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Abstract: The q-rung orthopair fuzzy set (q-ROFS), which is the extension of intuitionistic fuzzy 
set (IFS) and Pythagorean fuzzy set (PFS), satisfies the sum of q-th power of membership degree 
and nonmembership degree is limited 1. Evidently, the q-ROFS can depict more fuzzy assessment 
information and consider decision-maker’s (DM’s) hesitance. Thus, the concept of a dual hesitant 
q-rung orthopair fuzzy set (DHq-ROFS) is developed in this paper. Then, based on Hamacher 
operation laws, weighting average (WA) operator and weighting geometric (WG) operator, some 
dual hesitant q-rung orthopair fuzzy Hamacher aggregation operators are developed, such as the 
dual hesitant q-rung orthopair fuzzy Hamacher weighting average (DHq-ROFHWA) operator, the 
dual hesitant q-rung orthopair fuzzy Hamacher weighting geometric (DHq-ROFHWG) operator, 
the dual hesitant q-rung orthopair fuzzy Hamacher ordered weighted average (DHq-ROFHOWA) 
operator, the dual hesitant q-rung orthopair fuzzy Hamacher ordered weighting geometric 
(DHq-ROFHOWG) operator, the dual hesitant q-rung orthopair fuzzy Hamacher hybrid average 
(DHq-ROFHHA) operator, and the dual hesitant q-rung orthopair fuzzy Hamacher hybrid 
geometric (DHq-ROFHHG) operator. The precious merits and some particular cases of above 
mentioned aggregation operators are briefly introduced. In the end, an actual application for 
scheme selection of construction project is provided to testify the proposed operators and deliver a 
comparative analysis. 

Keywords: multiple attribute decision-making (MADM) problems; Hamacher operation laws; 
dual hesitant q-rung orthopair fuzzy set (DHq-ROFS); the DHq-ROFHWA operator; the 
DHq-ROFHWG operator 

 

1. Introduction 

In real-life decision-making problems, how to select the most desirable alternative from a given 
alternative set is very important. The most common method is fusing the evaluation information 
given by experts, and ranking all alternatives according to fused results to select best one(s). Thus, 
how to derive reasonable evaluation information is worth studying. To do this, Atanassov [1] firstly 
extended the fuzzy set (FS) [2] and introduced intuitionistic fuzzy set (IFS). The intuitionistic fuzzy 
set (IFS) is mainly characterized by the function of membership degree μ and nonmembership 
degree v , which satisfies 1vμ + ≤ . The intuitionistic fuzzy set (IFS) and its extensions have 
attracted a large amount of scholars’ attention since its emergence [3–16]. More recently, the 
Pythagorean fuzzy set (PFS) [17] has been proposed to depict more fuzzy assessment information. 
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The PFS is also consisted of the membership degree μ  and nonmembership degree v , which 

satisfies 2 2 1vμ + ≤ , so, it is obvious that the PFS can express more assessment information than 
the IFS. However, the scope of assessment information is still limited under Pythagorean fuzzy 
environment. For instance, given the evaluation value (0.7,0.9), we can easily find that 

2 20.7 0.9 1,+ ≤/  which indicates that PFS cannot deal with such MADM problems. Then, to 
describe more evaluation information, Yager [18] further defined the q-rung orthopair fuzzy set 
(q-ROFS), q-ROFS is also consisted of the membership degree μ and nonmembership degree v  

which satisfies 1.q qvμ + ≤  Obviously, q-ROFS can be regarded as the extension of the IFS and 
PFS, when 1q = , the q-ROFS reduces to IFS, when 2q = , the q-ROFS reduces to PFS. Afterwards, 
more and more works about q-ROFS have been studied by numerous scholars [19–25]. 

 
Figure 1. The relationship between intuitionistic fuzzy set (IFS), Pythagorean fuzzy set (PFS), and 
q-rung orthopair fuzzy set (q-ROFS). 

However, the above-mentioned methods do not consider the human’s hesitance. In order to 
overcome this limitation, the hesitant fuzzy sets (HFSs) [26] and dual hesitant fuzzy sets (DHFSs) 
[27,28] have been proposed to deal with MADM issues effectively. Combining the advantages of the 
two fuzzy sets, Xu et al. [29] gave the concept of the dual hesitant q-rung orthopair fuzzy set 
(DHq-ROFS) and presented some Heronian mean operators for MADM. Obviously, the dual 
hesitant q-rung orthopair fuzzy numbers (DHq-ROFNs) can express evaluation information more 
convenience in actual MADM applications. 

In the decision-making process, the way to express evaluation information is only one aspect; 
another vital aspect is fusing this information. Hamacher operations [30], which include Hamacher 
product and Hamacher sum, can replace the traditional algebraic product and algebraic sum, 
respectively. In past few years, numerous investigators studied the Hamacher aggregation operators 
and their applications [31–41]. In this paper, based on Hamacher operations, we shall develop some 
new operation laws of DHq-ROFNs, then, by utilizing the new operation laws, we can aggregate 
dual hesitant q-rung orthopair fuzzy information by Hamacher WA and Hamacher WG operator. 
The Hamacher operations have the advantage of considering the relationship between the values 
being fused, thus the fused results are more reasonable and accuracy. Clearly, DHq-ROFN is a 
meaningful tool to express evaluation information; Hamacher operations are good to fuse evaluation 
information, so it’s worth to develop some Hamacher operators under dual hesitant q-rung 
orthopair fuzzy environments. 

The mainly novelty and contribution of our manuscript is developing some new Hamacher 
operators to aggregate the dual hesitant q-rung orthopair fuzzy information. Evidently, these 
operators have the following advantages. (1) The DHq-ROFS can not only extend the scope of the 
assessment information to depict more fuzzy information, but also consider the human’s hesitance, 
thus it is more useful and reasonable to derive decision-making results. (2) The Hamacher 
operations can consider the relationship between fused arguments, obviously, Hamacher operations 
are more suitable for handling practical MADM problems. Thus, it is of great significance to propose 
some new operators based on the dual hesitant q-rung orthopair fuzzy information and Hamacher 
operations. 
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To achieve this goal, the rest of our article is constructed as follows. Section 2 introduces some 
works on Pythagorean fuzzy set and q-rung orthopair fuzzy set. Section 3 briefly reviews some 
fundamental theories of q-ROFSs and DHq-ROFSs. Section 4 introduces some HWA and HWG 
operators under DHq-ROFS environment, such as the DHq-ROFHWA operator, the DHq-ROFHWG 
operator, the DHq-ROFHOWA operator, the DHq-ROFHOWG operator, the DHq-ROFHHA 
operator, and the (DHq-ROFHHG operator. Section 5 proposes an actual application for scheme 
selection of construction project with DHq-ROFNs and compares our developed operators with 
other existing methods in this filed. Section 6 concludes the paper with some remarks. 

2. Literature Review 

In previous literature, research on the Pythagorean fuzzy set (PFS) has been conducted by many 
scholars. Zhang and Xu [42] defined the Pythagorean fuzzy TOPSIS model to solve the MADM 
problems. Peng and Yang [43] primarily proposed two Pythagorean fuzzy operations, including the 
division and subtraction operations, to better understand PFS. Reformat and Yager [44] handled the 
collaborative-based recommender system with Pythagorean fuzzy information. Combined the 
Maclaurin Symmetric Mean (MSM) [45] operators and Pythagorean fuzzy information, Yang and 
Pang [46] developed some new Pythagorean fuzzy interaction MSM operators to handle MADM 
problems. Gou et al. [47] studied some precious properties of continuous Pythagorean fuzzy 
assessment information. Yang et al. [48] studied the partitioned Bonferroni mean (PBM) operators 
under Pythagorean fuzzy environment and defined some Pythagorean fuzzy interaction PBM 
operators to solve MADM. Based on Hamacher operation laws and Pythagorean fuzzy information, 
Wu and Wei [49] proposed some new aggregation operators to fuse Pythagorean fuzzy information 
and applied them to MADM problems. Liang et al. [50] studied the Pythagorean fuzzy set (PFS) 
based on the GA operations and Bonferroni mean (BM) operators. Ren et al. [51] developed the 
Pythagorean fuzzy TODIM model. Wei and Lu [52] developed Pythagorean fuzzy MSM (PFMSM) 
operator and Pythagorean fuzzy weighted MSM (PFWMSM) operator for MADM. Liang et al. [53] 
defined some novel Bonferroni mean operators under PFS environment. Consider the 
interrelationship between being fused arguments, Li et al. [11] gave some new Pythagorean fuzzy 
aggregation operators for selection of green supplier based on traditional Hamy mean (HM) 
operators. Peng et al. [54] presented some novel Pythagorean fuzzy information measures for 
MADM problems. On account of the PFSs [17,55] and DHFSs [27,28], Xu and Wei [56] further 
defined the dual hesitant Pythagorean fuzzy sets (DHPFSs), then, based on Hamacher operation 
laws weighting average (WA) operator and weighting geometric (WG) operator, some new 
aggregation operators under dual hesitant Pythagorean fuzzy environment were developed for 
MADM problems. 

In terms of the q-ROFS, according to the traditional WA and WG operators, Liu and Wang [57] 
introduced two q-rung orthopair fuzzy aggregation operators to fuse q-rung orthopair fuzzy 
numbers (q-ROFNs). Combined q-rung orthopair fuzzy information and MSM operators, Wei et al. 
[58] proposed some new q-rung orthopair fuzzy aggregation operators. Bai et al. [59] defined some 
q-rung orthopair fuzzy Partitioned Maclaurin Symmetric Mean (q-ROFPMSM) operators for 
MADM. Liu et al. [60] developed some q-rung orthopair fuzzy Power MSM operators. Liu et al. [61] 
developed some extended Bonferroni mean operators under q-rung orthopair fuzzy environment. 
Liu and Liu [62] presented some Bonferroni mean operators to fuse q-rung orthopair fuzzy 
information; Liu and Liu [63] proposed the concept of linguistic q-rung orthopair fuzzy set 
(Lq-ROFS) and introduced some PBM operators to fuse linguistic q-rung orthopair fuzzy 
information. Yang and Pang [64] studied Partitioned Bonferroni mean operators under q-rung 
orthopair fuzzy environment. The contribution of different authors under q-ROFNs is listed in Table 
1. 

Table 1. The contribution of different authors under q-ROFNs. 

Authors Production Consider 
the 

Consider 
the 

Consider 
the 

Consider the 
order position 
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interrelat
ionship 

parameter 
vector  

human’s 
hesitancy 

weights and 
itself weights 

Liu and Wang [57] q-ROFWA operator  No No No No 
Liu and Wang [57] q-ROFWG operator No No No No 

Wei, et al. [58] q-ROFMSM operators Yes Yes No No 

Bai, et al. [59] q-ROF-Partitioned-MSM 
operators Yes Yes No No 

Liu, et al. [60] q-ROF-Power-MSM 
operators Yes Yes No No 

Liu, et al. [61] q-ROFEBM operators Yes Yes No No 
Liu and Liu [62] q-ROFBM operators Yes Yes No No 

Liu and Liu [63] Lq-ROF-Power-BM 
operators Yes Yes No No 

Yang and Pang [64] q-ROF-Partitioned-BM 
operators Yes Yes No No 

Wei, et al. [65] q-R2TLOFHM operators Yes Yes No No 
Liu, et al. [66] q-ROFHM operators Yes Yes No No 
Xu, et al. [29] q-RDHOFHM operators Yes Yes Yes No 

Proposed model DHq-ROFHHA and 
DHq-ROFHHG operators Yes Yes Yes Yes 

Wei et al. [65] defined some q-rung orthopair fuzzy Heronian mean (q-ROFHM) operator. Liu 
et al. [66] provided some Heronian mean operator to aggregate q-ROFNs. In this paper, according 
to the dual hesitant q-rung orthopair set defined by Xu et al. [29], we shall propose some q-rung 
orthopair fuzzy Hamacher operation laws to fuse the q-rung orthopair fuzzy information. The goal 
of our paper is to develop some operators that can consider human’s hesitance and the 
interrelationship between being fused arguments. 

3. Preliminaries 

3.1. The q-Rung Orthopair Fuzzy Set 

As the generalization of IFS and PFS, the basic definition, score function, accuracy function, and 
operation laws of the q-rung orthopair fuzzy sets (q-ROFSs) [18] can be listed as below. 

Definition 1 [18]. Let X  be a fix set. A q-rung orthopair fuzzy set can be denoted as 

( ) ( )( ){ }, ,P PP x x x x Xμ ν= ∈  (1) 

where [ ]: 0,1P Xμ →  indicates the function of membership degree and [ ]: 0,1P Xν →  indicates the 

function of nonmembership degree, which satisfies 

( )( ) ( )( ) 1, 1
q q

p px x qμ ν+ ≤ ≥  (2) 

Based on membership degree and nonmembership degree, the indeterminacy degree can be calculated as 

( ) ( )( ) ( )( ) ( )( ) ( )( )q q q qq
p p p p px x x x xπ μ ν μ ν= + −  (3) 

For convenience, we named ( ),p μ ν= a q-rung orthopair fuzzy number (q-ROFN). 

Definition 2 [57]. Suppose that ( )1 1 1,p μ ν=  and ( )2 2 2,p μ ν=  be two q-ROFNs, let 

( ) ( ) ( )( )1 1 1
1 1
2

q qs p μ ν= + −  and ( ) ( ) ( )( )2 2 2
1 1
2

q qs p μ ν= + −  be the score results of 1p  and 2p , 

let ( ) ( ) ( )1 1 1
q qH p μ ν= +  and ( ) ( ) ( )2 2 2

q qH p μ ν= +  be the accuracy results of 1p  and 2p , then 

we can give the comparative laws between any two q-ROFNs: if ( ) ( )1 2s p s p< , then 1 2p p< ; if 

( ) ( )1 2s p s p= , then (1) if ( ) ( )1 2H p H p= , then 1 2p p= ; (2) if ( ) ( )1 2H p H p< , 1 2p p< . 
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Definition 3 [57]. Assume that ( )1 1 1,p μ ν= , ( )2 2 2,p μ ν= , and ( ),p μ ν=  be three q-ROFNs, then 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )

( ) ( )
( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(1) , ;

(2) , ;

(3) 1 1 , , 0;

(4) 1 1 , 0;

(5) , .

q q q qq

q q q qq

qq

qq

c

p p

p p

p

p

p

λ λ

λλ λ

μ μ μ μ ν ν

μ μ ν ν ν ν

λ μ ν λ

μ ν λ

ν μ

⊕ = + −

⊗ = + −

 = − − > 
 
 = − − > 
 

=

，

  

3.2. Dual Hesitant q-Rung Orthopair Fuzzy Set 

In accordance of the q-ROFSs and DHFSs [27,28], we further introduce the dual hesitant q-rung 
orthopair fuzzy sets (DHq-ROFSs) [29] as follows.  

Definition 4 [29]. Let X  be a fix set, then a DHq-ROFS on X  can be denoted as 

( ) ( )( ), ,P Pd x h x g x x X= ∈  (4) 

where ( )Ph x  indicates membership hesitancy set with several values in [0,1], ( )Pg x  indicates 

nonmembership hesitancy set with values in[ ]0,1 , which satisfies 

( )( ) ( )( )max max 1
q q

h gα βα β∈ ∈+ ≤   (5) 

where ( ) ( ),P Ph x g xα β∈ ∈ . Then we named ( ) ( ) ( )( ),P Pd x h x g x=  a dual hesitant q-rung 

orthopair fuzzy number (DHq-ROFN) described by ( ),d h g= , which satisfies , ,h gα β∈ ∈  

0 , 1α β≤ ≤  and ( )( ) ( )( )max max 1.
q q

h gα βα β∈ ∈+ ≤   

Definition 5 [29]. Assume that ( ),d h g=  is a DHq-ROFN, let 

( ) 1 1 11
2 # #

q q
h g

s d
h gα β

α β
∈ ∈

 
= + − 

 
   be the score results of ( ),d h g=  and 

( ) 1 1
# #

q q
h g

E d
h gα β

α β
∈ ∈

= +   be the accuracy results of ( ),d h g= , where #h indicates the 

number of elements in set h  and # g  indicates the number of elements in set g ,respectively, assume that 

( )( ), 1,2i i id h g i= =  be any two DHq-ROFNs, then if ( ) ( )1 2s d s d> , then 1 2d d ;if 

( ) ( )1 2s d s d= , then: (1) If ( ) ( )1 2E d E d= , then 1 2=d d ; (2) If ( ) ( )1 2E d E d> , then 1 2d d . 

Definition 6 [29]. Let ( )1 1 1,d h g= , ( )2 2 2,d h g= , and ( ),d h g=  be three DHq-ROFNs, then, some 

new operations on the DHq-ROFNs are defined as 

(1) { } ( ), , 1 1 , 0qq
h gd

λλ λ
α β α β λ∈ ∈

  = − − >  
  

 ; 
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(2) ( ) { }, 1 1 , , 0qq
h gd

λ λ
α βλ α β λ∈ ∈

  = − − >  
  

 ; 

(3) ( ) ( ) ( ) ( ){ } { }{ }1 1 2 2 1 1 2 21 2 , , , 1 2 1 2 1 2, ;q q q qq
h h g gd d α α β β α α α α β β∈ ∈ ∈ ∈⊕ = + −  

(4) { } ( ) ( ) ( ) ( ){ }{ }1 1 2 2 1 1 2 21 2 , , , 1 2 1 2 1 2 .q q q qq
h h g gd d α α β β α α β β β β∈ ∈ ∈ ∈⊗ = + − ，  

3.3. Hamacher Operations of Dual Hesitant q-rung Orthopair Fuzzy Set 

Definition 7. Let ( )1 1 1,d h g= , ( )2 2 2,d h g= , and ( ),d h g=  be three DHq-ROFNs, 0γ > , and 

based on the traditional Hamacher operations [30], some basic Hamacher operations of DHq-ROFNS are 
defined as follows 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )

1 1 2 2 1 1 2 2

1 2 1 2 1 2
1 2 , , ,

1 2

1 2

1 2 1 2

(1 )
,

1 (1 )

;
(1 )

q q q q q q

q
h h g g q q

q q q qq

d d α α β β
α α α α γ α α

γ α α

β β

γ γ β β β β

∈ ∈ ∈ ∈

  + − − − ⊕ =   − −  
 
 

 
 + − + −
 



 (6) 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2 1 1 2 2

1 2
1 2 , , ,

1 2 1 2

1 2 1 2 1 2

1 2

,
(1 )

(1 )
;

1 (1 )

h h g g q q q qq

q q q q q q

q
q q

d d α α β β
α α

γ γ α α α α

β β β β γ β β
γ β β

∈ ∈ ∈ ∈

  
 ⊗ =  
  + − + −
 

 + − − −  − −  



 (7) 

( )( )( ) ( )( )
( )( )( ) ( ) ( )( )

( )

( ) ( )( )( ) ( )( )

,

1 1 1

1 1 1 1

;
1 1 1 1

q q

qh g q q

q

q qq

d

λ λ

α β λ λ

λ

λ λ

γ α α
λ

γ α γ α

γ β

γ β γ β

∈ ∈

  
+ − − −  

=   
  + − + − −  

 
   
 + − − + −   



 
(8) 

( )( )( ) ( )( )
( )( )( ) ( ) ( )( )

( )

( ) ( )( )( ) ( )( )

,

1 1 1

1 1 1 1

.
1 1 1 1

q q

qh g q q

q

q qq

d

λ λ

λ
α β λ λ

λ

λ λ

γ β β

γ β γ β

γ α

γ α γ α

∈ ∈

  
+ − − −  

=   
 + − + − −  

 
   
 + − − + −   



 
(9) 
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4. Dual Hesitant q-rung Orthopair Fuzzy Hamacher Operators 

4.1. Dual Hesitant q-Rung Orthopair Fuzzy Hamacher Averaging Operators 

In this section, based on the Hamacher operations of dual hesitant q-rung orthopair fuzzy 
numbers (DHq-ROFNs), we shall present some dual hesitant q-rung orthopair fuzzy Hamacher 
weighting average (DHq-ROFHWA) operators. 

Definition 8. Assume that ( )( ), 1, 2, ,j j jd h g j n= =   is a list of DHq-ROFNs with weighting vector 

be 1 2( , , , )Ti nw w w w=  , which satisfies [ ]0,1iw ∈  and 
1

1n
ii
w

=
= . Then the DHq-ROFHWA 

aggregation operator can be denoted as 

( )1 2 1
, , ,DHq-ROFHWA

n

n j jj
d d d w d

=
= ⊕  (10) 

According to the operation laws of DHq-ROFNs, we can obtain the computed result: 

Theorem 1. The computing results by utilizing DHq-ROFHWA operator is 

( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

( ) ( )( )( ) ( ) ( )

1 2 1

1 1
,

1 1

1

1 1

DHq-ROFHWA , , ,

1 1 1
,

1 1 1 1

1 1 1 1

j j

j j j j

j

j

j

j

j

n

n j jj

n nw wq q

j j
j j

qh g n nw wq q

j j
j j

n wq
j

j

wn nq qw
q

j j
j j

d d d w d

α β

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

= =

= ⊕

 
 + − − − 
 =  
 + − + − −
  

 
 
 

 
 + − − + −  

∏ ∏

∏ ∏

∏

∏ ∏





 

(11) 

Example 1. Given four dual hesitant q-rung orthopair fuzzy numbers: 
{ } { }{ } { } { }{ } { } { }{ } { } { }{ }1 2 3 40.7,0.8 , 0.5 , 0.4 , 0.6 , 0.6 , 0.7,0.9 , 0.3 , 0.2d d d d= = = =  with 

weighting vector be ( )0.4,0.1,0.3,0.2jw = , suppose that 3, 3q γ= = , then for membership degree α , 

we can derive 

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

1

0.4 0.1 0.3 0.23 3 3 3

0.4 0.1 0.3 0.23 3 3 3

0.4 0.1 0.3 0.23 3 3 3

0.4 0.13 3

1 2 0.7 1 2 0.4 1 2 0.6 1 2 0.3

1 0.7 1 0.4 1 0.6 1 0.3

1 2 0.7 1 2 0.4

DHq-ROFHWA 0.7,0.4,0

1 2 0.6 1 2 0.3

2 1 0.7 1 0

.6,0.3

.4 1 0.

α =

 + × × + × × + × × + × 
 
 − − × − × − × −
 

+ × × + × × + × × + ×

+ × − × − × −

=

( ) ( )( )
3

0.3 0.23 36 1 0.3

0.5284

 
 
 
 × −
 

=

 

 

In the same way, we have ( )2 DHq-ROFHWA 0.8,0.4,0.6,0.3 0.5787α = = , thus 

{ }0.5284,0.5787α = . For nonmembership β , we can derive 
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( )

( )( ) ( )( ) ( )( )
( )( )

1

0.4 0.1 0.3 0.23

0.4 0.1 0.33 3 3

0.23 1.2 0.3 0.9 0.6

3 0.5 0.6 0.7 0.2

1 2 1 0.5 1 2 1 0.6 1 2 1 0.7

1 2 1 0.2

DHq-ROFHWA 0.5,0

2 0.5

.6,

0.6 0.7 0.2

0.24

0.7 0.2

98

,

q

β =

 
 
 
 × × × × 
 + × − × + × − × + × − 
 
 × + × − + × × × × 
 

=

=

 

 

In the same way, we have ( )2 DHq-ROFHWA 0.5,0.6,0.9,0.2 0.2668β = = , thus 

{ }0.2498,0.2668β = . So ( ) { }{1 2 3 4, , ,DHq-ROFH 0.5284,0.5787 ,WA d d d d =  

{ }}0.2498,0.2668 .  

It’s clear that the DHq-ROFHWA operator satisfies some properties including Idempotency, 
Monotonicity and Boundedness. 

Property 1. (Idempotency) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   are equal, we can obtain 

1 2D ( ,H , ,q-ROF W )H A nd d d d=  (12) 

Property 2. (Monotonicity) Let ( ),j j jd h g= and ( ), 1, 2, ,j j jd h g j n′ ′ ′= = , be two sets of 

DHq-ROFNs. If j jh h≤ ′  and j jg g≥ ′
 
 hold for all j , then

 

1 2 1 2DHq-ROFHWA DHq-ROFHWA( , , , ) ( , , , )n nd d d d d d′≤ ′ ′   (13) 

Property 3. (Boundedness) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   be a set of DHq-ROFNs. If 

( ){ } ( ){ }{ } ( ){ } ( ){ }{ }, ,,max , min min , max
j j jj j j j ji i i i i i i ih g h gd dα β α βα β α β+ −
∈ ∈ ∈ ∈= =  , then  

1 2DHq-ROF (HWA , , , )nd ddd d− +≤ ≤  (14) 

Next, by changing γ  and q  we shall derive some special results. 

Case 1. When 1γ = , the DHq-ROFHWA operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy weighting average (DHq-ROFWA) aggregation operator presented as 

( )

( )( ) ( )

1 2 1

,
1 1

DHq-ROFWA , , ,

1 1 ,
j j

j j

j j

n

n j jj

n nwq w
q

h g j j
j j

d d d w d

α β α β

=

∈ ∈
= =

= ⊕

      = − −         
∏ ∏


 

(15) 

Case 2. When 2γ = , the DHq-ROFHWA operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein weighting average (DHq-ROEWA) operator, presented as 
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( )

( )( ) ( )( )
( )( ) ( )( )

( )

( )( ) ( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1
,

DHq-RO EW

1

2

F

2

A

1

j j

j j j j

j

j

j j

j

n

n j jj

n nw wq q

j j
j j

qh g n nw wq q

j j
j j

n wq
j

j

n nwq qw
q

j j
j j

d d d w d

α β

α α

α α

β

β β

=

= =
∈ ∈

= =

=

= =

= ⊕

  
 + − − 
 =  
 + + −
   

 
 
 

 
 − +  

∏ ∏

∏ ∏

∏

∏ ∏





 

(16) 

Case 3. When 1q = , the DHq-ROFHWA operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher weighting average (DHIFHWA) operator, presented as 

( )

( )( )( ) ( )( )
( )( )( ) ( ) ( )( )

( )

( ) ( )( )( ) ( ) ( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1 1
,

1 1 1 1

1 1 1 1

DHIFHWA

j j

j j j

j

j j j

j j

n

n j jj

n nw w

j j
j j

h g n nw w

j j
j j

n w

j
j

n nw w

j j
j j

d d d w d

α β

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

= =

= ⊕

  + − − −   =   + − + − −   
 
    + − − + −   

∏ ∏

∏ ∏

∏

∏ ∏





 

(17) 

Case 4. When 2q = , the DHq-ROFHWA operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher weighting average (DHPFHWA) operator [56], presented as 

( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

( ) ( )( )( ) ( ) ( )

1 2 1

2 2

1 1
, 2 2

1 1

1

2 2

1 1

DHPFH , , ,

1 1

W

1
,

1 1 1 1

1 1 1 1

A

j j

j j j j

j

j

j j

j

n

n j jj

n nw w

j j
j j

h g n nw w

j j
j j

n w

j
j

wn n w

j j
j j

d d d w d

α β

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

= =

= ⊕

 
 + − − − 
 =  
 + − + − −
  

 
 
 

 
 + − − + −  

∏ ∏

∏ ∏

∏

∏ ∏





 

(18) 

Furthermore, to consider the order positions of being fused arguments, we develop the dual 
hesitant q-rung orthopair fuzzy Hamacher ordered weighting average (DHq-ROFHOWA) operator 
as follows. 

Definition 9. Assume that ( )( ), 1, 2, ,j j jd h g j n= =   is a group of DHq-ROFNs, the dual hesitant 

q-rung orthopair fuzzy Hamacher ordered weighting average (DHq-ROFHOWA) operator with associated 

weighting vector be ( )1 2, , , T
nw w w w=  , which satisfies the conditions of 0jw >  and 

1
1

n

j
j
w

=

= , then 
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( ) ( )

( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )

( ) ( )( )

1 2 1

1 1
,

1 1

1

1

, , ,

1 1 1
,

1 1 1

DHq-ROFHOWA

1

1 1 1

j j

j jj j j j

j

j

n

n j jj

w wn nq q

j j
j j

qh g w wn nq q

j j
j j

n w
q

j
j

wn q

j
j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ

γ α α

γ α γ α

γ β

γ β

=

= =
∈ ∈

= =

=

=

= ⊕

      + − − −    
     =  

     + − + − −         

  + − − +    

∏ ∏

∏ ∏

∏

∏





( ) ( )( )
1

1
j

n qw
q

j
j

σγ β
=

 
 
 

 
 − 
 

∏

 

(19) 

where ( ) ( ) ( )( )1 , 2 , , nσ σ σ  is a permutation of ( )1, 2, ,n , and ( ) ( )1j jd dσ σ− ≥  for all 

2, ,j n=  . 
It is clear that the DHq-ROFHOWA operator satisfies some properties including idempotency, 

monotonicity, and boundedness. 

Property 4. (Idempotency) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   are equal, we can obtain 

1 2DHq-ROFHOW (A , , , )nd d dd =  (20) 

Property 5. (Monotonicity) Assume that ( ),j j jd h g=  and ( ), 1, 2, ,j j jd h g j n′ ′ ′= = ,  are two 

groups of DHq-ROFNs. If j jh h≤ ′ and j jg g≥ ′
 
hold for all j , then

 

1 2 1 2DHq-ROFHOWA DHq-ROFHOW( , , A, ) ( , , , )n nd d d d d d′≤ ′ ′   (21) 

Property 6. (Boundedness) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   is a set of DHq-ROFNs. If 

( ) ( )
( ){ } ( ){ }{ } ( ) ( )

( ){ } ( ){ }{ }, ,,max , min min , max
j j j jj j j ji i ih g i i ih g i id d

σ σ σ σα β α βα β α β+ −
∈ ∈ ∈ ∈= =  , then  

1 2(DHq-ROFHOWA , , , )nd d dd d− +≤ ≤  (22) 

Next, by changing γ  and q  we shall derive some special results. 

Case 1. When 1γ = , the DHq-ROFHOWA operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy ordered weighting average (DHq-ROFOWA）operator, presented as 

( ) ( )

( ) ( ) ( )( ) ( )( )

1 2 1

,
1 1

, , ,

1 1

DHq-ROFOW

,

A

j j

j jj j

n

n j jj

wn nq w
q

h g j j
j j

d d d w d

σ σ

σ

α β σ σα β

=

∈ ∈
= =

= ⊕

       = − −           
∏ ∏

  
(23) 

Case 2. When 2γ = , the DHq-ROFHOWA operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein ordered weighting average (DHq-ROEOWA) operator, presented as 
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( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1

DHq-ROF

,
1 1

2

E

2

OWA

j j

jj j j j

j

j
j

j

n

n j jj

w wn nq q

j j
j j

qh g w wn nq q

j j
j j

n wq
j

j

wn nq qw
q

j j
j j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ σ

α α

α α

β

β β

=

= =
∈ ∈

= =

=

= =

= ⊕

     + − −    
    =  
     + + −         

 



  − +   

∏ ∏

∏ ∏

∏

∏ ∏














 

(24) 

Case 3. When 1q = , the DHq-ROFHOWA operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher ordered weighting average (DHIFHOWA) operator, presented as 

( ) ( )

( ) ( )

( ) ( )( )( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

( )( )
( ) ( )( )( )( ) ( ) ( )( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1 1
,

1 1 1 1

1

DHIF

1

W

1 1

HO A

j j

j j j j

j

j j

j j

n

n j jj

n nw w

j j
j j

h g n nw w

j j
j j

n w

j
j

n nw w

j j
j j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ σ

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

= =

= ⊕

  + − − −   =    + − + − −   
 
    + − − + −   

∏ ∏

∏ ∏

∏

∏ ∏





 

(25) 

Case 4. When 2q = , the DHq-ROFHOWA operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher ordered weighting average (DHPFHOWA) operator [56], presented as 

( ) ( )

( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )

( ) ( )( ) ( )

1 2 1

2 2

1 1
, 2 2

1 1

1

2

1

, , ,

1 1 1
,

1 1 1 1

1 1 1 1

DHPFHOWA

j j

j jj j j j

j

j

n

n j jj

w wn n

j j
j j

h g w wn n

j j
j j

n w

j
j

wn

j
j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ σ

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

=

= ⊕

     + − − −    
    =  

     + − + − −         

  + − − + −    

∏ ∏

∏ ∏

∏

∏





( )( )2

1

j
n w

j
j=

 
 
 

 
 
 
 

∏

 

(26) 

According to Definitions 8–9, we can obtain that the DHq-ROFHWA operators can only weigh 
the DHq-ROFN itself, while the DHq-ROFHOWA operators can only weigh the ordered positions of 
the DHq-ROFN. To consider both two weights, we will develop the dual hesitant q-rung orthopair 
fuzzy Hamacher hybrid averaging (DHq-ROFHHA) operator as follows. 

Definition 10. Let ( )( ), 1, 2, ,j j jd h g j n= =   be a group of DHq-ROFNs. A dual hesitant q-rung 

orthopair fuzzy Hamacher hybrid average (DHq-ROFHHA) operator mapping DHq-ROFHHA: ,nP P→  
such that 
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( ) ( )

( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )

( ) ( )( )

1 2 1

1 1
,

1 1

1

DHq , , ,

1 1 1
,

1 1 1 1

1

-R

1

O H

1

F HA

j j

j jj jj j

j

n

n j jj

w wn nq q

j j
j j

q w wh g n nq q

j j
j j

n w
q

j
j

q

j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ

γ α α

γ α γ α

γ β

γ β

=

= =
∈ ∈

= =

=

= ⊕

      + − − −    
     =  

     + − + − −         

  + − −    

∏ ∏

∏ ∏

∏





 

 







( ) ( )( )
1 1

1
j

j
wn n qw

q
j

j j
σγ β

= =

 
 
 

 
 + − 
 

∏ ∏ 

 

(27) 

where ( )1 2, , , nw w w w=   means the associated weights, which satisfies [ ]0,1jw ∈ , 
1

1
n

j
j
w

=

= , and 

( )jdσ
  denotes the j-th largest number of DHq-ROFNs ( )( ), 1,2, ,j j j jd d n d j nω= =   , 

( )1 2, , , nω ω ω ω=   represents the weights of the DHq-ROFNs ( )1, 2, ,jd j n=  , which satisfies 

[ ]0,1jω ∈ , 
1

1
n

j
j

ω
=

= , and n  indicates the balance coefficient. 

When ( )1 ,1 , ,1 Tw n n n=  , the DHq-ROFHHA operator is going to degrade into the 

DHq-ROFHWA operator; when ( )1 ,1 , ,1n n nω =  , the DHq-ROFHHA operator is going to degrade 

into the dual (DHq-ROFHOWA operator. 
Next, by changing γ  and q , we shall derive some special results. 

Case 1. When 1γ = , theDHq-ROFHHA operator is going to degrade into the dual hesitant q-rung orthopair 
fuzzy hybrid averaging (DHq-ROFHA) operator, presented as 

( ) ( )

( ) ( ) ( )( ) ( )( )

1 2 1

,
1 1

, , ,

1 1

DHq-ROFHA

,
j j

j jj j

n

n j jj

wn nq w
q

j jh g
j j

d d d w d

σ σ

σ

σ σα β α β

=

∈ ∈
= =

= ⊕

       = − −           
∏ ∏



 

 
(28) 

Case 2. When 2γ = , the DHq-ROFHHA operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein hybrid averaging (DHq-ROFEHA) operator, presented as 
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( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1
,

1

DHq-

1

2

2

ROFEHA

j j

j j jjj j

j

j
j

n

n j jj

w wn nq q

j j
j j

q w wh g n nq q

j j
j j

n wq
j

j

wn nq qw

j j
j j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ σ

α α

α α

β

β β

=

= =
∈ ∈

= =

=

= =

= ⊕

     + − −    
    =  
     + + −         

 − + 
 

∏ ∏

∏ ∏

∏

∏ ∏





 

 







q

 
 
 

 
 
 
 

 

(29) 

Case 3. When 1q = , the DHq-ROFHHA operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher hybrid averaging (DHIFHHA) operator, presented as 

( ) ( )

( ) ( )

( ) ( )( )( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

( )( )
( ) ( )( )( )( ) ( ) ( )( )

1 2 1

1 1
,

1 1

1

1 1

, , ,

1 1 1
,

1 1 1 1

1

DHIFHHA

1 1 1

j j

j j j j

j

j

j j

j

n

n j jj

n nw w

j j
j j

n nh g w w

j j
j j

n w

j
j

n nw w

j j
j j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

σ σ

γ α α

γ α γ α

γ β

γ β γ β

=

= =
∈ ∈

= =

=

= =

= ⊕

  + − − −   =    + − + − −   
 
    + − − + −   

∏ ∏

∏ ∏

∏

∏ ∏





 

 



 



 

(30) 

Case 4. When 2q = , the DHq-ROFHHA operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher hybrid averaging (DHPFHHA) operator [56]: 

( ) ( )

( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

( ) ( )( )

1 2 1

2 2

1 1
, 2 2

1 1

1

2

1

, , ,

1 1 1
,

1 1 1 1

1 1 1

DHPFHHA

j j

j jj jj j

j

j

n

n j jj

w wn n

j j
j j

w wh g n n

j j
j j

n w

j
j

wn

j
j

d d d w d

σ σ

σ

σ σ

α β

σ σ

σ

γ α α

γ α γ α

γ β

γ β

=

= =
∈ ∈

= =

=

=

= ⊕

     + − − −    
    =  

     + − + − −         

  + − −    

∏ ∏

∏ ∏

∏





 










( ) ( )( )2

1
1

j
n w

j
j

σγ β
=

 
 
 

 
 + − 
 

∏ ∏ 

 

(31) 

4.2. Dual Hesitant q-Rung Orthopair Fuzzy Hamacher Geometric Operators 

In accordance with the DHq-ROFHWA aggregation operators and the geometric operations, we 
will define some dual hesitant q-rung orthopair fuzzy Hamacher weighting geometric 
(DHq-ROFHWG) aggregation operators as follows. 

Definition 11. Let ( )( ), 1, 2, ,j j jd h g j n= =   be a collection of DHq-ROFNs. The dual hesitant 

q-rung orthopair fuzzy Hamacher weighting geometric (DHq-ROFHWG) aggregation operator can be depicted 
as 

( ) ( )1 2 1
, , ,DHq-ROFHWG j

n w

n jj
d d d d

=
= ⊗  (32) 

According to Hamacher operations of DHq-ROFNs, we can obtain the computed result as 
follows: 
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Theorem 2. The fused results by utilizing DHq-ROFHWA operator can be shown as 

( ) ( )

( )

( ) ( )( )( ) ( ) ( )

( )( )( ) ( )( )
( )( )( ) ( ) ( )( )

1 2 1

1
,

1 1

1 1

1 1

, , ,

,
1 1 1 1

DHq-R

1 1 1

1 1

F W

1 1

O H G j

j

j j j
j

j j

j

j j

j

n w

n jj

n wq
j

j
h g wn nq qw

q
j j

j j

n nw wq q

j j
j j

q n nw wq q

j j
j j

d d d d

α β

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= =

= ⊗

 
 
 =  
  + − − + −  

 
+ − − − 

 
 
 + − + − − 
  

∏

∏ ∏

∏ ∏

∏ ∏



  

(33) 

Example 2. Given four dual hesitant q-rung orthopair fuzzy numbers—
{ } { }{ } { } { }{ } { } { }{ } { } { }{ }1 2 3 40.7,0.8 , 0.5 , 0.4 , 0.6 , 0.6 , 0.7, 0.9 , 0.3 , 0.2d d d d= = = =

—with weighting vector will be ( )0.4,0.1,0.3,0.2jw = , suppose that 3, 3q γ= = , then for membership 

degree α , we can derive 

( )

( )( ) ( )( ) ( )( )
( )( )

1

0.4 0.1 0.3 0.23

0.4 0.1 0.33 3 3

0.23 1.2 0.3 0.9 0.6

3 0.7 0.4 0.6 0.3

1 2 1 0.7 1 2 1 0.4 1 2 1 0.6

1 2 1 0.3

DHq-ROFHWG 0.7,0

2 0.7

.4,

0.4 0.6 0.3

0.10

0.6 0.3

40

,

q

α =

 
 
 
 × × × × 
 + × − × + × − × + × − 
 
 × + × − + × × × × 
 

=

=

 

 

In the same way, we have ( )2 DHq-ROFHWG 0.8,0.4,0.6,0.3 0.1104α = = , thus, 

{ }0.1040,0.1104α = . For nonmembership β , we can derive 

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

1

0.4 0.1 0.3 0.23 3 3 3

0.4 0.1 0.3 0.23 3 3 3

0.4 0.1 0.3 0.23 3 3 3

0.4 0.13 3

1 2 0.5 1 2 0.6 1 2 0.7 1 2 0.2

1 0.5 1 0.6 1 0.7 1 0.2

1 2 0.5 1 2 0.6

DHq-ROFHWG 0.5,0.6,0

1 2 0.7 1 2 0.2

2 1 0.5 1 0

.7,0.2

.6 1 0.

β =

 + × × + × × + × × + × 
 
 − − × − × − × −
 

+ × × + × × + × × + ×

+ × − × − × −

=

( ) ( )( )
3

0.3 0.23 37 1 0.2

0.5553

 
 
 
 × −
 

=

 

 

In the same way, we have ( )2 DHq-ROFHWG 0.5,0.6,0.9,0.2 0.6003β = = , thus, 

{ }0.5553,0.6003β = . So ( ) { }{1 2 3 4, , ,DHq-ROFH 0.1040,0.1104 ,WG d d d d =  

{ }}0.5553,0.6003 . 

It is clear that the DHq-ROFHWG operator satisfies some properties including idempotency, 
monotonicity, and boundedness. 

Property 7. (Idempotency) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   are equal, we can obtain 

1 2D ( ,H , ,q-ROF W )H G nd d d d=  (34) 

Property 8. (Monotonicity) Assume that ( ),j j jd h g=  and ( ), 1, 2, ,j j jd h g j n′ ′ ′= = ,  be two sets of 

DHq-ROFNs. If j jh h≤ ′  and j jg g≥ ′
 
 hold for all j , then
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1 2 1 2DHq-ROFHWG DHq-ROFHWG( , , , ) ( , , , )n nd d d d d d′≤ ′ ′   (35) 

Property 9. (Boundedness) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   be a set of DHq-ROFNs. If 

( ){ } ( ){ }{ } ( ){ } ( ){ }{ }, ,,max , min min , max
j j jj j j j ji i i i i i i ih g h gd dα β α βα β α β+ −
∈ ∈ ∈ ∈= =  , then  

1 2DHq-ROF (HWG , , , )nd ddd d− +≤ ≤  (36) 

Next, by changing γ  and q , we shall derive some special results. 

Case 1. When 1γ = , the DHq-ROFHWG operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy weighting geometric (DHq-ROFWG）operator, presented as 

( ) ( )

( ) ( )( )
1 2 1

,
1 1

, , ,

, 1 1

DHq-ROFWG j

jj

j jj j

n w

n jj

n n ww q
q

h g j j
j j

d d d d

α β α β

=

∈ ∈
= =

= ⊗

      = − −         
∏ ∏


 

(37) 

Case 2. When 2γ = , the DHq-ROFHWG operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein weighting geometric (DHq-ROFEWG) operator, presented as 

( ) ( )

( )

( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1 2 1

1
,

1 1

1 1

1 1

DHq-ROFE , , ,

2

WG

,
2

1 1

1 1

j

j

jj j j
j j

j j

j j

n w

n jj

n wq
j

j
h g n nwq qw

q
j j

j j

n nw wq q

j j
j j

q n nw wq q

j j
j j

d d d d

α β

α

α α

β β

β β

=

=
∈ ∈

= =

= =

= =

= ⊗

  
 
 =  
  − +  

 
+ − − 

 
 
 + + − 
  

∏

∏ ∏

∏ ∏

∏ ∏





 

(38) 

Case 3. When 1q = , the DHq-ROFHWG operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher weighting geometric (DHIFHWG) operator, presented as 

( ) ( )

( )

( ) ( )( )( ) ( ) ( )

( )( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1

1
,

1 1

1 1

1 1

, , ,

,
1 1 1 1

1 1

DHIFHW

1

1

G

1 1 1

j

j

j j j j

j j

j

j

j

j

n w

n jj

n w

j
j

h g n nw w

j j
j j

n nw w

j j
j j

n nw w

j j
j j

d d d d

α β

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= =

= ⊗

  
  =   + − − + −   

 + − − −     + − + − −   

∏

∏ ∏

∏ ∏

∏ ∏





 

(39) 
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Case 4. When 2q = , the DHq-ROFHWG operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher weighting geometric (DHPFHWG) operator [56], presented as 

( ) ( )

( )

( ) ( )( )( ) ( ) ( )

( )( )( ) ( )( )
( )( )( ) ( ) ( )( )

1 2 1

1
,

2 2

1 1

2 2

1 1

2 2

1 1

, , ,

,
1 1 1

DHPF

1

1 1 1

1 1 1

HWG

1

j j

j

j

j j j
j

j j

j j

n w

n jj

n w

j
j

h g wn n w

j j
j j

n nw w

j j
j j

n nw w

j j
j j

d d d d

α β

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= =

= ⊗

 
 
 =  
  + − − + −  

 
+ − − − 

 
 
 + − + − − 
  

∏

∏ ∏

∏ ∏

∏ ∏





 

(40) 

Furthermore, to consider the order positions of being fused arguments, we proposed the dual 
hesitant q-rung orthopair fuzzy Hamacher ordered weighted geometric (DHq-ROFHOWG) 
operator as follows. 

Definition 12. Let ( )( ), 1, 2, ,j j jd h g j n= =   be a group of DHq-ROFNs, the DHq-ROFHOWG 

operator with associated weights ( )1 2, , , T
nw w w w=  , which satisfies the condition of 0jw >  and 

1
1

n

j
j
w

=

= , then 

( ) ( )( )

( ) ( )

( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1

1
,

1 1

1 1

, , ,

,

1 1 1 1

1 1 1

1 1 1

DHq-ROFHOWG

1

j

j

j jj j j
j

j j

j

n w

n jj

n w
q

j
j

h g wn nq qw
q

j j
j j

w wn nq q

j j
j j

wq q

j j

d d d d

σ σ

σ

σ

α β

σ σ

σ σ

σ σ

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= ⊗

 
 
 =  
    + − − + −       

   + − − −   
   

   + − + − −  
  

∏

∏ ∏

∏ ∏





1 1

j
q wn n

j j= =

 
 
 

 
   

∏ ∏

 

(41) 

where ( ) ( ) ( )( )1 , 2 , , nσ σ σ  is a permutation of ( )1, 2, ,n , such that ( ) ( )1j jd dσ σ− ≥  for all 

2, ,j n=  . 
We can easily obtain that the DHq-ROFHOWG operator satisfies the following properties. 

Property 10. (Idempotency) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   are equal, we can obtain 

1 2DHq-ROFHOW (G , , , )nd d dd =  (42) 

Property 11. (Monotonicity) Assume that ( ),j j jd h g=  and ( ), 1, 2, ,j j jd h g j n′ ′ ′= = ,  be two sets of 

DHq-ROFNs. If j jh h≤ ′  and j jg g≥ ′
 
 hold for all j , then

 

1 2 1 2DHq-ROFHOWG DHq-ROFHOW( , , G, ) ( , , , )n nd d d d d d′≤ ′ ′   (43) 
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Property 12. (Boundedness) Assume that ( )( ), 1, 2, ,j j jd h g j n= =   is a set of DHq-ROFNs. If 

( ) ( )
( ){ } ( ){ }{ } ( ) ( )

( ){ } ( ){ }{ }, ,,max , min min , max
j j j jj j j ji i ih g i i ih g i id d

σ σ σ σα β α βα β α β+ −
∈ ∈ ∈ ∈= =  , then  

1 2(DHq-ROFHOWG , , , )nd d dd d− +≤ ≤  (44) 

Next, by changing γ  and q , we shall derive some special results. 

Case 1. When 1γ = , the DHq-ROFHOWG operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy ordered weighting geometric (DHq-ROFOWG）operator, presented as 

( ) ( )( )

( ) ( ) ( )( ) ( )( )

1 2 1

,
1 1

DHq-R , , ,

, 1

OFOWG

1

j

jj

j jj j

n w

n jj

wn nw q
q

h g j j
j j

d d d d

σ σ

σ

α β σ σα β

=

∈ ∈
= =

= ⊗

       = − −           
∏ ∏

  
(45) 

Case 2. When 2γ = , the DHq-ROFHOWG operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein ordered weighting geometric (DHq-ROEOWG) operator, presented as 

( ) ( )( )

( ) ( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1 2 1

1
,

1 1

1 1

1 1

, , ,

2
,

2

1 1

DHq-ROF

1

EOWG

1

j

j

jj j j j

j j

j

j

j

n w

n jj

n wq
j

j
h g wn nq qw

q
j j

j j

w wn nq q

j j
j j

q w wn nq q

j j
j j

d d d d

σ σ

σ

σ

α β

σ σ

σ σ

σ σ

α

α α

β β

β β

=

=
∈ ∈

= =

= =

= =

= ⊗

  
  
 =  
   − +     

    + − −    
   


    + + −       

∏

∏ ∏

∏ ∏

∏ ∏













 

(46) 

Case 3. When 1q = , the DHq-ROFHOWG operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher ordered weighting geometric (DHIFHOWG) operator, presented as 

( ) ( )( )

( ) ( )

( )( )
( ) ( )( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

1 2 1

1
,

1 1

1 1

1 1

, , ,

,
1 1 1 1

1 1 1

1 1 1

DHI HO

1

F WG
j

j

j j j j

j

j

j

j

j

j

n w

n jj

n w

j
j

h g n nw w

j j
j j

n nw w

j j
j j

n nw w

j j
j j

d d d d

σ σ

σ

σ

α β

σ σ

σ σ

σ σ

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= =

= ⊗

  
   =    + − − + −   

 + − − −     + − + − −   

∏

∏ ∏

∏ ∏

∏ ∏





 

(47) 

Case 4. When 2q = , the DHq-ROFHOWG operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher ordered weighting geometric (DHPFHOWG) operator [56], presented as 
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(48) 

According to Definitions 11 and 12, we can deduce that the DHq-ROFHWG operators can only 
weigh the DHq-ROFN itself, and the DHq-ROFHOWG operators can only weigh the ordered 
positions of the DHq-ROFN. In order to consider both two weights, we will develop the dual 
hesitant q-rung orthopair fuzzy Hamacher hybrid geometric (DHq-ROFHHG) operator as follows. 

Definition 13. Let ( )( ), 1, 2, ,j j jd h g j n= =   be a group of DHq-ROFNs. A dual hesitant q-rung 

orthopair fuzzy Hamacher hybrid geometric (DHq-ROFHHG) operator a mapping DHq-ROFHHG: 
,nP P→  such that 
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(49) 

where ( )1 2, , , nw w w w=  means the associated weights, which satisfies [ ]0,1jw ∈ , 
1

1
n

j
j
w

=

= , and 

( )jdσ
  is the j-th largest number of DHq-ROFNs ( )( ), 1,2, ,jn

j j jd d d j n
ω

= =   , 

( )1 2, , , nω ω ω ω=   means the weights of DHq-ROFNs ( )1, 2, ,jd j n=   itself, which satisfies 

[ ]0,1jω ∈ , 
1

1
n

j
j

ω
=

= , and n  indicates the balance coefficient. 

When ( )1 ,1 , ,1 Tw n n n=  , the DHq-ROFHHG operator is going to degrade into the 

DHq-ROFHWG operator; when ( )1 ,1 , ,1n n nω =  , the DHq-ROFHHG operator is going to degrade 

into the dual (DHq-ROFHOWG operator. 
Next, by changing γ  and q , we shall derive some special results. 
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Case 1. When 1γ = , the DHq-ROFHHG operator is going to degrade into the dual hesitant q-rung orthopair 
fuzzy hybrid geometric (DHq-ROFHG) operator, presented as 
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(50) 

Case 2. When 2γ = , the DHq-ROFHHG operator is going to degrade into the dual hesitant q-rung 
orthopair fuzzy Einstein hybrid geometric (DHq-ROFEHG) operator, presented as 
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(51) 

Case 3. When 1q = , the DHq-ROFHHG operator is going to degrade into the dual hesitant intuitionistic 
fuzzy Hamacher hybrid geometric (DHIFHHG) operator, presented as 
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(52) 

Case 4. When 2q = , the DHq-ROFHHG operator is going to degrade into the dual hesitant Pythagorean 
fuzzy Hamacher hybrid geometric (DHPFHHG) operator [56], presented as 

( ) ( )( )

( ) ( )

( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1

1
,

2 2

1 1

2 2

1 1

2 2

, , ,

,

1 1 1 1

1 1 1

DHPFH G

1 1 1

H

1

j

j

j jj j j
j

j j

j

n w

n jj

n w

j
j

h g wn n w

j j
j j

w wn n

j j
j j

w

j j

d d d d

σ σ

σ

α β

σ σ

σ σ

σ σ

γ α

γ α γ α

γ β β

γ β γ β

=

=
∈ ∈

= =

= =

= ⊗

 
 
 =  
    + − − + −       

   + − − −   
   

  + − + − − 
 

∏

∏ ∏

∏ ∏







 

 

 



1 1

jwn n

j j= =

 
 
 

 
     

∏ ∏

 

(53) 



Symmetry 2019, 11, 771 20 of 29 

 

Given an numerical example with DHq-ROFNs information to briefly depict the decision steps, 
suppose there are m  alternatives iA  denoted by n  attributes jG , let jw  be attribute weights 

with 
1

0 1, 1n
j jj
w w

=
≤ ≤ = , then the decision-making steps are listed as follows. 

Step 1. Collect the dual hesitant q-rung orthopair fuzzy decision-making information given by 

experts and construct the evaluation matrix ( )ij ij m n
R r

×
= ; 

Step 2. According to the attribute weights, we can fuse the dual hesitant q-rung orthopair fuzzy 
information by utilizing the equation (11) or (33); 
Step 3. Compute the score and accuracy results to determine the rank of all the alternatives. 

5. Numerical Example and Comparative Analysis 

5.1. Numerical Example 

Since the prefabricated building has obvious advantages such as high construction quality, 
environmental protection, and labor-saving compared with the traditional cast-in-place construction 
method, this construction method has been gradually promoted in the construction field. However, 
this immature construction method often overlaps with construction safety risks such as on-site 
assembly and parallel construction. In addition, the quality of on-site construction personnel is 
generally low, and it is difficult to adapt to the needs of new construction techniques, which is very 
likely to cause construction safety accidents. In order to control the incidence of construction-type 
construction safety accidents with a gradual upward trend, only correct and scientific 
decision-making of a construction safety program can be of great significance for the control of PC 
construction safety. Thus, how to select the scheme of construction project is an interesting topic. To 
select the scheme of construction project is a classical MADM problem [67,68]. In this part, we shall 
give an actual application about scheme selection of construction project with dual hesitant q-rung 
orthopair fuzzy information in order to demonstrate the aggregation operators developed in our 

manuscript. There are five possible construction projects ( )1,2,3,4,5iA i =  to be selected. The 

experts selects four attribute to estimate the five possible construction projects: ①G1 is the Human 
and management factors; ②G2 is the Hoisting construction operation factors; ③G3 is the PC 
component installation factor; and ④G4 is the environmental factor. The five possible construction 
projects ( )1, 2,3, 4,5iA i =  are to be evaluated using the dual hesitant q-rung orthopair fuzzy 

information which is shown in Table 2. (The attribute’s weights are ( )0.26,0.42,0.18,0.14 Tω = ). 

Table 2. DHq-ROFN decision matrix (R ). 

Alternatives G1 G2 G3 G4 
A1 {{0.3,0.4},{0.6}} {{0.4,0.5},{0.2,0.3)}} {{0.5,0.6},{0.8}} {{0.1,0.5},{0.7}} 
A2 {{0.2},{0.4}} {{0.1,0.2,0.3},{0.2}} {{0.5},{0.2,0.3,0.6}} {{0.8},{0.1,0.2}} 
A3 {{0.7,0.9},{0.1}} {{0.6},{0.3,0.5}} {{0.4,0.5,0.6},{0.1}} {{0.5,0.6,0.7},{0.2}} 
A4 {{0.4},{0.2})} {{0.3,0.4,0.5},{0.4}} {{0.3,0.5},{0.4}} {{0.4},{0.4,0.5,0.6}} 
A5 {{0.3,0.4},{0.2}} {{0.4,0.5,0.6},{0.4}} {{0.5,0.6},{0.7}} {{0.2,0.4,0.5},{0.5}} 

In the following, we utilize the DHq-ROFHWA operator and the DHq-ROFHWG operator to 
study scheme selection of construction project from five possible construction projects.  

Step 1. Based on the decision-making information given in the Table 2, We shall utilize the 

DHq-ROFHWA operator to derive the overall preference values ir of the construction projects 

( )1,2,3,4,5iA i =  (let 3, 3qγ = = ): 
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Step 2. Compute the score values ( ) ( )1,2, ,5iS r i =   of the overall DHq-ROFNs 

( )1,2, ,5ir i =   

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.5378, 0.5451, 0.6499,
0.5322, 0.5497

S r S r S r

S r S r

= = =

= =
  

Step 3. Determine the ordering of all the construction projects ( )1,2,3,4,5iA i =  with respect to 

the score values ( ) ( )1,2, ,5iS r i =  , then we can derive: 3 5 2 1 4,A A A A A     and the best 

construction project is 3A . 
Based on the DHq-ROFHWG operator, the decision-making steps can be depicted as. 

Step 1. Based on the decision-making information given in the Table 2, We shall utilize the 

DHq-ROFHWG operator to derive the overall preference values ir of the construction projects 

( )1,2,3,4,5iA i = (let 3, 3qγ = = ): 
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Step 2. Compute the score values ( ) ( )1,2, ,5iS r i =   of the overall DHq-ROFNs 

( )1,2, ,5ir i =  : 

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.4177, 0.4861, 0.4971,
0.4742, 0.4601

S r S r S r

S r S r

= = =

= =
  

Step 3. Determine the ordering of all the construction projects ( )1,2,3,4,5iA i =  with respect to 

the score values ( ) ( )1,2, ,5iS r i =  , then we can derive: 3 2 4 5 1,A A A A A     and the best 

construction project is 3A . 

5.2. Influence of the Parameter on the Final Result  

In order to depict the effects on the ordering results by altering parameters of γ  and q in the 
DHq-ROFHWA (DHq-ROFHWG) operators, all the results are list in Tables 3 and 4. 
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Table 3. Ordering results by altering γ  in the DHq-ROFHWA operator. 

Alternatives s(A1) s(A2) s(A3) s(A4) s(A5) Ordering 
1γ =  0.5072 0.5512 0.6523 0.5144 0.5291 3 2 5 4 1A A A A A     

2γ =  0.5271 0.5481 0.6512 0.5271 0.5438 3 2 5 4 1A A A A A     

3γ =  0.5378 0.5451 0.6499 0.5322 0.5497 3 5 2 1 4A A A A A     

4γ =  0.5405 0.5422 0.6482 0.5335 0.5509 3 5 2 1 4A A A A A     

6γ =  0.5414 0.5376 0.6456 0.5340 0.5509 3 5 1 2 4A A A A A     

10γ =  0.5408 0.5321 0.6428 0.5339 0.5500 3 5 1 4 2A A A A A     

Table 4. Ordering results by altering γ  in the DHq-ROFHWG operator. 

Alternatives s(A1) s(A2) s(A3) s(A4) s(A5) Ordering 
1γ =  0.4344 0.4944 0.6062 0.5019 0.4936 3 4 2 5 1A A A A A     

2γ =  0.4213 0.4886 0.5318 0.4821 0.4695 3 2 4 5 1A A A A A     

3γ =  0.4177 0.4861 0.4971 0.4742 0.4601 3 2 4 5 1A A A A A     

4γ =  0.4191 0.4856 0.4878 0.4724 0.4585 3 2 4 5 1A A A A A     

6γ =  0.4212 0.4856 0.4848 0.4719 0.4585 2 3 4 5 1A A A A A     

10γ =  0.4232 0.4858 0.4838 0.4719 0.4590 2 3 4 5 1A A A A A     

Based on the calculated results listed in Tables 3 and 4, the rank of all alternatives is slightly 
different with different parameters γ  in DHq-ROFHWA and DHq-ROFHWG operators. 
According to the comparative analysis, when the parameter γ  becomes larger, the fused results by 
DHq-ROFHWA and DHq-ROFHWG operators become smaller, at the same time, the fused results 
become more and more steady. 

In order to depict the effects on the ordering results by altering parameters of q in the 
DHq-ROFHWA (DHq-ROFHWG) operators, all the results are list in Tables 5 and 6. 

Table 5. Ordering results by altering q  in the DHq-ROFHWA operator. 

Alternatives s(A1) s(A2) s(A3) s(A4) s(A5) Ordering 
1q =  0.6104 0.6145 0.7666 0.6187 0.6374 3 5 4 2 1A A A A A     

2q =  0.5702 0.5705 0.7123 0.5680 0.5898 3 5 2 1 4A A A A A     

3q =  0.5378 0.5451 0.6499 0.5322 0.5497 3 5 2 1 4A A A A A     

4q =  0.5194 0.5317 0.6063 0.5145 0.5267 3 2 5 1 4A A A A A     

6q =  0.5050 0.5182 0.5588 0.5029 0.5079 3 2 5 1 4A A A A A     

10q =  0.5004 0.5073 0.5259 0.5001 0.5008 3 2 5 1 4A A A A A     

Table 6. Ordering results by altering q  in the DHq-ROFHWG operator. 

Alternatives s(A1) s(A2) s(A3) s(A4) s(A5) Ordering 
1q =  0.3438 0.4319 0.5166 0.4087 0.3982 3 2 4 5 1A A A A A     

2q =  0.3810 0.4682 0.5018 0.4472 0.4320 3 2 4 5 1A A A A A     

3q =  0.4177 0.4861 0.4971 0.4742 0.4601 3 2 4 5 1A A A A A     

4q =  0.4428 0.4938 0.4971 0.4879 0.4767 3 2 4 5 1A A A A A     
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6q =  0.4709 0.4985 0.4988 0.4973 0.4912 3 2 4 5 1A A A A A     

10q =  0.4910 0.4999 0.4999 0.4998 0.4982 3 2 4 5 1A A A A A     

Based on the calculated results listed in Tables 5 and 6, the rank of all alternatives is slightly 
different with different parameters q  in DHq-ROFHWA and DHq-ROFHWG operators. 
According to the comparative analysis for DHq-ROFHWA operator, when the parameter q  
becomes larger, the fused results by DHq-ROFHWA operator become smaller, at the same time, the 
fused results become more and more steady. For DHq-ROFHWG operator, except for s(A2), when 
the parameter q  becomes larger, the fused results by DHq-ROFHWG operator become larger, at 
the same time, the fused results become more and more steady. 

5.3. Comparative Analysis 

In this part, we shall compare our defined dual hesitant q-rung orthopair fuzzy Hamacher 
aggregation operators with other existing information fusion methods such as the q-ROFWA 
operator and the q-ROFWG operator developed by Liu and Wang [57] and the dual hesitant 
Pythagorean fuzzy Hamacher aggregation operators proposed by Xu and Wei [56]. From the below 
analysis, we can easily obtain that our proposed methods are more flexible and reasonable in the 
applications of MADM problems. 
(1) Compared our proposed methods with the information fusion operators presented by Liu and 

Wang [57], our defined operators are mainly characteristic of the advantages that can take the 
interrelationship between the being fused arguments into consideration and scientifically 
consider the human’s hesitance in practical MADM problems, whereas the q-ROFWA and 
q-ROFWG operators developed by Liu and Wang [57] have the limitation of considering the 
interrelationship between being fused arguments and cannot think about the hesitance of 
decision-maker. Thus, it is obvious that our methods are more general to express fuzzy 
information. Our method can conquer the disadvantages of two aggregation operators 
developed by Liu and Wang [57], because the DHq-ROFHWA and DHq-ROFHWG operators 
can provides more effective and flexible information fusion and make it more adequate to deal 
with MADM problems in which the attributes are dependent. Based on the above mentioned 
comparisons and analysis, the DHq-ROFHWA and DHq-ROFHWG operators we developed 
are better than the two aggregation operators developed by Liu and Wang [57] for fusing the 
dual hesitant q-rung orthopair fuzzy information. Therefore, the DHq-ROFHWA and 
DHq-ROFHWG operators are more valid to handle multiple attribute decision-making under 
dual hesitant q-rung orthopair fuzzy environment. 

(2) Compared our proposed methods with the dual hesitant Pythagorean fuzzy Hamacher 
operators presented by Xu and Wei [56], if we let the parameter 2q = , it is clear that dual 
hesitant Pythagorean fuzzy Hamacher operators presented by Xu and Wei [56] are special cases 
of our methods. Evidently, our methods can express more fuzzy information and apply broadly 
situations in real MADM problems. Furthermore, in complicated decision-making 
environment, the decision-maker’s risk attitude is an important factor to think about, our 
methods can make this come true by altering the parameter’s q , whereas dual hesitant 

Pythagorean fuzzy Hamacher operators presented by Xu and Wei [56] do not have the ability 
that dynamic adjust to the parameter based on the decision-maker’s risk attitude, thus, it is 
difficult to deal with the risk multiple attribute decision-making (MADM) in real practice. 

6. Conclusion 

Based on the Hamacher operation laws, we utilize the Hamacher weighting average (HWA) 
operator and Hamacher weighting geometric (HWG) operator to develop some DHq-ROFHWA 
and DHq-ROFHWG aggregation operators with DHq-ROFNs: the dual hesitant q-rung orthopair 
fuzzy Hamacher weighting average (DHq-ROFHWA) operator, the dual hesitant q-rung orthopair 
fuzzy Hamacher weighting geometric (DHq-ROFHWG) operator, the dual hesitant q-rung orthopair 
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fuzzy Hamacher ordered weighted average (DHq-ROFHOWA) operator, the dual hesitant q-rung 
orthopair fuzzy Hamacher ordered weighting geometric (DHq-ROFHOWG) operator, the dual 
hesitant q-rung orthopair fuzzy Hamacher hybrid average (DHq-ROFHHA) operator, and the dual 
hesitant q-rung orthopair fuzzy Hamacher hybrid geometric (DHq-ROFHHG) operator. Of course, 
the precious merits and some special cases of these defined operators are investigated. In the end, 
we take a concrete example for appraising the construction scheme selection to demonstrate our 
defined model and to testify its accuracy and scientific. It is clear that our defined operators can 
consider human’s hesitance and the interrelationship between being fused arguments, in addition, 
the newly developed methods also can dynamic adjust to the parameter based on the 
decision-maker’s risk attitude. However, the limitation of our approach is that the calculation 
formula is too complicated, thus, in future we will continue to study MADM problems and propose 
some simplified operators to other decision-making fields [6–74]. Furthermore, the application of 
the proposed methods in addressing practical MADM problems in other manufacturing 
environment, such as selection of an automated inspection system, selection of an industrial robot, 
selection of an additive manufacturing process and selection of a machine tool and will also be 
studied in our future work. 
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