU
from being misused and to allow individuals in the EU to have better control over their personal
data. The GDPR is intended to substitute the DPD as a regulation, and it will cover the whole EU as
unified law. The GDPR has included six major changes (e.g., in terms of the definition of personal
data, individual rights, data controllers and processors, and global impact) compared to the DPD.
The detailed explanation of each of these, for interested readers, can be found in [22]. To preserve
personal data, the GDPR imposes six fundamental principles, the details of which can be found in [23].
Not all IoT applications deal with personal information—for instance, Industrial Internet of Things
(IIoT) applications. However, this may be the case in the majority of IoT systems (e.g., healthcare). It is
obvious that the market of IoT solutions is increasing worldwide, including Europe, and it is a relevant
topic requiring thorough management. One example is a digital transformation of healthcare due to the
fast growth of wearable and interconnected medical objects which provide remote health monitoring.
Therefore, healthcare data is highly sensitive, and it attracts the attention of attackers. Addressing
this, authors in [24] identified different attacks associated with the IoT multi-cloud e-Healthcare
environment, such as side-channel attacks and malicious insider attacks. Healthcare data must thus be
covered under the scope of the GDPR. Other important IoT applications which deal with personal data
like smart metering and smart home applications must also be covered under the scope of the GDPR.

Health Insurance Portability and Accountability Act (HIPAA): The main goal of the HIPAA is
to protect individuals from losing their health insurance if they have pre-existing health problems
or if they change their jobs. However, over time, the HIPAA has been extended to minimise the
administrative and cost burdens of healthcare processes. Most recently, the HIPAA has concentrated
on developing standards as well as requirements to ensure the security and privacy of Personal
Health information (PHI) which can be created, stored, or transferred in several formats (e.g., written
documents and verbal conversations). PHI may include anything in patient health records, such as
images, names, email addresses, and other information. As patients demand their data to be secure,
HIPAA'’s security and privacy rules, discussed in detail in [25], require that healthcare organisations
embrace a set of processes and procedures to assure the highest level of patient confidentiality. Under
HIPAA, a covered organisation may not utilise or reveal PHI unless it has received explicit consent
from a patient to do so. It is unquestionable that the IoT will change the healthcare experience. Several
examples are available on the market to illustrate how the IoT has simplified the process of care
management. For instance, collecting information in users” homes will assist healthcare providers in
comprehending users’ health in a comprehensive way, in choosing suitable treatment plans, altering
the plans as time progresses, and most importantly anticipating future health actions. It is clear that
the IoT can be utilised by healthcare organisations to reduce costs and simultaneously enhance health
outcomes in patients. Hence, healthcare IoT solutions must be covered under the scope of HIPAA.
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Industrial Internet Consortium (ICC): The ICC is an organisation developed in 2014 to improve
the growth of interconnected objects. The primary goal of tnis organisation is to build an alliance of
companies, academia, and governments to cooperate on the development of test beds for real-world
systems. Furthermore, it has been actively involved in supporting the necessities of standards in the
IoT industry. Toward this end, in 2016 the ICC proposed a security framework developed specifically
for the IoT. The main purpose of this security framework is to establish global industry acceptance on
how to develop secure IoT systems [26].

IoT Security Foundation (IoTSF): The IoTSF is a non-profit company that has been reinforcing
the IoT industry since 2015. This reinforcement includes developing security and privacy guidelines,
courses, and training. The IoTSF also has addressed the issues in the industry, and more importantly
it has struggled to cover the gap via a cooperative initiative with many companies dealing with the
IoT. This kind of cooperation attempts to share expertise, knowledge, and enhance best practices. To
contribute to such objectives, the IoTSF in [19], for example, proposed an loT framework as a checklist
which can be used by IoT manufacturers to simplify their compliance to the IoTSF framework.

2.3. IoT Security Goals and Stakeholders

In this section, we first discuss security goals specific to the IoT environment. In the literature,
traditional security goals are broken down into three primary sets: (i) confidentiality, (ii) integrity,
and (iii) availability, referred to as the Confidentiality, Integrity and Availability triad (CIA-triad).
Confidentiality assures that only authorised objects or users can get access to sensitive data. As several
IoT objects might deal with sensitive data such as medical records and credit cards, the confidentiality
of such data must be preserved. The impact of unauthorised access to medical objects, which may
reveal personal data or lead to life-threatening situations, has been illustrated in [27]. In the IoT context,
integrity is also crucial, since it ensures IoT data has not been tampered with. If the integrity of IoT data
has been compromised, undesired consequences may take place, for instance compromising a patient’s
privacy as a result of revealing their insulin pump [28]. loT availability is essential, as it guarantees
that IoT data is available and accessible to its users. Even though the CIA-triad is popular, it fails to
address new threats which appear in a cooperative environment, according to [29]. To tackle this issue,
the authors in [29] propose a complete list of security goals known as the Information, Assurance, and
Security (IAS) octave, by studying a huge amount of information in the state-of-the-art of security.
Table 1 summarises the security goals suggested by the Information, Assurance, and Security (IAS)
octave, along with their definitions and abbreviations associated with the IoT environment.

Table 1. IoT security goals [4].

Security Requirements Definition Abbreviations
Confidentiality Only authorised objects or users can get access to the data CONF
Integrity Data completeness and accuracy is preserved INTG
Non-repudiation The IoT system can validate the occurrence of any event NREP
Availability Ensuring the accessibility of an IoT system and its services AVAL
Privacy The presence of privacy rules or policies PRIV
Auditability Monitoring of the IoT object activity AUDI
Accountability End users can take charge of their actions ACNT
Trustworthiness Reliability on IoT object identity TRST

In order to build a framework of security and privacy guidelines that is suitable for all aspects
of the IoT environment life cycle, we first propose a classification of identified IoT stakeholders into
four groups, depicted in Table 2. It relates the main stakeholders with their associated role, in order to
dictate the degree of guideline adaptation and stakeholder impact.
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Table 2. IoT stakeholders [21].

Stakeholders Roles Abbreviations
Manufacturer Building IoT hardware products MAN
Developer Developing IoT software solutions or services DEV
Provider Providing services for IoT products to customers PRV
Consumer Using IoT objects in different aspects of their daily lives CNS

3. Attacks on IoT Data at Rest

In this section, we describe attacks and threats applicable for IoT data at rest and correlate them
with the IoT security goals identified in Table 1. More specifically, we annotate with “4A” when the
security goal in question is violated by the described attack.

(AT1) Misuse of data remnants: This type of attack takes place when IoT objects are taken in
possession by other end users either by voluntary life cycle transitions (second-hand, recycling) or
due to loss, theft, malfunctioning, and other involuntarily causes. Even though there is the possibility
that the data of such objects may be deleted before they are sold, this is not always the case for all sold
objects. Those objects which store valuable information during their entire life cycle (e.g., personal
photos and passwords) could be a primary target for many attackers, since they are not discarded
properly during their end-of-life period or their data are not purged completely during attempted data
cleanup [30]. This attack directly violates all security goals (see Table 3), as the attacker has full control
and access to the physical storage.

Table 3. The violated security goals by AT1.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A A A A A A

(AT2) Linkage attack: The probability of unauthorised access, as well as leaks of sensitive
information, grows significantly with the data sources of linked IoT systems, where each additional
link creates exponential exposure. When intercepting and cross-referencing between multiple data
sources leads to partial data identification, it is called a linkage attack [31]. This attack violates
confidentiality (CONF), integrity (INTG), and privacy (PRIV) security goals (see Table 4), as the
attacker is manipulating the intercepted data without directly interfering with the actual IoT object(s).
Therefore, other security goals are not applicable.

Table 4. The violated security goals by AT2.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A

(AT3) Data manipulation: The illegitimate modification of data at rest can be accomplished by
two methods: (i) exploiting several vulnerabilities in the application program interface such as SQL
injection and cross-site scripting, and (ii) taking advantage of weak security mechanisms like small or
weak passwords [32,33]. Similar to the “misuse of data remnants” attack, all security goals are violated
(see Table 5), as the attacker operates directly on the IoT object.

Table 5. The violated security goals by AT3.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A A A A A A
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(AT4) Side-channel attacks: This attack is based on the discovery of information by analysing
exposed side properties of the algorithmic implementation, such as processing timing, power
consumption, or even associated sounds. This type of attack may take place due to the absence
of secure methods of processing and storing IoT data, for instance storing unencrypted data either in
the cloud or on IoT objects. The authors in [34] discuss several data leakage attacks on CSSs, such as
the confirmation of a file and learning the content of files. In the case of file confirmation, an adversary
who already knows the plain text content of a file can examine if a duplicate of the file has been stored
elsewhere in the CSS. In the case of learning the contents of the file, the adversary can reveal highly
sensitive data, since the attacker already recognises most the of file and attempts to guess or identify
the unknown segments of file by examining whether the output of the encryption meets the observed
cipher text. Similarly to the “linkage attack”, the CONF, INTG, and PRIV security goals are violated
(see Table 6) as the attacker is indirectly revealing the private data, already generated and processed
by the IoT object.

Table 6. The violated security goals by AT4.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A

(AT5) Denial of Service (DoS): DoS attacks in cloud computing prevent CSSs from offering their
normal services or solutions for a period of time. The authors in [35] stated that DoS attacks which
compromise the availability of such CSSs stem from many contributing factors, the most notable of
which are resource exhaustion, process disruption, physical disruption, and data corruption. For
instance, the authors in [31] state that an attacker could flood a CSS with fake data at high frequency,
which in turn makes this storage service spend most of its time validating the authenticity of this
data and therefore unable to reply to any valid requests in a timely fashion. The inability of timely
response may cause a delay which is not preferable for most IoT applications, specifically real-time
applications like air traffic systems and Near-Field Communication (NFC) payment. For interested
readers, a recently published survey of DoS attacks in the cloud can be found in [35]. First of all, the
availability (AVAL) is affected by this attack, as implied by the definition of the attack. Accountability
(ACNT) is also no longer guaranteed due to the slow response times of the system. For INTG, the
guaranteed transmission and/or storage can be compromised, especially for real-time applications.
Auditability (AUDI) is also violated, since the system cannot perform continuous monitoring of the
object’s activity. Table 7 represents the violated security goals by this attack.

Table 7. The violated security goals by AT5.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A A

(AT6) Insider attack: An insider threat takes place when either a former or a current user who
has authorised access to an object’s data or CSSs misuses these access rights to compromise the IoT
security goals, such as confidentiality, integrity, and availability. Malicious insiders can be considered
as a considerable threat to many organisations. They can adversely influence a company’s mission and
reputation, and therefore they can pose a major impact to any business. The cyber-security intelligence
index [36] in 2016 stated that 60% of all attacks are derived by insiders. From this percentage, it can be
said that malicious insiders make a great contribution, since the majority of such attacks (44.5%) were
caused by them. In its recently published survey [37], EY identified several types of insider threats
such as fraud, infrastructure sabotage, and unauthorised trading. In the IoT context, the whole IoT
ecosystem—starting from objects located in different environments and their data and applications
in the cloud—may be vulnerable to insider threats. Toward this end, the authors in [24] illustrate
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the applicability of malicious insider attacks in all the layers of IoT multi-cloud-based e-healthcare
architecture composed of four layers. In layer 1 (physical), where several sensors are deployed to
collect the health data of different patients, an insider attacker (in this case) could alter the settings
to send incorrect data to the healthcare companies. The attacker could also obtain and reveal patient
information. Likewise, in layer 2 (network) where many connectivity protocols (e.g., Bluetooth Low
Energy) are utilised to transfer the patient data to the next layer, a malicious insider could carry out
many unwanted activities, such as redirecting the packets to a vicious network and compromising
the availability of health data by initiating a DoS attack on the network. In layer 3 (cloud), malicious
insiders could perform a set of malicious activities like gaining unauthorised access to patient data,
altering e-health applications, modifying data stored in the storage, and executing collision attacks.
Layer 4 (application) is also susceptible to malicious insider attacks. This is because any authorised
entity from lower to upper levels could uncover or alter patient heath data, which would certainly
impact the level of trust among patients, doctors, and health organisations [24]. Similar to the “misuse
of data remnants” attack, all security goals are violated (see Table 8) as the attacker operates directly
on the IoT object.

Table 8. The violated security goals by AT6.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A A A A A A

(AT7) Homogeneity attack: Several anonymisation-based solutions have been proposed (e.g.,
k-anonymity and t-closeness techniques), but some of them lack a method in which the diversity of
their sensitive attributes is not supported, making such techniques like k-anonymity vulnerable to
homogeneity attacks. This attack is applicable to cases where there are identical records within data
sets. Similarly to the “linkage attack”, the CONF, INTG, and PRIV security goals are violated (see
Table 9), as the attacker is indirectly capable of attributing the private data to specific identities.

Table 9. The violated security goals by AT7.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A

(AT8) Unauthorised access: 10T data are vulnerable to different attacks because of their storage
either in IoT objects or remotely in the cloud with no supervision of their holders. It is also expected
that the number of threats and attacks will be intensified, since attackers can gain access to such data
once they are not properly protected due to the absence of strong encryption techniques. Furthermore,
data might be placed in several data centres located in different countries, and such countries may have
a high power to access these data without the permission of their holders [38,39]. Another example of
unauthorised access can be found in [40]. The authors state that an adversary may gain access to IoT
data illegitimately during the migration procedure of a virtual machine to an untrusted host, which
might reveal its sensitive data. Similar to the “misuse of data remnants” attack, all security goals are
violated (see Table 10), as the attacker has direct access to the data on the IoT object or in the CSS.

Table 10. The violated security goals by ATS.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A A A A A A

(AT9) Identification: An identification attack can be considered as one of the most common threats
against IoT data in which an attacker can link some identifier attributes (e.g., name, address) with some
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individuals. Similar to the “linkage attack”, the CONF, INTG, and PRIV security goals are violated
(see Table 11) as the attacker is indirectly capable of attributing the private data to specific identities.

Table 11. The violated security goals by AT9.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A

(AT10) Hash collision: The key goal of the collision attack is to reveal two input strings of a hash
function that give the same hash value. Because a hash function has variable input lengths and a short
fixed-length output, there is the possibility that two different inputs generate the same output, and
this case is known as a collision [41,42]. As a consequence, an attacker can compromise the encryption
key and therefore intercept or have access to the IoT object’s data. Similarly to the “linkage attack”, the
CONE INTG, and PRIV security goals are violated (see Table 12), as the attacker is indirectly revealing
the private data already generated and processed by the IoT object.

Table 12. The violated security goals by AT10.

CONF INTG NREP AVAL PRIV AUDI ACNT TRST
A A A

4. Mitigation Techniques for Protecting Data at Rest

In this section, we analyse existing methods of IoT data protection and attribute these mitigation
techniques for the attack vectors, identified in Section 3.

(MT1) Deduplication schemes: Attributed to attacks AT4 and AT8. Data deduplication is a
method in which only a unique copy of redundant IoT data is stored, and links (not actual data) to
the copies are provided. This is why this technique can be used as a backup strategy. Therefore, the
development of secure deduplication schemes capable of detecting identical data copies and storing
them once is a need and challenge at the same time. To this end, several data deduplication techniques
have been proposed in the literature which can be classified broadly into two categories (i.e., server-side
and client-side) based on the location at which data deduplication is accomplished [31].

Note that despite the benefits of deduplication schemes in saving disk space, minimising network
bandwidth, and preventing unauthorised access, these techniques are susceptible to side-channel
attacks. For instance, the authors in [34] state that implementing deduplication techniques in cloud
storage may cause side-channel attacks like identifying files, learning the contents of files, and a
covert channel. The authors also illustrate several practical solutions, such as encryption and proof of
ownership, to mitigate such attacks. Toward this point, a few secure deduplication techniques have
been proposed, described below.

In [43], the authors propose a novel deduplication algorithm in which a given file is broken into
multiple segments. Each segment is encrypted by a user, and the encryption process involves both a
secure hash function and a block encryption technique. These segments have an index tree, which
is composed of the hash values of these segments. The index tree is generated and encrypted by the
user using an asymmetric algorithm. The authors claim that, if it is implemented, their approach
will prevent storage providers from getting access to users’ data or their decryption keys. In [44],
the authors propose a new deduplication technique based on Attribute-Based Encryption (ABE) to
encrypt data stored in the cloud and simultaneously provide secure access to this data. According
to the authors’ evaluation, this technique is suitable for practical deployment due to its effectiveness,
scalability, and efficiency. Other research proposals associated with this topic can be found in [45,46]

For interested readers, a recently published survey regarding this topic can be found in [47].

(MT2) Secure storage schemes: Attributed to attacks AT3, AT4, AT8, and AT10. Secure
storage techniques can be used to prevent IoT data breaches. Several research proposals have
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been introduced, classified broadly into two categories: (i) cryptographic-based schemes and
(if) non-cryptographic-based schemes. An example cryptographic-based scheme can be found in [48].
The authors propose a secure IoT storage technique in which aggregated IoT data can be stored
securely on an object based on Shamir’s secret sharing method. To protect IoT data on such a system,
Shamir’s secret sharing algorithm was used, along with internal padding. Data in this approach,
prior to being stored, are divided into many segments and each segment is stored in different storage
objects. Another example cryptographic-based scheme is presented in [49]. The authors propose a
new technique based on an elliptic curve algorithm, which allows different users to access and store
their data securely from the cloud. Moreover, it assures that neither the cloud storage provider nor
unauthorised users can gain access to the data. This approach is also capable of protecting individuals’
data, even when the cloud provider is compromised due to its data encryption.

In [50], the authors propose a novel architecture in which individuals and companies can securely
upload and store their data in the cloud. This architecture is composed of things, gateway, network
infrastructure, and cloud. To collect data in this architecture, IoT objects or things are deployed in
the physical environment. The need for gateways in this architecture, which uses as an intermediate
layer between objects and the cloud, stems from the fact that not all IoT objects are equipped with
connectivity protocols (e.g., Wi-Fi) that allow them to connect to the Internet and transmit their data.
The administrator in this system plays a key role in defining responsibilities according to the job
functionality described in the organisation. For the interested readers, other research efforts associated
with this topic can be found [51-54].

An example of a non-cryptographic-based scheme can be found in [55]. The authors propose
a new storage schema called POTSHARDS which offers long-term security for IoT data without
involving any encryption techniques. The security of this scheme is derived from dividing data into
so many segments (each segment has its own pointers) and scattering them into different storage. If
an attacker wants to get data of one segment, he needs to get all its pointers, which are distributed in
several storage objects.

(MT3) Access control: Attributed to attacks AT6 and ATS. Attributed to attack AT3. Many
research efforts have been proposed to control access to stored IoT data by customers or companies.
Such efforts can be divided broadly into four categories: (i) Mandatory Access Control (MAC),
(ii) Discretionary Access Control model (DAC), (iii) Role Based Access Control model (RBAC), and
(iv) ABE. Having integrated MAC into an loT system, the system administrator will have privileges to
manage the customers’ roles and rights. In MAC, it is also possible for the system administrator to
manipulate access policies, resulting in the prevention of customers from accessing the system. This
type of access method can be added to sensitive systems like military and research centres [56]. If
DAC is integrated into an IoT system, the customers will have the right to manipulate the access rules
for any object. This approach is extremely dangerous if an attacker gains access rights to a customer
account. Thus, it is not wise to give one customer full rights to the IoT system.

If RBAC is integrated into an IoT system, customers can gain access to resources based on their
roles and responsibilities in the system. Several research proposals have been conducted in relation to
this topic [57-59]. For instance, the authors in [59] suggest new five principles known as ASSAA for
the next-generation RBAC. They claim that these principles are applied to access control in general
despite the fact that they are developed specifically for RBAC. ABE provides adaptable one-to-many
encryption without prior information of who will be accessing this information. It also draws attention
to fine-grained access techniques over outsourced data. The identification of a customer in ABE is
accomplished by a set of attributes which can be used to define the access policy of the customer [60].
Recently, several research proposals have attempted to implement ABE in fog computing [61-63]

(MT4) Recovery strategy: Attributed to attacks AT3 and AT5. Despite the importance of providing
high availability and disaster recovery for IoT storage, a few state-of-the-art research proposals have
been found. In [10], authors investigated the problem of uploading IoT data from a set of several sensors
and creating different replicas of these data on distributed storage in the cloud. The applicability of this
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approach depends on the existence of several distributed data centres known as mini-clouds. In [64],
authors propose a new replication approach to minimise power consumption, delay, and the cost of
uploading a huge amount of data sent by several IoT applications. Each application is composed of
too many small objects. To reduce time latency, the authors deployed local cloud computing resources.
Other research proposals related to this topic can be found in [65-67].

(MT5) Anonymisation schemes: Attributed to attacks AT2, AT7, ATS and AT9. Such solutions
can fall broadly into three categories: (i) K-anonymity, (ii) /-diversity, and (iii) {-closeness. K-anonymity
is a technique in which the privacy of data holders is preserved when they issue their data, preventing
threats associated with subject identification. This technique assures that the information of each
person cannot be identified from a set of at least k(—1) individuals . The concept of k-anonymity
represents data as a table composed of a set of rows and columns. Each row indicates the insertion of
new information related to a specific entity and it should not be unique [11], whereas each column
represents an attribute for the entity. Two techniques have been used to achieve k-anonymity. The first
is suppression, in which the values of some attributes are substituted by an asterisk *. The second is
generalisation, in which the personal values of attributes are changed by values in a wider range. For
instance, if the attribute age is used, the value 35 can be substituted by the term <40.

In the IoT, k-anonymity can be used for the localisation of smart objects to enhance location privacy.
This can solve security issues related to the need for a third entity for managing different k-anonymity
sets for several queries, the inapplicability of using universal GPS indoors, and obfuscation. In [68],
the authors propose a tree-based location privacy technique against multi-precision attacks using a
new location query technique in which multi-precision queries are fully supported. In [69], the authors
propose another k-anonymity technique in which data can be released based on concrete generalisation.

L-diversity is suggested to mitigate the weakness of k-anonymity, which is its inability to prevent
homogeneity and background attacks. In [70], the authors propose a new and powerful privacy
technique known as [-diversity which can be used to prevent several attacks (e.g., homogeneity attack).
Moreover, they perform an experimental evaluation to show that the proposed technique is practical,
and that it can be implemented effectively.

T-closeness was first coined in [71] to overcome the shortcomings of k-anonymity and /-diversity
associated with attribute inspiration. The authors in [71] propose that a distribution of sensitive
information in any set must be close or connected to their scattering in the whole database. To
summarise the value of this work, the authors used different real examples and experiments. In [72],
the authors suggest a decomposition technique with (n — 1) closeness, the main purpose of which
is to preserve privacy in the case of several sensitive attributes by reducing the amount of sensitive
information which can be elicited from the published data in the t-closeness situation.

(MT6) Transient data storage: Attributed to attacks AT1 and AT4. The existing research proposals
have focused on managing the persistent data in IoT systems. In this case, data may be stored even
after such systems have finished their executions. Nevertheless, a handful of research works have
concentrated on managing transient IoT data generated during systems executions. The importance
of transient data stems from processing data during system execution to generate new versions of
data which may be stored in storage for users’ needs or may be purged, and therefore it can reduce
threats associated with such data. In [73], the authors propose a new system of managing transient IoT
data in which this data can be processed, placed, and managed. This system is composed of several
components, including a resource estimator, transient data characteriser, and data manager. Other
research proposals related to this topic can be found in [74-76].

(MT7) Searchable Encryption (SE): Attributed to attacks AT5 and AT6. Another way to protect
data in IoT storage is to perform information retrieval on encrypted data, which is known as SE—an
approach that boomed in 2000. The main idea behind this technique can be summarised as follows:
An object indexes and encrypts its data, and then it sends its encrypted data along with an index to a
server. In order to search for given data, the object needs to generate a trapdoor through which the
server can execute search operations directly on encrypted data, and the output will also be encrypted.
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This field is known as homomorphic encryption. In this regard, Fully Homomorphic Encryption (FHE)
was proposed in 2009 by Gentry [77]. That being said, the key distribution and user revocation in a
multi-user search setting is a need and a challenge at the same time. Toward this end, some traditional
technologies, like broadcast encryption proposed in [78] and secret sharing suggested in [79], can be
used to cope with the key distribution issue. User revocation can be solved using either a trusted third
party, proposed in [80], or a semi-trusted third party, suggested in [81].

It is worth mentioning that the ABE proposed in [82] was used by Sun et al. to develop the
Attribute-Based Keyword Search (ABKS) scheme to offer fine-grained search authorisation in the cloud,
proposed in [83,84].

(MT8) Distributed data repositories: Attributed to attack AT5. Several research studies have
been proposed related to this topic. In [85], authors propose a new secure storage scheme for sharing
data in public storage (in the cloud) known as a shield. Both authentication and access control in this
approach are granted by a proxy server. A new version of Merkle hash tree was introduced to achieve
integrity check and file content update. Moreover, both key management and effective permission
revocation can be accomplished using a hierarchical key organisation. Another example of integrating
access control into secure storage can be found in [86]. The authors propose a new secure storage
repository called Cryptonite for sharing a huge amount of scientific data in the cloud. This approach
provides an easy way for its users to securely store and share their data in the cloud without revealing
their sensitive data, not only to unauthorised users or attackers, but also to the cloud storage provider
and system itself.

It is also worth mentioning that a secure version of Hadoop Distributed File System (HDEFS) can
be used to achieve this objective, and research proposals associated with this topic are described below.

In [87], the authors propose a secure version of HDFS in which two security countermeasures
are involved to prevent hackers from getting data in the cloud. The first countermeasure is a trust
mechanism established between the name node used to manage data nodes and the end user. This
type of trust mechanism requires that the end user be authenticated in order to access name node.
To achieve this objective, the end user first sends a hash function, and then the name node compares
hash functions, which are Secure Hash Algorithm 2 (SHA-2), generated by both the end user and the
name node. The end use is only authorised to access the system if the compare result is correct. For the
other countermeasure, random encryption methods like Rivest-Shamir-Adleman (RSA), Advanced
Encryption Standard (AES) and Rivest Cipher 6 (RC6) are used on data to prevent an adversary from
gaining access to the data. The encryption and decryption processes are accomplished by MapReduce,
which allows data aggregation and the parallel processing of a huge amount of data.

Another example of secure HDFS which is equipped with three countermeasures can be found
in [88].

(MT9) Introspection: Attributed to attacks AT5 and AT6. Another technique which can be used
to conserve users’ sensitive information is introspection, by checking all the activities on a virtual
machines (VMs) in which IoT data are stored. The main idea behind this technique is to inspect the
state of the Central Processing Unit (CPU) for each VM, detect the malicious software on the VM, and
check Input & Output (IO) for records or files. Nevertheless, users’ privacy may be compromised as a
consequence of losing one object’s integrity by malicious software.

(MT10) Blockchain: Attributed to attacks AT2, AT6, and ATS. The use of blockchain technology
in the IoT has several advantages—the most dominant of which are decentralisation, trust, and
non-repudiation. It is clear that the previously mentioned countermeasures can be used to solve
different security and privacy issues (e.g., unauthorised access and data leakage) associated with
IoT data at rest. However, there is a need for blockchain technology to address other important
issues, such as untrusted Third-Party Auditors (TPAs) and data integrity across different cloud storage.
A handful of research proposals have been put forward to contribute to these objectives, the most
recently published of which can be found in [7,89-91]. In [7], the authors propose a blockchain-based
solution to provide a decentralised process in which data integrity for IoT data stored in semi-trusted
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clouds is verified and checked. Furthermore, the authors illustrate the feasibility of their approach by
applying a proof of concept on a personal (private) blockchain system. In [89], the authors first propose
three different requirements to allow IoT systems to share and store their data in an untrustworthy
environment such as untrusted TPAs. Such requirements are divided into three categories: (i) trusted
trading, (ii) trusted privacy, and (iii) trusted data access. Moreover, they propose a decentralised
architecture based on blockchain technology to accomplish the above-mentioned requirements. The
authors also demonstrate the feasibility of this technique by implementing a proof of concept on
an Ethereum blockchain. In [90], the authors suggest a data-centric approach based on blockchain
technology which concentrates on sharing, resilience, and the auditable preservation of data. However,
the authors only present the initial design of their approach, which is a blockchain-based end-to-end
encrypted data storage system. Secure and permanent data management is achieved as a result of
using blockchain as an auditable access control level to a distributed storage level. In [91], the authors
propose a blockchain-based storage system called Sapphire. This system is designed specifically for
data analytics in IoT. In this system IoT data coming from different IoT applications like smart home,
smart grid, and smart city are classified into two categories, namely, text data and media data. This
classification is accomplished by a data classifier. The collected data in both formats (i.e., text or
media) are stored in large-scale blockchain-based storage via a customer process. Each IoT object in
Sapphire is represented as an Object-based Storage Device (OSD). Sapphire links the system interface
model through the Put/Get application program interface. The main building block of Sapphire is a
large-scale storage system which uses the hash-based mapping approach to divide the key address
space into OSDs. The OSDs are used as a technique to enhance load balancing and more importantly
to simplify the cooperative caching. The number of OSDs may be scaled up or down in size based on
the number of physical objects which may join or depart the system. To investigate the issue of fault
tolerance caused by storage node failure, several data replicas are used.

(MT11) Physical security: Attributed to attack AT8. IoT data may be scattered in different physical
locations, making them susceptible to physical attacks despite the the existence of the previously
mentioned solutions. Therefore, there is a need of physical security measures for protecting loT data at
rest. This is because the above-mentioned solutions cannot prevent the physical damage of IoT objects
along with their storage as well as data centres. Presently, several physical security solutions can be
used to protect IoT data at rest, including but not limited to security guards, physical barriers, video
surveillance, and locks. It is also wise to improve the efficiency of such physical security measures by
integrating them with IoT technology due to the use of connected sensors and actuators. Intelligent
monitoring, tampering alerts, perimeter protection, and facial recognition are some examples of this
kind of integration.

(MT12) Monitoring and auditing: Attributed to attack AT8. Monitoring activities in the storage
of IoT data in the cloud is of paramount importance to prevent data breaches [92]. Toward this
end, several research efforts have been conducted, some of the most recent of which are described
here. In [93], the authors propose a centralised monitoring technique for cloud applications used
to monitor servers, agents, and files along with their configurations. To overcome the limitations of
a centralised monitoring approach, which include scalability and most importantly single point of
failure, this technique provides multi-level notifications, redundancy, and automatic healing. In [94],
the authors propose a scalable distributed monitoring solution for clouds. This solution depends
heavily on a scattered management tree which involves a set of parameters along with their protocols
for data collection. Moreover, the authors reviewed the shortcomings of current intrusion detection
solutions and also investigated the use of one of the emerging fields for securing virtual machines
(VMs) in the cloud, known as virtual-machine-level intrusion detection. In [95], the authors propose
a novel architecture in which the virtualisation technology can be integrated into the heart of cloud
computing to carry out intrusion detection security utilising hypervisor performance metrics like
packets transmitted /received, CPU utilisation, and read /write requests. The authors also illustrate
and validate that malicious activities could happen, even when the attackers lack the knowledge of the
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operating system which operates within the VMs. For the interested readers, other research proposals
related to this topic can be found in [96,97].

(MT13) Decommissioning: Attributed to attack AT1. The process of proper decommissioning
of IoT objects along with their data in the cloud is a fundamental requirement in IoT security, and
its solutions can be broadly classified into two categories: (i) object-based solutions which focus
on decommissioning of IoT objects and their on board data, and (ii) cloud-based solutions which
concentrate on the destruction of IoT data in the cloud storage. Despite the importance of object-based
decommission techniques for addressing security and privacy concerns like personal data breaches,
there is a lack of state-of-the-art research conducted in this regard. Nevertheless, the Smart Card
Alliance in [98] suggested two choices for decommissioning. Firstly, the objects can be reset to factory
default mode. In this option, all data in objects will be deleted except for the basic security parameters.
These objects can come back to life later. Secondly, a blacklist technique implemented on a server
will be used to prevent blocked objects to re-join a network unless their statuses on the server have
been changed.

(MT14) Secure data migration: Attributed to attacks AT4 and ATS. Despite the importance of
secure data migration solutions in preventing some threats and attacks (e.g., unauthorised access and
linkage attacks), a few research works in the literature have been proposed. We briefly discuss them in
the following.

In [99], the authors propose a secure data migration solution for migrating or transporting IoT
data from one cloud storage service to another. To assure pre-migration authentication, this solution is
equipped with mutual authentication composed of key splitting and sharing approaches. Having used
a symmetric algorithm (Revest-Shamir-Adleman (RSA)) to encrypt migrated data, several security
goals, such as confidentiality, integrity, and authenticity, are fulfilled. Two OpenStack servers were
used to implement and validate the feasibility of this technique. In [100], the authors propose a simple
and effective solution for securely migrating data between different cloud storage services. This
technique depends heavily on the use of cryptography and steganography, and is known as Secure
Cloud Migration Architecture using Cryptography and Steganography (SCMACS). To encrypt and
decrypt migrated data in this technique, a shared key generated by a symmetric algorithm is used by
both sender and receiver. The advantage of this approach stems from generating a dynamic value for
the private key. The authors also developed a prototype to illustrate the feasibility of their technique
based on HDFS. Other techniques for migrating data securely among different cloud storage can be
found in [101-103].

An overview of countermeasures proposed IoT data at rest is presented in Table 13.

Table 13. A summary of the mitigation techniques proposed for IoT data at rest.

Implementation Research

Techniques Proposal Year Mechanism Used

Suggests a secure and scalable IoT storage technique that meets
[48] 2015  different non-functional requirements (e.g., flexibility, liability,
and security).
Proposes a technique in which IoT data can be stored securely
[50] 2016  using cryptographic algorithms and several access
control policies.
Proposes a flexible framework to address storing IoT data
securely by merging cloud computing used to store

Secure storage
schemes

511 2018 non-time-sensitive data and fog computing used to store
time-sensitive data.
53] 2016 Provides possible techniques to address some cloud computing

issues like data breaches, unavailability, and reliability.

Proposes a file system based on Ciphertext-Policy

[52] 2014 Attribute-Based Encryption (CP-ABE) in which secure deletion as
well as access to encrypted files in the cloud can be achieved.




Symmetry 2019, 11, 774

15 of 36

Table 13. Cont.

Implementation
Techniques

Research
Proposal

Year

Mechanism Used

Access control

[60]

[61]

[63]

(571

[62]

2017

2016

2018

2012

2018

Suggests a hybrid method composed of data encryption with
fine-grained access technique and index encryption, which is
suitable for a fog computing ecosystem.

Proposes a security model of attribute-based encryption with
outsourced decryption called Chosen Ciphertext Attack (CCA),
which is the best technique for IoT data protection in the cloud.
Proposes a general framework in which a fully secure
leakage-resilient function encryption technique is constructed to
prevent several attacks (e.g., side-channel attacks).

Discusses different solutions that can be used to protect user data,
such as encryption, authentication interface, and multi-level
virtualisation.

Suggests a novel technique to reinforce CP-ABE solutions to offer
immunity against key-delegation abuse concern.

Distributed data
storage

[85]

[104]

(871

[88]

2014

2011

2015

2015

Proposes a new type of Merkle hash tree to enhance effective
integrity checking, secure file sharing without any alteration, and
file content update.

Suggests a novel approach for a secure data repository service
developed on a public cloud infrastructure to allow customers to
securely share and store their sensitive data in the cloud.
Describes HDFS and its difficulty in preserving the security and
privacy of Big Data.

Represents three techniques (Kerberos, name node, and
algorithm) used to enhance HDFS security.

Recovery
strategy

[10]

[65]

[67]

[66]

2017

2016

2013

2015

2013

Suggests a distributed cloud storage system based on a
mini-cloud assumption used to replicate and upload IoT data
among different data centres.

Suggests the distribution of local cloud computing resources to
investigate the long-term evolution architecture shortcomings
within radio access networks and proposes a new protocol for a
memory replication.

Proposes a divide-and-conquer technique used to replicate the
content in wireless mesh networks.

Suggests different local search algorithms and represents a new
technique called Aurora used to apply such algorithms in HDFS
with lower overhead.

Suggests a lightweight and scalable approach in which an object
replication and placement technique in WMN:s is achieved.

Transient data
storage

[73]

[74]

[76]

[75]

2018

2014

2015

2014

Proposes a technique for managing mass transient data in IoT
applications, which consists of several components (e.g., transient
data characterisation, data manager, and resource estimator).
Proposes a software architecture that facilitates the collection of
sensor data in the IoT environment.

Proposes a distributed cloud-based storage system developed
specifically for IoT data.

Proposes a new approach to utilize sensing capabilities in smart
cities collect environmental data from different heterogeneous
objects to be stored in a data storage system that supports
Structured Query Language (SQL) and non SQL technologies.
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Table 13. Cont.

Implementation
Techniques

Research
Proposal

Year

Mechanism Used

Anonymisation
based solutions

[68]

[69]

[71]

2012

2012

2008

2010

Suggests an anonymity-tree based technique suitable for IoT that
reinforces multi-precision queries.

Proposes an enhanced fine-grained algorithm k-anonymity which
re-evaluates the generalisation scale corresponding to the
application domain.

Proposes a new privacy notation known as f-closeness in which
the distribution of a feature in any class should be very close to
the distribution of the feature in the whole table.

Proposes a privacy procedure based on information theory, the
implementation of which depends on the post-randomisation
method.

Searchable
encryption

2011

2008

2011

2016

Suggests some improvements in searchable symmetric
encryption in terms of effective constructions and definitions.
Addresses the notation threshold privacy preserving keyword
search (TPPKS) , identifies its security goals, and develops a
TPPKS approach.

Proposes a multi-user searchable encryption approach which is
more practical, and has a set of benefits over the popular
techniques.

Proposes the first attribute-based keyword search approach
equipped with an effective user revocation technique, offering
fine-grained search authorisation.

Blockchain-based
solutions

[89]

[7]

[90]

[91]

2018

2017

2017

2018

Proposes a decentralised architecture based on blockchain
technology in which the trust and integrity of IoT data among
TPAs can be achieved.

Proposes a blockchain-based architecture to provide the integrity
of IoT data among different TPAs.

Proposes a blockchain IoT data storage system which provides
secure and permanent IoT data management.

Proposes a new IoT data storage system (known as Sapphire)
based on blockchain technology. IoT data coming from different
IoT devices constitutes objects with methods, IDs, features, and
policies.

Monitoring and
auditing

[96]

[97]

[95]

[94]

2014

2015

2014

2013

Proposes an approach to deal with a huge amount of data to
investigate for security monitoring.

Proposes a new public auditing technique based on Merkle hash
tree known as MuR-DPA which integrates a new authenticated
data structure (ADS).

Suggests a hypervisor-based cloud intrusion detection technique
that does not need extra software installed in VMs which
simultaneously provides more benefits compared to host-based
intrusion-detection techniques.

Proposes a scalable monitoring approach for clouds to supervise
their data in a distributed manner.

Deduplication
schemes

[34]

[43]

[45]

[44]

2010

2012

2013

2016

Suggests simple solutions which allow cross-user deduplication
and, at the same time, minimise the danger of data leakage.
Proposes a secure data deduplication architecture for cloud
storage.

Proposes a secure and effective storage service known as
ClouDedup, which enables block-level deduplication as well as
data confidentiality.

Proposes an approach based on attribute-based encryption used
not only to deduplicate encrypted data stored in the cloud
storage, but also to provide secure data access control.
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Table 13. Cont.

Implementation Research

Techniques Proposal Year Mechanism Used

Proposes a secure data migration approach to move the data from
one cloud storage service to another.
Proposes a new architecture which enables secure data
transportation from users to the cloud server providers.
migration Proposes a new framework for multi-tenant cloud migration
techniques [103] 2018 used to fulfil data integrity and confidentiality.

Proposes an inter-cloud data migration technique which provides

[102] 2016 better security goals and quicker response time for transferring

large files into cloud storage services.

[99] 2017

Secure data [101] 2015

5. Analysis of Security and Privacy Guidelines for IoT Data at Rest

This section first describes our derived guidelines as they relate to the involved stakeholders.
Then, the overall guideline framework is presented with the links between guidelines, mitigation
techniques, and attacks.

(G1) Minimise data storage: The GDPR has proposed six principles for the processing of personal
data, among which is data minimisation. CSSs, under GDPR, should only store personal data required
to achieve their processing purposes [105]. Two benefits are associated with this type of principle. One
is that data breaches will be minimised, as unauthorised users will have access to a restricted amount
of data. The other benefit is that data accuracy will be improved [106]. This guideline hence suggests
that the amount of data stored either on objects or in the cloud should be minimised, and any segment
of data that is not needed to execute a specific task should be removed from IoT storage [106]. For
example, the authors in [14] state that raw data can be removed from storage once secondary contexts
are extracted and, more importantly, all data must be de-identified. Three countermeasures, namely;,
MT1, MT5, and MT8, can be used to accomplish this guideline.

Reasoning: This guideline is proposed based on one of the Privacy by Design as well as Security by
Design principles, which is the minimisation of data, proposed by Hoepman in [107] and Open Web
Application Security Project (OWASP) [108], respectively. We do believe this guideline can be used by
MAN, DEV, and PRV as they are directly involved in the production, deployment, and development
of IoT objects. This can be done by allowing such objects to minimise the amount of data on them by
deleting any segments of data that are not needed. It can also be used by CNS, since in the future IoT
objects may be armed with dashboard settings, permitting data collection to be minimised. Table 14
represents the stakeholders who may utilize this guideline.

Table 14. The involved IoT stakeholders in G1.

MAN DEV PRV CNS
v 4 v v

(G2) Minimise data retention: In [109], the authors state that retaining data for a long time is
associated with data breaches, since it gives an attacker an opportunity to try all of their hacking
techniques to compromise it. Apart from data breaches, privacy risks may also be increased, according
to [14]. This is because long retention periods may cause unauthorised secondary usage. This is
why the GDPR has stated that sensitive data must be stored “no longer than is necessary for the
purposes for which the personal data are processed” [105]. This guideline therefore suggests that data
retention on IoT objects or in the cloud should be minimised as much as possible. This guideline can
be implemented by MT6. All stakeholders who may use this guideline can be shown in Table 15.



Symmetry 2019, 11, 774 18 of 36

Table 15. The involved IoT stakeholders in G2.

MAN DEV PRV CNS
v v v v

Reasoning: This guideline is proposed based on a minimisation principle suggested in Privacy
by Design (Hoepman in [107]) as well as Security by Design (OWASPS in [108]) frameworks. It can
be utilised by MAN to ensure that their objects are equipped with data retention rules. For DEV
and PRY, this guideline can be implemented to ensure that IoT applications are engineered from the
beginning to avoid keeping data longer than is required. CNS can also benefit from this guideline by
deleting unnecessary data on their objects. All stakeholders who may use this guideline can be shown
in Table 15.

(G3) Distributed data storage: To prevent a single point of failure in IoT applications and enhance
their availability, this guideline suggests that IoT data should be stored in a distributed manner.
However, the use of this guideline has associated trade-offs. On the one hand, it improves the
availability of IoT applications and also reduces some privacy risks. For instance, the authors in [14]
state that distributed data storage can be used to minimise privacy violations, since it prevents
unauthorised access and secondary knowledge discovery. On the other hand, it opens doors for
several attacks and threats like data leakage, as it increases the attack surface of IoT, according to [110].
Therefore, this guideline should be investigated with caution, and it can be implemented by MTS8.

Reasoning: This guideline is suggested based on the aggregation principle proposed in the Privacy
by Design framework (Hoepman in [107]). It can be utilised by MAN to assure that their IoT products
have capabilities to store data in distributed environments. For PRV and DEYV, it can be utilised to
assure that their IoT applications and services are designed to store data in distributed environments by
supporting distributed IoT architectures. Table 16 shows stakeholders who may utilize this guideline.

Table 16. The involved IoT stakeholders in G3.

MAN DEV PRV CNS
v 4 4 X

(G4) Encrypt data storage: In [17], the ENISA expressed the importance of encrypted IoT data
at rest to minimise privacy violations in the IoT. It is also worth mentioning that the Payment
Card Industry Data Security Standard (PCI DSS) has forced all companies dealing with credit card
information (e.g., Visa, Mastercard) to implement encryption techniques when storing data [111].
Moreover, PCI DSS explicitly prevents the use of storage encryption as provided by operating systems.
This guideline thus suggests that the data of IoT applications should be stored in an encrypted manner
either on IoT objects or in the cloud. Two protection measures (MT2 and MT7) can be used to achieve
this guideline.

Reasoning: This guideline is stated based on the hide principle proposed in the Privacy by Design
framework (Hoepman in [107]). It can be utilised by MAN to assure that their IoT products have
the ability to encrypt their stored data. Both PRV and DEV can integrate this guideline from the
beginning into their IoT applications so that they always store their data in an encrypted format. CNS
can also benefit from this guideline by enabling this feature if it comes with IoT products. Stakeholders
involved in this guideline are represnted in Table 17.

Table 17. The involved IoT stakeholders in G4.

MAN DEV PRV CNS
v v v v
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(G5) Prevent data leakage: Even if IoT data is stored in an encrypted form, it is still vulnerable to
side-channel attacks. This can be happen for many reasons, such as weak encryption, hardware failure,
and human error [53]. Therefore, this guideline suggests that IoT stakeholders like manufacturers
and providers should implement suitable data leakage prevention techniques (e.g., Searchable
Encryption (SE) techniques) by taking governments rules and industry standards into consideration.
Six implementation techniques (MT1, MT2, MT5, MT6, MT6, and MT12) can be used to carry out
this guideline.

Reasoning: This guideline is suggested based on the hide principle proposed in the Privacy by
Design framework (Hoepman in [107]). MAN can integrate this guideline into their IoT products in
order to be more resistant to side-channel attacks. It can also be utilised by PRV and DEV to assure
that their IoT applications are engineered from the ground up to prevent data leakage. The involved
stakeholders in this guideline are shown in Table 18.

Table 18. The involved IoT stakeholders in G5.

MAN DEV PRV CNS
4 v 4 X

(G6) Minimise data granularity: “Granularity” here refers to the level of detail available and
to be utilised. A concrete representation of data (e.g., a full address) is known as high granularity,
while a summary view of data or a high-level representation of data is called low granularity (e.g., a
dissemination of location), according to [112]. In this context, storing concrete data is always associated
with high privacy risks compared to storing data at an abstract level, since it is composed of more
data. Therefore, this guideline suggests that IoT systems should only store minimal data in which their
functions can be maintained [14]. This guideline can be implemented by MT1 and MT7.

Reasoning: This guideline is stated based on the minimisation principle suggested in Privacy
by Design (Hoepman in [107]) as well as Security by Design (OWASPS in [108]) frameworks. It can
be implemented by MAN to ensure that their products always collect and store information about
their customers at a high level. Both DEV and PRV can also integrate this guideline into their IoT
applications from the ground up to prevent identification attacks as they store data at an abstract level.
Table 19 shows all stakeholders who may utilize this guideline.

Table 19. The involved IoT stakeholders in G6.

MAN DEV PRV CNS
v 4 4 X

(G7) Ensure data availability: With the growth of the IoT, data will be generated at an
unprecedented rate, as billions of objects will be connected to the Internet. Since most of these
objects (e.g., actuators, sensors, thermostats) do not have on-board storage, their data must be stored in
cloud data centres [10]. The availability of this data is a crucial requirement for many applications to
achieve their tasks. This guideline therefore suggests that CSSs as well as IoT objects should implement
efficient techniques (e.g., recovery strategies and DoS prevention) by which the availability of their
data is guaranteed in case of natural disasters or some attacks. For instance, an attacker could flood a
storage server with invalid data at very high rate in such a way that the storage server wastes most of
its time validating the authenticity of data and therefore fails to respond to valid network traffic in a
timely fashion [31]. This guideline can be implemented by two protection measures (MT4 and MT1).

Reasoning: This guideline can be utilised by DEV, PRV, and MAN to ensure that their applications,
services, and objects are always accessible by their authorised users. Table 20 shows all stakeholders
who may utilize this guideline.
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Table 20. The involved IoT stakeholders in G7.

MAN DEV PRV CNS
v v 4 X

(G8) Location-based aggregation: This guideline suggests that IoT applications should aggregate
their data based on geographical boundaries. For instance, a query would be “how many medical
objects are used in each city in Switzerland”. The response to this question would be an aggregated
value unique to each city. However, it is not necessary to gather details about individual medical
objects, as it may lead to privacy breaches [113]. This guideline can be implemented by MTS8.

Reasoning: This guideline is suggested based on aggregation principle proposed in the Privacy by
Design framework (Hoepman in [107]). MAN and PRV can implement this guideline in their products
and services so that they can aggregate their data based on geographical boundaries. Table 21 shows
all stakeholders who may utilize this guideline.

Table 21. The involved IoT stakeholders in G8.

MAN DEV PRV CNS
v X 4 X

(G9) Post-inform customers: In a recently published survey by Eurobarometer, 67% of Europeans
indicated that they were worried about their information and personal data that they offer online,
since they lack control over it [22]. Toward this end, the GDPR was developed to give the individuals
of the EU control over their personal data. This guideline thus suggests that IoT applications should
always inform their users before storing or sharing data related to them. For instance, the GDPR states
that the processing of personal individual data in business enterprises requires an explicit opt-in or
consent from them, and several kinds of data will necessitate distinct consent [105]. This guideline can
be implemented by MT2.

Reasoning: This guideline is stated based on the inform principle proposed in the Privacy by
Design framework (Hoepman in [107]). This guideline can be implemented by MAN to assure that
their objects have the ability to infrom their customers about their data. PRV can also implement this
guideline in their services so that they can notify users when they store personal data or sensitive data,
and give users control over their data. Table 22 shows all stakeholders who may utilize this guideline.

Table 22. The involved IoT stakeholders in G9.

MAN DEV PRV CNS
4 X 4 X

(G10) Chain data aggregation: This guideline suggests that data aggregation be accomplished
on-the-go as data transfers from one object to another so that each object will have an opportunity
to respond [14]. In this case, if there is a query (e.g., one which requires a count), any object can
respond to it without the need of a centralised entity. This will give all objects the chance to respond to
this query, and it will simultaneously improve the availability of the IoT [114]. This guideline can be
implemented by MTS.

Reasoning: This guideline is proposed based on the aggregation principle proposed in the Privacy
by Design framework (Hoepman in [107]). Both MAN and PRV can implement this guideline in their
products and services so that they can aggregate their data while transferring data from one object to
another. Table 23 shows all stakeholders who may utilize this guideline.
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Table 23. The involved IoT stakeholders in G10.

MAN DEV PRV CNS
v X 4 X

(G11) Time-period data aggregation: This guideline suggests that IoT applications should store
their data over a long period of time (i.e., days, months). This guideline will minimise the granularity of
IoT data, which in turn reduces data breaches. For instance, it is wise to report the power consumption
of a given building in aggregate form per week rather than on a daily basis [115]. This guideline can
be implemented by MTS.

Reasoning: This guideline is stated based on the aggregation principle proposed in the Privacy by
Design framework (Hoepman in [107]). It can be implemented by MAN to assure that their products
are armed with techniques in which customers can decide when they want this product to aggregate
data related to them. PRV can also integrate this guideline into their services so that they can aggregate
over a long period of time. Table 24 shows all stakeholders who may utilize this guideline.

Table 24. The involved IoT stakeholders in G11.

MAN DEV PRV CNS
4 X 4 X

(G12) Ensure authorised access to IoT data: The importance of providing solid techniques to
control access to IoT data at rest derives from two primary factors. One is that an IoT object may
need to communicate with other objects in order to share and access their data. This object must
therefore only interact with authorised objects. The other factor is that different IoT objects may store
their data in the CSSs which are only logically isolated, but in reality such data may be physically
kept in the same data centre [116]. Overlooking access control mechanisms to IoT data at rest may
lead to harmful consequences. For instance, the authors in [6] show that a thermostat deployed in a
smart home depends heavily on a smoke detector’s data to turn a heating system off in case of danger.
However, sharing and accessing the smoke detector’s data by unauthorised objects may place the
whole smart home at risk. This guideline thus suggests that each IoT object or CSS should be armed
with authorisation techniques (e.g., a role-based technique) through which all unauthorised requests
are blocked or prevented. Three implementation techniques—MT11, MT9, and MT3—can be used to
fulfil this guideline.

Reasoning: This guideline is suggested based on the principle of defence in depth proposed in
the Security by Design framework (OWASPS [108]). This guideline can be implemented by MAN to
ensure that their products are equipped with measures via which only authorised users can gain access
to them. PRV as well as DEV can also integrate this guideline into their services and applications so
that only legitimate users can gain access to their stored data. Table 25 shows all stakeholders who
may utilize this guideline.

Table 25. The involved IoT stakeholders in G12.

MAN DEV PRV CNS
4 4 4 X

(G13) Remove or hide sensitive data: This guideline suggests that IoT applications must first get
rid of personally identifiable information and then store it. It is obvious that storing a data set along
with its personally identifiable information will significantly increase the risk of privacy losses. For
instance, the authors in [117] illustrate that a retailer, called Target, once received a complaint from
a customer who was very disappointed, as company sent coupons for kids” clothes to his teenage
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daughter. Nevertheless, the Target intentionally sent such coupons to the daughter since she was
pregnant at that time. This type of inference may happen as a consequence of storing data along with
its personally identifiable information, which in turn helps companies to conduct data mining on their
customers’ data. This guideline can be implemented by MT5.

Reasoning: This guideline is proposed based on the hide principle proposed in the Privacy by
Design framework (Hoepman in [107]). MAN can integrate this guideline into their products to ensure
that they have capabilities to de-identify personal data before storing it. It can also be implemented
by both PRV and DEYV to assure their applications and services are developed from the ground up
so that they are capable of identifying personally identifiable information, and more importantly,
de-identifying it before storing it. Table 26 shows all stakeholders who may utilize this guideline.

Table 26. The involved IoT stakeholders in G13.

MAN DEV PRV CNS
v v 4 X

(G14) Search on encrypted data: As several research efforts have expressed the importance of
performing information retrieval on encrypted data to prevent data linkage attacks [17,18,21], this
guideline suggests that IoT applications should be shielded with techniques (e.g., SE) that allow
IoT applications to respond to any queries by searching encrypted data without revealing sensitive
information. This guideline can be implemented by MT7.

Reasoning: This guideline is stated based on two principles, the first of which is the hide principle
proposed in the Privacy by Design framework (Hoepman in [107]). The second principle is defence
in depth, suggested in the Security by Design framework (OWASPS in [108]). MAN and PRV can
implement this guideline in their objects and services to assure that these objects and services have the
ability to search encrypted data in order to alleviate linkage attacks. Table 27 shows all stakeholders
who may utilize this guideline

Table 27. The involved IoT stakeholders in G14.

MAN DEV PRV CNS
v X 4 X

(G15) Provide data integrity across different platforms: With the emergence of the IoT, different
IoT applications—which may store their data on several platforms—may cooperate with each other
to accomplish specific tasks or services. If the data integrity of a single IoT application in the cloud
has been tampered with, there is a risk of dealing with unsecured applications [7]. This guideline
therefore suggests that IoT objects as well as CSSs should be equipped with techniques in which
the data integrity across different platforms must be checked. This guideline can be implemented
by MT10.

Reasoning: This guideline is stated based on the not trust principle suggested in the Security by
Design framework (OWASPS in [108]). This guideline can be implemented by MAN and PRV to ensure
that their objects and services are capable of checking the integrity of the data they deal with. Table 28
shows all stakeholders who may utilize this guideline.

Table 28. The involved IoT stakeholders in G15.

MAN DEV PRV CNS
v X 4 X
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(G16) Securely share data with untrusted TPAs: Securely sharing data among untrusted TPAs is
of paramount importance for two reasons. One is that IoT systems will store their data on different
CSSs due to their limited capabilities as well as the dynamic nature of this technology. The other reason
is that it is unrealistic to assume that all cloud service providers are reliable as expected [118]. Thus,
this guideline suggests that IoT systems should be armed with techniques in which such systems could
store and share their data securely in different CSSs, even when some of these are not untrusted [91].
This guideline can be implemented by MT10.

Reasoning: This guideline is stated based on two principles, namely, the not trust and defence in
depth principles suggested in the Security by Design framework (OWASPS in [108]). Both MAN and
PRV can equip their objects and services with techniques through which such objects and services can
share their data securely among untrusted TPAs. Table 29 shows all stakeholders who may utilize
this guideline.

Table 29. The involved IoT stakeholders in G16.

MAN DEV PRV CNS
4 X 4 X

(G17)Prevent physical access to data storage: In [119], the authors state that physical attacks
against traditional computers have become easier to carry out compared to logical attacks, since logical
security measures have been significantly improved. Likewise, the IoT will suffer from physical attacks.
This is because the IoT inherits most of the issues of the existing Internet and, most probably, increases
them due to direct association with physical objects [4,21]. Hence, physical security in the IoT is crucial
because logical security measures like firewalls, intrusion detection systems, and encryption cannot
prevent physical attacks against IoT objects or data centres in the cloud. This guideline thus suggests
that a barrier should be placed around IoT objects and data centres to prevent unauthorised physical
access. This guideline can be implemented by MT11.

Reasoning: This guideline is proposed based on the control principle suggested in the Privacy
by Design framework (Hoepman in [107]). This guideline can be utilised by MAN to equip their
products with techniques to prevent physical tampering. PRV can also benefit from this guideline
by storing data collected by their provided services in different data storage services, which may be
located in environments over which they have control. Table 30 shows all stakeholders who may
utilize this guideline.

Table 30. The involved IoT stakeholders in G17.

MAN DEV PRV CNS
v X 4 X

(G18) Take precautions in case of natural disaster: In [120], the authors stress the importance of
taking precautions in case of natural catastrophe. Toward this end, they used three backup servers, the
data of which must be stored in encrypted format. If something unusual occurs to the server, the secret
key used to encrypt the data will be used again to decrypt it. This guideline suggests that CSSs should
have recovery strategies used to get their data back in case of unusual situations. This guideline can be
implemented by MT4.

Reasoning: This guideline is proposed based on the fail securely principle proposed in the Security
by Design framework (OWASPS in [108]). This guideline can be utilised by all stakeholders (see
Table 31) by implementing recovery techniques so that they have a copy of their data in case of
natural disasters.



Symmetry 2019, 11, 774 24 of 36

Table 31. The involved IoT stakeholders in G18.

MAN DEV PRV CNS
v v v v

(G19) Minimise duplicated copies: Unlike minimising data storage, which focuses on removing
unnecessary segments of data not required to carry out a specific task before the storing phase, this
guideline concentrates on minimising duplicate data in the cloud. This kind of data replication can
occupy network bandwidth and may be stored in different data storage services, increasing the attack
surface. Data duplication in the cloud derives from two main factors. One is that HDFS generates a
great deal of duplicate data due to its replication mechanism [31]. The other factor is that different IoT
objects may be deployed to monitor the same environment, which may generate duplicated copies of
IoT data [121]. This guideline therefore suggests that cloud-based storage services should be equipped
with a technique in which only one unique copy of duplicate data is stored [47]. This guideline can be
implemented by MT1.

Reasoning: This guideline is stated based on minimising the attack surface area principle suggested
in the Security by Design framework (OWASPS in [108]). It can be utilised by both MAN and PRV to
guarantee that their products and services only have one distinct copy of duplicate data, and most
importantly that they are stored in different locations from their origin. Table 32 shows all stakeholders
who may utilize this guideline.

Table 32. The involved IoT stakeholders in G19.

MAN DEV PRV CNS
v X 4 X

(G20) Proper data destruction: The secure destruction of IoT data either in IoT objects or in the
cloud is a vital requirement to prevent different security and privacy issues (e.g., data leakage). On the
one hand, the destruction of IoT objects along with their sensitive data is inevitable, since each IoT
object will reach its end of life, and therefore its data must be destroyed properly [98]. In this case, this
guideline suggests that each object should be equipped with a clear end-of-life technique in which this
object can be disposed of or destroyed without exposing its sensitive data [122]. On the other hand,
there are many reasons for the destruction of IoT data in the cloud. One is due to the termination of
a contract with a provider in which a secure deletion of customer data must be accomplished [123].
Another reason is because of the compliance with GDPR in which people have the right not only to
to access their personal data, but also to demand the destruction of their data [105]. In this case, this
guideline suggests that data providers should delete and stop further use of users” personal data when
they ask for their data to be forgotten.

Reasoning: This guideline is suggested based on the control principle suggested in the Security by
Design framework (OWASPS in [108]). It can be utilised by MAN to ensure that their objects have the
ability to destroy their data in a secure manner when they reach an end-of-life stage. PRV and DEV
can also integrate this guideline into their services and applications in order to give their users control
over their data, among which is the right for their data to be forgotten. Table 33 shows all stakeholders
who may utilize this guideline.

Table 33. The involved IoT stakeholders in G20.

MAN DEV PRV CNS
v 4 v v
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(G21) Secure data migration: Although most IoT systems transfer users’ data to cloud storage
services due to their limited capabilities in terms of memory and storage space, such systems may
decide to migrate or transfer their data from one cloud storage service to another due to many factors
(e.g., the lack of security and availability) [124]. This process of migrating or transporting data is
known as data migration, and it must be carried out securely. That said, the lack of secure data
migration when moving data from one CSS to another may open the door for many attacks and threats.
For example, the authors in [125] state that if data migration is not accomplished systematically and
properly, such data is susceptible to many attacks (e.g., unauthorised access). Hence, this guideline
suggests that CSSs should be armed with techniques in which data migration among them should be
carried out securely.

Reasoning: This guideline is stated based on the not trust services principle proposed in the Security
by Design framework (OWASPS in [108]). It can be utilised by PRV when they transfer customers’
data from one data storage service to another. MAN can also benefit from this guideline when moving
their data (e.g., objects update) from one service to another. Table 34 shows all stakeholders who may
utilize this guideline.

Table 34. The involved IoT stakeholders in G21.

MAN DEV PRV CNS
4 X 4 X

(by G22) Manage encryption keys: To protect sensitive data, strong encryption is of paramount
importance. Although several research proposals have been put forth to encrypt IoT data, the lack of a
strong technique for managing the encryption keys is a common issue among them, which may lead
to several vulnerabilities (e.g., unauthorised access). Moreover, the process of managing thousands
of encryption keys within an IoT company is a challenge. This guideline therefore suggests that
encryption keys must be kept on separate devices from the data they are used to encrypt. This kind
of separation makes it harder for attackers to compromise data and its encryption keys at the same
time [126].

Reasoning: This guideline is stated based on the defence in depth principle proposed in the
Security by Design framework (OWASPS in [108]). This guideline can be implemented by both PRV
and MAN to ensure the protection of users’ data, since they separate encryption keys from encrypted
data. Table 35 shows all stakeholders who may utilize this guideline.

Table 35. The involved IoT stakeholders in G22.

MAN DEV PRV CNS
v X 4 X

Figure 1 summarises the relationship between our proposed guidelines for IoT data at rest,
followed by their suitable mitigation techniques and associated attack vectors.
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Figure 1. A summary of guidelines, stakeholders, attacks, and countermeasures for IoT data at rest.
DoS: Denial of Service.

6. Discussion and Future Work

A summary of the previously mentioned research efforts is presented in Table 36, along with our
intended objectives. It is not difficult to observe many limitations while going through them. Our
research is therefore directed to overcome these shortcomings, which can be categorised as follows:
(i) The absence of a comprehensive list of security and privacy guidelines for IoT data at rest, followed
by for whom these guidelines are intended. (ii) The lack of suitable implementation techniques to
implement such guidelines. (iii) The necessity of attack investigations related to IoT data at rest.

6.1. Recommendations for Future Work

In spite of considerable research efforts devoted to the IoT security domain, we can still suggest
many issues that need to be addressed.

6.1.1. Protection against Insider Threats

Although some of previously mentioned protection measures (e.g., monitoring and incident
response) can be used to mitigate malicious insider threats, such techniques can not fully protect IoT
data at rest from such threats, as they are not designed specifically for this purpose. Therefore, there is
a need to suggest a mechanism which can defend against insider threats in many IoT domains (e.g.,
e-healthcare organisations). This can be achieved by implementing preventive, detective, and reactive
measures such as user behaviour analysis, policy-based frameworks, detection of anomalies in data
access, and context-based access. Such techniques must be taken into account to avoid the impacts
of malicious insiders in IoT data at rest. Toward this end, user behaviour analysis techniques have
been proposed by a few researchers [127]. There are, however, many shortcomings in all the suggested
approaches, and they therefore cannot be implemented in all IoT domains (e.g., the multi-cloud
e-healthcare environment) to prevent malicious insiders, according to [24]. Hence, it is a challenge for
researchers to design approaches which are suitable to investigate user behaviour and implement them
to alleviate this threat, particularly in the e-healthcare environment. It is also possible that individuals
who are in contact with patients could accidentally or intentionally alter the settings of IoT objects
collecting health data, which may adversely impact the reply of healthcare organisations relating
to patient care. It is therefore essential to develop an approach that can detect such a modification
and at the same time notify health organisations about it so that they can turn back the changes in
the settings.
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Table 36. Comparison of research efforts presented in the literature.

State-Of-The-Art Work
[14] [15] [16] [17] [18] [19] [21] This Work

Addressed Features

Minimise data storage v v v v v v X v
Minimise data retention X v o voXx X v
Encrypt data communication v v v v v v Y X
Secure boot process x x v v v v V X
Hide data routing X X X v v v V X
Reduce interference x v v v v v Y X
Distribute data storage Vo X X o x X v X v
Encrypt data storage v v v v v v X v
Minimise data granularity v o X X X X X X v
Location-based aggregation Vo X X X X X X v
IoT security
and privacy Inform customers v O voXx v v v X v
Guidelines Chain data aggregation v o X X X X X X v
Time-period data aggregation Vo X X X X X X v
Ensure authorised access X v v v v v Vv v
Remove or hide sensitive data v v v v v v v v
Search on encrypted data A S SR SR A v
Provide data integrity across CSPs X X x x Xx X X v
Secure share data with untrusted CSPs X X X X X X X v
Minimise duplicated copies X X Xx Xx X X X v
Prevent physical access X X v v X v X v
Ensure data availability X x v v v v X v
Proper data destruction X X X v X v X v
Secure data migration between CSSs X X x x Xx X X v
Void storing enc. keys with enc. data X X Xx Xx X X X v
Types of Privacy v v v v v v Vv v
Guidelines  gocyrity X v v v v v Y v
Manufacturer X x v X v x Vv v
Guidelines Developer v v v v v v v v
Intended for  cystomer X X v X X X v
Provider X X X x v X V v
Threats mitigated by guidelines X X X x x x Y v
Technique to implement guidelines X X X x x X V v

Detection of anomalies in data access was investigated in [128]. The authors propose and design
a novel technique capable of detecting, notifying, and responding to any anomalies inside Relational
Database Management Systems (RDBMS). It is also capable of automatically creating and maintaining
profiles of normal applications as well as end users. This process of keeping track of normal users and
applications depends heavily on their communication with monitored RDBMS during the training
stage. Then, it uses such profiles to identify malicious behaviour that sidetracks from normality.
Nevertheless, several privacy issues may stem from monitoring the behaviour of end users. Therefore, a
great deal of research is required to balance between security and privacy threats and end-user privacy.
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6.1.2. Need for Legislation

In the literature, a huge number of issues related to IoT data are described poorly, and they
need more investigation. For instance, customers would often like to know what type of data is
collected and stored by their smart objects before purchasing them, which is not possible at this
time. Moreover, customers may also want to know how their data stored either in the objects or
in the cloud are protected. This kind of information is not generally offered. Therefore, it is also
wise to give customers the chance to reconfigure their privacy choices or preferences in IoT objects,
in a similar way as smartphones. For instance, Google, in the mobile context (e.g., Android), has
designed a dashboard technique that gives users more control over their personal data. The appropriate
implementation of such dashboard techniques will provide customers more precise ways to regulate
what data they want to share and when and how their personal information is gathered and used [129].
Nevertheless, further investigation is required, since the the current approaches are not mature enough
for standardisation, nor are they designed specifically for the IoT.

6.1.3. The Necessity of Common Intercloud Architecture

Despite the benefit of common intercloud architecture (e.g., OpenStack, which offers APIs and
a framework for cloud systems) in which different clouds can coordinate, share, and manage their
functionalities to provide services, it still lacks a common standard, which impedes its interoperability.
Toward this end, a handful of research proposals have been conducted [130-132]. In [131], the authors
propose a model that integrates different services to ease intercloud interaction between different
platforms so as to display all available services. However, a great deal of effort is required to create a
graphical user interface to offer a common management platform.

6.1.4. The Distribution of the Cloud Infrastructure over the Edge Computing

A new emerging technology known as edge computing has been proposed by CISCO [133] as
an intermediate layer between IoT objects and cloud computing. The main objective behind this
technology is to scatter the cloud infrastructure over the edge layer, making it closer to IoT objects
and users. Several advantages in terms of bandwidth and latency that improve service quality come
as a result of this closeness. It is expected that the IoT may benefit from edge cloud computing so as
to achieve some desired requirements like performance and security. To this point, several research
proposals are required to develop efficient security techniques based on edge computing technology.
Apart from required security solutions, a few questions have still been raised and need to be addressed,
for instance, how to develop a trust model between IoT objects and fog nodes in such a highly scattered
IoT environment.

6.2. Limitations of the Study and Threats to Validity

In this paper, we propose a framework of security and privacy guidelines for IoT data at rest and
for whom these guidelines are intended, as well as their appropriate countermeasures. However, such
guidelines and their protection measures are not absolute, nor can they guarantee the protection of IoT
data at rest for three reasons. One is that new vulnerabilities are continuously being disclosed, which
indicates there is a necessity to monitor, review, and maintain IoT security and privacy guidelines
for IoT data at rest as well as best practices developed for particular environments and use cases
(e.g., healthcare) on a regular basis. Another reason is that the IoT paradigm is enabled by several
technologies (e.g., middleware, sensors, and communication protocols such as secure video steaming
in [134]), and, certainly, new emerging technologies related to how to either store or process IoT data
at rest will be introduced. New security and privacy guidelines are therefore of paramount importance
to avoid IoT data breaches. Unfortunately, these rules are breakable due to the advancements of
hacking tools as well as the level of knowledge used by the adversaries. The other reason is that the
success of our suggested framework of security and privacy guidelines for IoT data at rest depends
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heavily on their implementation. Thus, the poor implementation of such countermeasures may lead to
data breaches.

6.3. Conclusions

Because of the unexpected growth of connected sensors and network infrastructure, the dawn of
the IoT in which several applications like smart cars, smart buildings, and smart grids can interact
with each other to make our lives simpler and more productive is approaching. The IoT is a beneficial
ecosystem that offers different solutions like the Amazon Echo; nevertheless, at the same time, the
risk associated with data breaches can also be enormous. Therefore, in this paper we conducted an
in-depth analysis of IoT data at rest to identify its possible attacks and alleviate its associated risks.
Toward this end, we propose a framework of security and privacy guidelines for IoT data at rest that
can be used by IoT stakeholders who may utilise such guidelines to build secure IoT systems from the
ground up, and therefore enhance security and privacy by design. This framework also shows the link
between guidelines, mitigation techniques, and attacks. More importantly, we discuss our derived
guidelines as they relate to the involved stakeholders, and we also give a “reasoning” under which
each guideline is stated based on one or two principles of either Security by Design or Privacy by
Design frameworks. Furthermore, we briefly discuss several limitations of our framework, an example
of which is the poor implementation of protection measures. Finally, we suggest some open challenges
needing further investigation.

In the future, we will propose a step-by-step methodology of how our suggested guidelines can be
implemented by developers from the early stages of their IoT systems so that the poor implementation
of such guidelines can be mitigated.
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