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Abstract: Butoxycarbonyl (Boc)-protected pillar[4]arene[1]-diaminobenzene (BP) was synthesized by
introducing the Boc protection onto the A1/A2 positions of BP. The oxygen-through-annulus rotation
was partially inhibited because of the presence of the middle-sized Boc substituents. We succeeded in
isolating the enantiopure RP (RP, RP, RP, RP, and RP)- and SP (SP, SP, SP, SP, and SP)-BP, and studied
their circular dichroism (CD) spectral properties. As the Boc substituent is not large enough to
completely prevent the flip of the benzene units, enantiopure BP-f1 underwent racemization in
solution. It is found that the racemization kinetics is a function of the solvent and temperature
employed. The chirality of the BP-f1 could be maintained in n-hexane and CH2Cl2 for a long
period at room temperature, whereas increasing the temperature or using solvents that cannot enter
into the cavity of BP-f1 accelerated the racemization of BP-f1. The racemization kinetics and the
thermodynamic parameters of racemization were studied in several different organic solvents.

Keywords: pillar[5]arene; planar chirality; chiral resolution; racemization kinetics; supramolecular
chemistry

1. Introduction

Chiral macrocyclic molecules have attracted significant attention, because they are highly promising
in applications for chiral induction [1–3], molecular recognition [4–6], and asymmetric catalysis [7–9].
A great number of macrocyclic compounds have been developed for the purpose of studying their
optical properties [10–12]. Recently, the chirality of a novel emerging host molecule, pillar[n]arenes,
has attracted increasing attention [13–16]. Pillar[n]arenes are macrocyclic compounds that are composed
of several hydroquinone ether units and are featured by the well-defined cavity, unique host–guest
complexation properties, and readily chemical functionalization. Normal pillar[5]arenes have two
enantiomeric conformers with all hydroquinone ether units adapting a planar chiral Rp, (Rp, Rp, Rp,
Rp, and Rp) or Sp, (Sp, Sp, Sp, Sp, and Sp) configuration. In general, these two conformers are rapidly
interconvertible in a solution by flipping the ring units around the methylene bridges, the so-called
oxygen-through-annulus rotation [17]. The inhibition of the oxygen-through-annulus rotation will lead
to a pair of planar-chiral enantiomers. Three approaches, including rotaxanation, the introduction of a
side ring into one ring unit, as well as the chemical modification of bulky groups onto the rims, have been
exploited for constructing chiral pillar[5]arenes [18–20]. Bulky groups, such as cyclohexylmethyl, phenyl,
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or bithienyl groups, have been chemically grafted onto one or more hydroquinone ether units, and the
oxygen-through-annulus rotation was restrained or completely stopped [21,22]. It occurred to us that if
introducing a group of suitable size, the oxygen-through-annulus could still be allowed, but the rotation
velocity is slowed down. This will then provide a powerful tool to study the effect of the external factors,
such as the temperature and solvent, on the rotational kinetics of pillar[5]arene. Herein, we report on
the successful isolation of butoxycarbonyl (Boc)-protected pillar[4]arene-[1]diaminobenzene (BP) planar
chiral enantiomers. Two middle-sized Boc-protected substituents on the A1/A2 positions significantly
decelerated the flip of pillar[5]arene, to allow for the racemization of BP with an observable velocity.
The thermodynamics and kinetics of the racemization were investigated under different solvent and
temperature conditions, which may serve as a guideline in the isolation and control of the enantiomeric
conformations of pillar[n]arenes by manipulating the external factors.

2. Materials and Methods

All of the compounds and reagents were obtained from commercial suppliers and were used as
received. Chiral analytical HPLC was performed with a Chiralpak IA column (0.46 × 25 cm) by a
Shimadzu LC Prominence 20 HPLC instrument (Shimadzu, Tokyo, Japan) equipped with a UV-VIS
detector (conditions: injection volume: 20 µL of rac-BP (0.2 mM); mobile phase: hexane/dichloromethane,
70/30 (v/v); flow rate: 1.0 mL/min at 20 ◦C; retention time (tR): 5.3 min for BP-f1, 5.7 min for BP-f2).
Preparative column chromatography was carried out with a Chiralpak IA column (1.0 × 25 cm) by
a recycling preparative HPLC LC9210NEXT instrument (JAI, Tokyo, Japan) equipped with a UV-VIS
detector (conditions: injection volume: 3 mL of rac-BP (2 mM); mobile phase: hexane/dichloromethane,
70/30 (v/v); flow rate: 4.0 mL/min at 20 ◦C; retention time (tR): 11.4 min for BP-f1, 12.5 min for BP-f2).
The circular dichroism spectra were measured by using a JASCO J-1500 spectrometer (Jasco, Tokyo,
Japan) equipped with a Unisoku cryostat, and θvalues are given in units of mdeg.

3. Results and Discussion

Wang and coworkers have demonstrated that the tert-butoxycarbonyl (Boc) group, which has
a relatively large size, can thread through the cavity of pillar[5]arene when tethered on a chain [23].
We proposed that if the Boc group is linked directly on one benzene ring of pillar[5]arene, the rotation
of the ring units should be vert decelerated because of the steric inhibition of Boc. To prove this,
Boc-protected pillar[4]-arene[1]diaminobenzene (BP), in which one of the hydroquinone units was
replaced by phenylenediamine and the two amino groups were protected by Boc, were prepared
according to the reported procedures (Scheme 1) [24].
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The chiral resolution of BP was carried out by preparative chiral-phase HPLC equipped with a
chiral column (Chiralpak IA). The enantiomers of BP were successfully resolved into two fractions,
BP-f1 and BP-f2, with the retention time of 5.3 min and 5.7 min, respectively, eluted with a mixture of
hexane and dichloromethane at 20 ◦C (Figure 1a). On the basis of the enantiomer peak integrations,
each separated enantiomer was determined to have a purity of >99%.

The geometries of (PS)-BP and (PR)-BP were optimized using density functional theory (DFT),
and the optimized structures and their energies are given in Scheme 2. In the optimized structures
of the both enantiomers, the bulky tert-butoxy carbonyl group was located outside the electron rich
aromatic cavity, because of steric hindrance. Interestingly, the DFT results show that the energies
of the both (PS)-BP and (PR)-BP are same, and the accompanying racemization are feasible and or
equilibrated easily at room temperature.
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Scheme 2. Optimized geometries of (PR)-(BP) and (PS)-BP: (a) and (b) are the side views of the stick
model, respectively, and (c) and (d) are the top views of space filling models, respectively. The geometries
were optimized by the Gaussian 09 program using the basic set DFT/RB3LYP/6-31G(d) method.

As shown in Figure 2, the fraction firstly eluted from the column (BP-f1) showed a strong negative
circular dichroism extreme (CDex) at ca 309 nm, and a positive CD signal at 262.5 nm. The fraction
secondly eluted from the column (BP-f2) provided a CD spectrum that is almost a perfect mirror
image to that of BP-f1, and confirmed that BP-f1 and BP-f2 are a pair of enantiomers. We have
demonstrated that the positive CDex corresponds to the Rp configuration of pillar[5]arene, and vice
versa for the Sp configuration [20], which allowed us to confirm that BP-f1 and BP-f2 are the Sp and Rp

enantiomers, respectively.
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Figure 1. (a) Chiral HPLC traces of (rac)-pillar[4]arene[1]-diaminobenzene (BP), and 
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Figure 1. (a) Chiral HPLC traces of (rac)-pillar[4]arene[1]-diaminobenzene (BP), and resolved BP-f1
and BP-f2, detected by UV at 295 nm (conditions: column: DAICEL Chiralpak IA; mobile phase:
hexane/dichloromethane = 70/30; flow rate = 1.0 mL/min; temperature: 20 ◦C; retention time (tR):
5.3 min for BP-f1, 5.7 min for BP-f2). (b) Circular dichroism and UV-VIS spectra of 10 µM BP-f1 (red)
and BP-f2 (blue) measured in CHCl3 at 20 ◦C.

The direct linkage of Boc on the ring unit should cause a considerable steric effect and will retard
the flipping kinetics, which was confirmed by the successful chiral resolution of BP. On the other hand,
as the Boc moiety can readily enter into the cavity of pillar[5]arene, it seems reasonable to expect that
the rotation of the ring units will not be completely inhibited by the presence of Boc. To prove this
hypothesis, the CD spectral behavior of enantiopure BP-f1 were investigated in different solvents.
Indeed, the time-dependent CD spectra of BP-f1 demonstrated that BP-f1 underwent racemization
in the solution at room temperature, which is highly solvent dependent. As illustrated in Figure 2a,
the CD spectra of BP-f1 in methylcyclohexane were gradually decreased at 25 ◦C with time, leading
to a complete fading of the CD signals. In CHCl3, a decrease of the CD signals was also observed,
however, this was much slower than that in methylcyclohexane (Figure 2b). An even slower decrease
was seen with CH2Cl2, which showed only a little decrease after remaining at 25 ◦C for two hours
(Figure 2c). Such a critical dependence on the solvents promoted us to study the racemization kinetics
in different solvents.

The CDex value changes at 309 nm as a function of time was measured in different solvents and
temperatures. As exemplified in Figure 3a, the CDex values in hexane at 25 ◦C hardly changed after
3000 s, demonstrating very slow racemization kinetics in hexane. Slow racemization kinetics were also
observed in CH2Cl2 (Figure A6). The plots of ln(θ0/θt) against time gave straight lines, supporting
the first-order kinetic model [25]. Increasing the temperature usually increases the reaction kinetics,
and we have demonstrated that the temperature is critical for affecting the molecular recognition and
stereoselectivity of supramolecular photochirogenesis [26–33]. To understand the temperature effect
on the racemization of BP-f1, the CDex versus time was recorded at different temperatures. Indeed,
the decrease of CDex became apparent with the temperature, indicating accelerated racemization
at higher temperatures. The racemization rate constants, krac, calculated based on the first-order
reaction kinetics [25,34,35], are 2.02 × 10−7 s−1 at 25 ◦C, 2.22 × 10−6 s−1 at 35 ◦C, 4.44 × 10−6 s−1

at 40 ◦C, 1.34 × 10−5 s−1 at 45 ◦C, and 5.39 × 10−5 s−1 at 55 ◦C, respectively. On the basis of the
Eyring equation (Appendix A), the thermodynamic parameters were obtained. As shown in Figure 4,
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∆G‡ = 109.65 kJ mol−1, ∆H‡ = 131.83 kJ mol−1, and ∆S‡ = 74.39 J mol−1 were obtained in n-hexane.
In dichloromethane, the CD signal is hardly changed, even it was heated to 35 ◦C, which is close to the
dichloromethane boiling point (Figure A6).
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Figure 2. (a) Circular dichroism (CD) spectra of 34.6 µM BP-f1 in methylcyclohexane at 298.15 K;
(b) CD spectra of 34.6 µM BP-f1 in CHCl3 at 298.15 K; (c) CD spectra of 34.6 µM BP-f1 in CH2Cl2 at
298.15 K.
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Figure 3. (a) Plot of ln(θ0/θt) against time, of BP-f1 in n-hexane measured at 25 ◦C (black), 35 ◦C (red),
40 ◦C (green), 45 ◦C (blue), and 55 ◦C (light blue). The red lines represent the linear least squares fitting
curves by assuming that the racemization follows a first-order reaction kinetics. (b) Eyring plots for the
racemization of BP-f1 in n-hexane.
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To explore the effect of the solvent on the racemization rate, the time dependence of CDex in
different solvents was monitored. As illustrated in Figure 4, much faster racemization kinetics were
observed in other solvents, such as methylcyclohexane, cyclohexane, and MeOH. While in DCM,
CH3CN and CHCl3, BP-f1 also showed slow racemization rates. Based on the first order kinetics,
the krac values and the half-lifetimes at 25 ◦C were calculated and are listed in Table 1. It turned out
that BP-f1 afforded the smallest krac value (2.02 × 10−7) in n-hexane, having a long half-lifetime of
19.9 days. A similar slow racemization was also observed in CH2Cl2 (krac = 6.23 × 10−7). The krac values
increased in the order of n-hexane < CH2Cl2 < CH3CN < CHCl3 < methylcyclohexane < cyclohexane <

MeOH, showing a 1564 times acceleration in MeOH compared with that in hexane. In MeOH, a short
half-lifetime of 18.3 min was reckoned. Such solvent-dependent kinetics are apparently not simply
due to the polarity of the solvent, as methylcyclohexane, cyclohexane, and hexane are all nonpolar
solvents (Table 1), but showed drastically different krac values. However, it could be reasonably
accounted for by the host–guest complexation between the pillar[5]arene and solvent molecules
involved in the racemization process. The inclusion of n-hexane, CH2Cl2, and CH3CN into the cavity
of pillar[5]arenes has been characterized by single X-ray crystalline and NMR analysis [15,36–38].
The oxygen-through-annulus rotation will be blocked when the solvent molecule is located in the cavity
of pillar[5]arene, and the racemization kinetics will be significantly decelerated by the complexation
of the solvent molecules. This observation is a good explanation for why we get successful chiral
resolution only when using a mixture of CH2Cl2 and hexane as the eluent.

On the other hand, methylcyclohexane and cyclohexane are too big to be accommodated by the
cavity, and will primarily not interfere with the racemization of BP-f1. The slightly slower racemization
found in methylcyclohexane relative to that in cyclohexane is presumably due to the weak interaction
of the methyl group in methylcyclohexane with pillar[5]arene [39]. It is slightly unexpected that BP-f1
showed the fastest racemization kinetics in MeOH, which has a small size and thus is possible to enter
into the cavity of pillar[5]arene. We speculate that MeOH can destroy the hydrogen bond of NH and the
oxygen atom of adjacent units, and therefore can significantly improve the racemization kinetics of BP-f1.
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Table 1. The rate constants of racemization (krac) and the estimated half-lives (t1/2) of pillar[4]arene[1]-
diaminobenzene (BP)-f1.1.

Solvent ET/(kcal mol−1) 2 krac/(s−1) 3 t1/2

n-Hexane 31.0 2.02 × 10−7 19.9 d
CH2Cl2 41.1 4.78 × 10−7 8.4 d
CH3CN 46.0 5.25 × 10−6 18.3 h
CHCl3 39.1 1.22 × 10−5 7.9 h

methylcyclohexane _ 2.12 × 10−4 27.2 min
cyclohexane 30.9 2.73 × 10−4 21.2 min

MeOH 55.4 3.16 × 10−4 18.3 min
1 The experiments were carried out at 298.15 K. 2 Reichardt’s solvent polarity parameter [40]. 3 The racemization
rate constant.

The temperature-dependent racemization kinetics of BP-f1 were investigated in different solvents.
Enantiopure BP-f1 was heated to different temperatures, and the time course of CDex was recorded
(Appendix B). The racemization rate constants at different temperatures were obtained by linear
regression analyses. The Eyring analysis by plotting ln(krac /T) as a function of 1/T showed good linear
relationships (Appendices B and C), and the active enthalpy changes (∆H‡) and entropy changes
(∆S‡) were obtained from the slope and intercept, respectively. Table 2 lists the active thermodynamic
parameters of the racemization of BP-f1 in the six solvents. Large positive active enthalpies were
observed in all of the solvents. The relatively smaller active enthalpy could be accounted for in the
context that the hydrogen bonds in BP-f1 were broken by the methanol. In most solvents, negative
entropy changes were observed, except for n-hexane and methylcyclohexane. This is possibly due to
the release of the included or partially included solvent molecule when BP-f1 flipping to change the
conformer to BP-f2.

Table 2. Thermodynamic parameters for racemization of BP-f1.

Solvent ∆G‡ 1/(kJ/mol−1) ∆H‡ /(kJ/mol−1) ∆S‡ /(J/mol−1)

n-Hexane 109.65 131.83 74.39
CH3CN 103.15 81.02 −74.21
CHCl3 101.03 93.34 −25.79

methylcyclohexane 94.21 97.54 11.16
cyclohexane 93.23 87.93 −17.79

MeOH 93.07 63.29 −99.87
1 The data was carried out at 298.15 K.

4. Conclusions

In conclusion, we have synthesized and successfully resoluted planar (PR)- and (PS)-enantiomeric
Boc-protected pillar[4]arene[1]diaminobenzene BP. The racemization kinetics of the chiral BP-f1 were
studied. Hexane and CH2Cl2 can maintain the enantiomeric forms of BP-f1 for long periods, because
of the complexation of the solvent molecules with the cavity of pillar[4]arene[1]diaminobenzene.
The racemization process was accelerated by increasing the temperature or use the solvents that cannot
thread into the cavity of BP or can destroy intramolecular hydrogen bond. The present study has
provided, for the first time, thermodynamic parameters of the pillararenes in different solvents that
will serve as an important guideline in studying the conformational properties of pillar[n]arenes.
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Appendix A. General Procedure for the Monitoring Racemization of BP-f1

The freshly prepared BP-f1 was dissolved in different solvents and subjected to the CD
measurement immediately.

The observed time-dependent CD changes satisfied the first-order kinetics (Scheme 1), in which
krac (s−1) is the rate constant for the racemization. The linear regression analysis of the CD data gave
the rate constants (krac). The half-life time (t1/2) was obtained from Equation (A1), as follows:

t 1
2
=

ln2
2krac

(A1)

The obtained krac values were analyzed according to the Eyring Equation (A2), as follows:

ln(krac/T) = ∆S‡ /R− ln(h/kB) − ∆H‡/RT (A2)

in which h is the Planck’s constant, kB is the Boltzmann constant, R (8.314 J K−1 mol−1) is the gas
constant, T (K) is the absolute temperature, ∆H‡ is the enthalpy of activation, and ∆S‡ is the entropy
of activation.

Appendix B.
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