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Abstract: A number of higher order iterative methods with derivative evaluations are developed
in literature for computing multiple zeros. However, higher order methods without derivative for
multiple zeros are difficult to obtain and hence such methods are rare in literature. Motivated by
this fact, we present a family of eighth order derivative-free methods for computing multiple zeros.
Per iteration the methods require only four function evaluations, therefore, these are optimal in the
sense of Kung-Traub conjecture. Stability of the proposed class is demonstrated by means of using
a graphical tool, namely, basins of attraction. Boundaries of the basins are fractal like shapes through
which basins are symmetric. Applicability of the methods is demonstrated on different nonlinear
functions which illustrates the efficient convergence behavior. Comparison of the numerical results
shows that the new derivative-free methods are good competitors to the existing optimal eighth-order
techniques which require derivative evaluations.
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1. Introduction

Approximating a root (say, α) of a function is a very challenging task. It is also very important in
many diverse areas such as Mathematical Biology, Physics, Chemistry, Economics and also Engineering
to mention a few [1–4]. This is the case since problems from these areas are reduced to finding α.
Researchers are utilizing iterative methods for approximating α since closed form solutions can not
be obtained in general. In particular, we consider derivative-free methods to compute a multiple root
(say, α) with multiplicity m, i.e., f (j)(α) = 0, j = 0, 1, 2, ..., m − 1 and f (m)(α) 6= 0, of the equation
f (x) = 0.

A number of higher order methods, either independent or based on the Newton’s method ([5])

xk+1 = xk −m
f (xk)

f ′(xk)
(1)

have been proposed and analyzed in literature, see [6–24]. Such methods require the evaluation
of derivative. However, higher order derivative-free methods to handle the case of multiple roots
are yet to be investigated. Main reason of the non-availability of such methods is due to the
difficulty in obtaining their order of convergence. The derivative-free methods are important in
the situations where derivative of the function f is complicated to evaluate or is expensive to obtain.
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One such derivative-free method is the classical Traub-Steffensen method [1] which actually replaces
the derivative f ′ in the classical Newton’s method by a suitable approximation based on finite
difference quotient,

f ′(xk) '
f (xk + β f (xk))− f (xk)

β f (xk)
= f [wk, xk]

where wk = xk + β f (xk) and β ∈ R− {0}. In this way the modified Newton’s method (1) becomes
the modified Traub-Steffensen method

xk+1 = xk −m
f (xk)

f [wk, xk]
. (2)

The modified Traub-Steffensen method (2) is a noticeable improvement of Newton’s iteration,
since it preserves the order of convergence without using any derivative.

Very recently, Sharma et al. in [25] have developed a family of three-point derivative free methods
with seventh order convergence to compute the multiple zeros. The techniques of [25] require four
function evaluations per iteration and, therefore, according to Kung-Traub hypothesis these do not
possess optimal convergence [26]. According to this hypothesis multipoint methods without memory
based on n function evaluations have optimal order 2n−1. In this work, we introduce a family of
eighth order derivative-free methods for computing multiple zeros that require the evaluations of four
functions per iteration, and hence the family has optimal convergence of eighth order in the sense of
Kung-Traub hypothesis. Such methods are usually known as optimal methods. The iterative scheme
uses the modified Traub-Steffensen iteration (2) in the first step and Traub-Steffensen-like iterations in
the second and third steps.

Rest of the paper is summarized as follows. In Section 2, optimal family of eighth order is
developed and its local convergence is studied. In Section 3, the basins of attractors are analyzed to
check the convergence region of new methods. In order to check the performance and to verify the
theoretical results some numerical tests are performed in Section 4. A comparison with the existing
methods of same order requiring derivatives is also shown in this section. Section 5 contains the
concluding remarks.

2. Development of Method

Given a known multiplicity m > 1, we consider the following three-step scheme for multiple roots:

yk = xk −m
f (xk)

f [wk, xk]

zk = yk −mh(A1 + A2h)
f (xk)

f [wk, xk]

xk+1 = zk −mutG(h, t)
f (xk)

f [wk, xk]
(3)

where h =
u

1 + u
, u = m

√
f (yk)

f (xk)
, t = m

√
f (zk)

f (yk)
and G : C2 → C is analytic in a neighborhood of (0, 0).

Note that this is a three-step scheme with first step as the Traub-Steffensen iteration (2) and next two
steps are Traub-Steffensen-like iterations. Notice also that third step is weighted by the factor G(h, t),
so this factor is called weight factor or weight function.

We shall find conditions under which the scheme (3) achieves eighth order convergence. In order
to do this, let us prove the following theorem:

Theorem 1. Let f : C → C be an analytic function in a domain enclosing a multiple zero (say, α) with
multiplicity m. Suppose that initial guess x0 is sufficiently close to α, then the local order of convergence of
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scheme (3) is at least 8, provided that A1 = 1, A2 = 3, G00 = 1, G10 = 2, G01 = 1, G20 = −4, G11 = 4,
G30 = −72, |G02| < ∞ and |G21| < ∞, where Gij =

∂i+j

∂hi∂tj G(h, t)|(0,0), i, j ∈ {0, 1, 2, 3, 4}.

Proof. Let ek = xk − α, be the error in the k-th iteration. Taking into account that
f (j)(α) = 0, j = 0, 1, 2, . . . , m− 1 and f m(α) 6= 0, the Taylor’s expansion of f (xk) about α yields

f (xk) =
f m(α)

m!
em

k
(
1 + C1ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k + C6e6

k + C7e7
k ++C8e8

k + · · ·
)
, (4)

where Cn = m!
(m+n)!

f (m+n)(α)

f (m)(α)
for n ∈ N.

Using (4) in wk = xk + β f (xk), we obtain that

wk − α = xk − α + β f (xk)

= ek +
β f (m)(α)

m! em
k
(
1 + C1ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k + C6e6

k + C7e7
k + C8e8

k + · · ·
)
.

(5)

Expanding f (wk) about α

f (wk) =
f m(α)

m!
em

wk

(
1 + C1ewk + C2e2

wk
+ C3e3

wk
+ C4e4

wk
+ · · ·

)
, (6)

where ewk = wk − α.
Then the first step of (3) yields

eyk = yk − α

= C1
m e2

k +
−(1+m)C2

1+2mC2
m2 e3

k +
(1+m)2C3

1−m(4+3m)C1C2+3m2C3
m3 e4

k

− (1+m)3C4
1−2m(3+5m+2m2)C2

1C2+2m2(2+m)C2
2+2m2(3+2m)C1C3

m4 e5
k

+ 1
m5

(
(1 + m)4C5

1 −m(1 + m)2(8 + 5m)C3
1C2 + m2(9 + 14m + 5m2)C2

1C3

+m2C1((12 + 16m + 5m2)C2
2 −m2C4)−m3((12 + 5m)C2C3 + m2C5)

)
e6

k
−P1e7

k + P2e8
k + O(e9

k),

(7)

where

P1 =
1

m6

(
(1 + m)5C6

1 − 2m(1 + m)3(5 + 3m)C4
1C2 + 6m2(1 + m)2(2 + m)C3

1C3

+ m2(1 + m)C2
1(3(8 + 10m + 3m2)C2

2 − 2m2C4)−m3C1(4(9 + 11m + 3m2)C2C3

+ m2(1 + m)C5) + m3(−2(2 + m)2C3
2 + 2m2C2C4 + m(3(3 + m)C2

3 + m2C6))
)
,

P2 =
1

m7

(
(1 + m)6C7

1 −m(1 + m)4(12 + 7m)C5
1C2 + m2(1 + m)3(15 + 7m)C4

1C3

+ m2(1 + m)2C3
1(2(20 + 24m + 7m2)C2

2 − 3m2C4)−m3(1 + m)C2
1(3(24 + 27m

+ 7m2)C2C3 + m2(1 + m)C5) + m3C1(−(2 + m)2(8 + 7m)C3
2 + 2m2(4 + 3m)C2C4

+ m((27 + 30m + 7m2)C2
3 + m2(1 + m)C6)) + m4((36 + 32m + 7m2)C2

2C3

+ m2(2 + m)C2C5 −m2(3C3C4 + mC7))
)
.

Expanding f (yk) about α, we have that

f (yk) =
f m(α)

m!
em

yk

(
1 + C1eyk + C2e2

yk
+ C3e3

yk
+ C4e4

yk
+ · · ·

)
. (8)
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Also,

u =
C1

m
ek +

(−(2 + m)C2
1 + 2mC2)

m2 e2
k +

(7 + 7m + 2m2)C3
1 − 2m(7 + 3m)C1C2 + 6m2C3

2m3 e3
k

− 1
6m4

(
(34 + 51m + 29m2 + 6m3)C4

1 − 6m(17 + 16m + 4m2)C2
1C2 + 12m2(3 + m)C2

2

+12m2(5 + 2m)C1C3
)
e4

k +
1

24m5

(
(209 + 418m + 355m2 + 146m3 + 24m4)C5

1 − 4m(209 + 306m

+163m2 + 30m3)C3
1C2 + 12m2(49 + 43m + 10m2)C2

1C3 + 12m2C1((53 + 47m + 10m2)C2
2

−2m(1 + m)C4)− 24m3((17 + 5m)C2C3 + m2C5)
)
e5

k + O(e6
k)

(9)

and

h =
C1

m
ek +

(−(3 + m)C2
1 + 2mC2)

m2 e2
k +

(17 + 11m + 2m2)C3
1 − 2m(11 + 3m)C1C2 + 6m2C3

2m3 e3
k

− 1
6m4

(
(142 + 135m + 47m2 + 6m3)C4

1 − 6m(45 + 26m + 4m2)C2
1C2 + 12m2(5 + m)C2

2

+24m2(4 + m)C1C3
)
e4

k +
1

24m5

(
(1573 + 1966m + 995m2 + 242m3 + 24m4)C5

1 − 4m(983

+864m + 271m2 + 30m3)C3
1C2 + 12m2(131 + 71m + 10m2)C2

1C3 + 12m2C1((157 + 79m
+10m2)C2

2 − 2m(1 + m)C4)− 24m3((29 + 5m)C2C3 + m2C5)
)
e5

k + O(e6
k).

(10)

By inserting (4)–(10) in the second step of (3), we have

ezk = zk − α

= − (−1+A1)C1
m e2

k −
(1+A2+m−A1(4+m))C2

1+2(−1+A1)mC2
m2 e3

k
+∑5

n=1 δnen+3
k + O(e9

k),

(11)

where δn = δn(A1, A2, m, C1, C2, C3, . . . , C8), n = 1, 2, 3, 4, 5. Here, expressions of δn are not being
produced explicitly since they are very lengthy.

In order to obtain fourth-order convergence, the coefficients of e2
k and e3

k should be equal to
zero. This is possible only for the following values of A1 and A2, which can be calculated from the
expression (11):

A1 = 1 and A2 = 3. (12)

Then, the error Equation (11) is given by

ezk =
(19 + m)C3

1 − 2mC1C2

2m3 e4
k +

4

∑
n=1

φnen+4
k + O(e9

k),

where φn = φn(m, C1, C2, C3, . . . , C8), n = 1, 2, 3, 4.
Expansion of f (zk) about α leads us to the expression

f (zk) =
f m(α)

m!
em

zk

(
1 + C1ezk + C2e2

zk
+ C3e3

zk
+ C4e4

zk
+ · · ·

)
.

and so t = m

√
f (zk)
f (yk)

yields

t =
(19 + m)C2

1 − 2mC2

2m2 e2
k −

(163 + 57m + 2m2)C3
1 − 6m(19 + m)C1C2 + 6m2C3

3m3 e3
k

+
1

24m4

(
(5279 + 3558m + 673m2 + 18m3)C4

1 − 12m(593 + 187m + 6m2)C2
1C2

+24m2(56 + 3m)C1C3 + 12m2(3(25 + m)C2
2 + 2mC4)

)
e4

k −
1

60m5

(
(47457 + 46810m

+16635m2 + 2210m3 + 48m4)C5
1 − 20m(4681 + 2898m + 497m2 + 12m3)C3

1C2 + 60m2(429
+129m + 4m2)C2

1C3 + 60m2C1((537 + 147m + 4m2)C2
2 − 2mC4)− 60m3(2(55 + 2m)C2C3

+m(1 + m)C5)
)
e5

k + O(e6
k).

(13)
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Expanding G(h, t) in neighborhood of origin (0, 0) by Taylor’s series, it follows that

G(h, t) ≈ G00 + G10h + G01t +
1
2!
(G20h2 + 2G11ht + G02t2)

+
1
3!
(
G30h3 + 3G21h2t + 3G12ht2 + G03t3)

+
1
4!
(
G40h4 + 4G31h3t + 6G22h2t2 + 4G13ht3 + G04t4),

(14)

where Gij =
∂i+j

∂hi∂tj G(h, t)|(0,0), i, j ∈ {0, 1, 2, 3, 4}.
By using (4), (6), (9), (10), (13) and (14) in third step of (3), we have

ek+1 = −
(G00 − 1)C1((19 + m)C2

1 − 2mC2)

2m4 e4
k +

4

∑
n=1

ψnen+4
k + O(e9

k), (15)

ψn = ψn(m, G00, G10, G01, G20, G11, G02, G30, G21, C1, C2, . . . , C8), n = 1, 2, 3, 4.
It is clear from the Equation (15) that we will obtain at least eighth order convergence if we choose

G00 = 1, ψ1 = 0, ψ2 = 0 and ψ3 = 0. We choose G00 = 1 in ψ1 = 0. Then, we get

G10 = 2. (16)

By using G00 and (16) in ψ2 = 0, we will obtain

G01 = 1 and G20 = −4. (17)

Using G00, (16) and (17) in ψ3 = 0, we obtain that

G11 = 4 and G30 = −72. (18)

Inserting G00 and (16)–(18) in (15), we will obtain the error equation

ek+1 = − 1
48m7

(
C1((19 + m)C2

1 − 2mC2)((3G02(19 + m)2 + 2(−1121

−156m− 7m2 + 3G21(19 + m)))C4
1 − 12m(−52 + G21 − 4m

+G02(19 + m))C2
1C2 + 12(−2 + G02)m2C2

2 − 24m2C1C3)
)

e8
k + O(e9

k).

(19)

Thus, the eighth order convergence is established.

Remark 1. It is important to note that the weight function G(h, t) plays a significant role in the attainment of
desired convergence order of the proposed family of methods. However, only G02 and G21 are involved in the error
Equation (19). On the other hand, G12, G03, G40, G31, G22, G13 and G04 do not affect the error Equation (19).
So, we can assume them as dummy parameters.

Remark 2. The error Equation (19) shows that the proposed scheme (3) reaches at eighth-order convergence by
using only four evaluations namely, f (xk), f (wk), f (yk) and f (zk) per iteration. Therefore, the scheme (3) is
optimal according to Kung-Traub hypothesis [26] provided the conditions of Theorem 1 are satisfied.

Remark 3. Notice that the parameter β, which is used in the iteration wk, does not appear in the expression (7)
of eyk and also in later expressions. We have observed that this parameter has the appearance in the terms em

k and
higher order. However, these terms are difficult to compute in general. Moreover, we do not need these in order to
show the eighth convergence.
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Some Particular Forms of Proposed Family

(1) Let us consider the following function G(h, t) which satisfies the conditions of Theorem 1

G(h, t) = 1 + 2h + t− 2h2 + 4ht− 12h3.

Then, the corresponding eighth-order iterative scheme is given by

xk+1 = zk −mut
[

1 + 2h + t− 2h2 + 4ht− 12h3
]

f (xk)

f [wk, xk]
. (20)

(2) Next, consider the rational function

G(h, t) =
1 + 2h + 2t− 2h2 + 6ht− 12h3

1 + t

Satisfying the conditions of Theorem 1. Then, corresponding eighth-order iterative scheme is
given by

xk+1 = zk −mut
[

1 + 2h + 2t− 2h2 + 6ht− 12h3

1 + t

]
f (xk)

f [wk, xk]
. (21)

(3) Consider another rational function satisfying the conditions of Theorem 1, which is given by

G(h, t) =
1 + 3h + t + 5ht− 14h3 − 12h4

1 + h
.

Then, corresponding eighth-order iterative scheme is given by

xk+1 = zk −mut
[

1 + 3h + t + 5ht− 14h3 − 12h4

1 + h

]
f (xk)

f [wk, xk]
. (22)

(4) Next, we suggest another rational function satisfying the conditions of Theorem 1, which is
given by

G(h, t) =
1 + 3h + 2t + 8ht− 14h3

(1 + h)(1 + t)
.

Then, corresponding eighth-order iterative scheme is given by

xk+1 = zk −mut
[

1 + 3h + 2t + 8ht− 14h3

(1 + h)(1 + t)

]
f (xk)

f [wk, xk]
. (23)

(5) Lastly, we consider yet another function satisfying the conditions of Theorem 1

G(h, t) =
1 + t− 2h(2 + t)− 2h2(6 + 11t) + h3(4 + 8t)

2h2 − 6h + 1
.

Then, the corresponding eighth-order method is given as

xk+1 = zk −mut
[

1 + t− 2h(2 + t)− 2h2(6 + 11t) + h3(4 + 8t)
2h2 − 6h + 1

]
f (xk)

f [wk, xk]
. (24)

In above each case yk = xk −m f (xk)
f [wk,xk]

and zk = yk −mh(1 + 3h) f (xk)
f [wk,xk]

. For future reference the
proposed methods (20), (21), (22), (23) and (24) are denoted by M-1, M-2, M-3, M-4 and M-5, respectively.
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3. Complex Dynamics of Methods

Our aim here is to analyze the complex dynamics of new methods based on graphical tool the
basins of attraction of the zeros of a polynomial P(z) in complex plane. Analysis of the basins of
attraction gives an important information about the stability and convergence of iterative methods.
This idea was floated initially by Vrscay and Gilbert [27]. In recent times, many researchers used this
concept in their work, see, for example [28–30] and references therein. To start with, let us recall some
basic dynamical concepts of rational function associated to an iterative method. Let φ : R → R be
a rational function, the orbit of a point x0 ∈ R is defined as the set

{x0, φ(x0), . . . , φm(x0), . . .},

of successive images of x0 by the rational function.
The dynamical behavior of the orbit of a point of R can be classified depending on its asymptotic

behavior. In this way, a point x0 ∈ R is a fixed point of φ(x0) if it satisfies φ(x0) = x0. Moreover, x0 is
called a periodic point of period p > 1 if it is a point such that φp(x0) = x0 but φk(x0) 6= x0, for each
k < p. Also, a point x0 is called pre-periodic if it is not periodic but there exists a k > 0 such that φk(x0)

is periodic. There exist different type of fixed points depending on the associated multiplier |φ′(x0)|.
Taking the associated multiplier into account, a fixed point x0 is called: (a) attractor if |φ′(x0)| < 1,
(b) superattractor if |φ′(x0)| = 0, (c) repulsor if |φ′(x0)| > 1 and (d) parabolic if |φ′(x0)| = 1.

If α is an attracting fixed point of the rational function φ, its basin of attraction A(α) is defined as
the set of pre-images of any order such that

A(α) = {x0 ∈ R : φm(x0)→ α, m→ ∞}.

The set of points whose orbits tend to an attracting fixed point α is defined as the Fatou set.
Its complementary set, called Julia set, is the closure of the set consisting of repelling fixed points,
and establishes the borders between the basins of attraction. That means the basin of attraction of
any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong to the
Julia set.

The initial point z0 is taken in a rectangular region R ∈ C that contains all the zeros of a polynomial
P(z). The iterative method when starts from point z0 in a rectangle either converges to the zero P(z) or
eventually diverges. The stopping criterion for convergence is considered as 10−3 up to a maximum of
25 iterations. If the required tolerance is not achieved in 25 iterations, we conclude that the method
starting at point z0 does not converge to any root. The strategy adopted is as follows: A color is
allocated to each initial point z0 in the basin of attraction of a zero. If the iteration initiating at z0

converges, then it represents the attraction basin with that particular assigned color to it, otherwise if it
fails to converge in 25 iterations, then it shows the black color.

To view complex geometry, we analyze the basins of attraction of the proposed methods M-I
(I = 1, 2, ...., 5) on following polynomials:

Test problem 1. Consider the polynomial P1(z) = (z2 − 1)2 having two zeros {−1, 1} with
multiplicities m = 2. The basin of attractors for this polynomial are shown in Figures 1–3, for different
choices of β = 0.01, 10−6, 10−10. A color is assigned to each basin of attraction of a zero. In particular,
to obtain the basin of attraction, the red and green colors have been assigned for the zeros −1 and 1,
respectively. Looking at the behavior of the methods, we see that the method M-2 and M-4 possess
less number of divergent points and therefore have better convergence than rest of the methods.
Observe that there is a small difference among the basins for the remaining methods with the same
value of β. Note also that the basins are becoming larger as the parameter β assumes smaller values.
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Figure 1. Basins of attraction for methods M-1 to M-5 (β = 0.01) in polynomial P1(z).
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Figure 2. Basins of attraction for methods M-1 to M-5 (β = 10−6) in polynomial P1(z).
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Figure 3. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P1(z).

Test problem 2. Let P2(z) = (z3 + z)2 having three zeros {−i, 0, i}with multiplicities m = 2. The basin
of attractors for this polynomial are shown in Figures 4–6, for different choices of β = 0.01, 10−6, 10−10.
A color is allocated to each basin of attraction of a zero. For example, we have assigned the colors:
green, red and blue corresponding to the basins of the zeros −i, i and 0, From graphics, we see
that the methods M-2 and M-4 have better convergence due to a lesser number of divergent points.
Also observe that in each case, the basins are getting broader with the smaller values of β. The basins
in methods M-1, M-3 are almost the same and method M-5 has more divergent points.
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Figure 6. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P2(z).

Test problem 3. Let P3(z) = (z2 − 1
4 )(z

2 + 9
4 ) having four simple zeros {− 1

2 , 1
2 ,− 3

2 i, 3
2 i, }. To see the

dynamical view, we allocate the colors green, red, blue and yellow corresponding to basins of the zeros
− 1

2 , 1
2 , − 3

2 i and 3
2 i. The basin of attractors for this polynomial are shown in Figures 7–9, for different

choices of β = 0.01, 10−6, 10−10. Looking at the graphics, we conclude that the methods M-2 and M-4
have better convergence behavior since they have lesser number of divergent points. The remaining
methods have almost similar basins with the same value of β. Notice also that the basins are becoming
larger with the smaller values of β.
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Figure 8. Basins of attraction for methods M-1 to M-5 (β = 10−6) in polynomial P3(z).
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Figure 9. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P3(z).

From these graphics one can easily evaluate the behavior and stability of any method. If we
choose an initial point z0 in a zone where distinct basins of attraction touch each other, it is impractical
to predict which root is going to be attained by the iterative method that starts in z0. Hence, the choice
of z0 in such a zone is not a good one. Both the black zones and the regions with different colors are
not suitable to take the initial guess z0 when we want to acquire a unique root. The most adorable
pictures appear when we have very tricky frontiers between basins of attraction and they correspond
to the cases where the method is more demanding with respect to the initial point and its dynamic
behavior is more unpredictable. We conclude this section with a remark that the convergence nature of
proposed methods depends upon the value of parameter β. The smaller is the value of β, the better is
the convergence of the method.
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4. Numerical Results

In this section, we apply the methods M1–M5 of family (3) to solve few nonlinear equations,
which not only depict the methods practically but also serve to verify the validity of theoretical results
that we have derived. The theoretical order of convergence is verified by calculating the computational
order of convergence (COC) using the formula (see [31])

COC =
ln |(xk+2 − α)/(xk+1 − α)|

ln |(xk+1 − α)/(xk − α)| for each k = 1, 2, . . . (25)

Performance is compared with some existing eighth-order methods requiring derivative
evaluations in their formulae. For example, we choose the methods by Zafar et al. [19] and
Behl et al. [23,24]. These methods are expressed as follows:

Zafar et al. method (ZM-1):

yk = xk −m
f (xk)

f ′(xk)

zk = yk −muk

(1− 5u2
k + 8u3

k
−2uk + 1

) f (xk)

f ′(xk)

xk+1 = zk −mukvk(1 + 2uk)(vk + 1)(2wk + 1)
f (xk)

f ′(xk)
.

Zafar et al. method (ZM-2):

yk = xk −m
f (xk)

f ′(xk)

zk = yk −muk
(
6u3

k − u2
k + 2uk + 1

) f (xk)

f ′(xk)

xk+1 = zk −mukvkevk e2wk (1 + 2uk)
f (xk)

f ′(xk)

where uk =
(

f (yk)
f (xk)

) 1
m

, vk =
(

f (zk)
f (yk)

) 1
m

and wk =
(

f (zk)
f (xk)

) 1
m

.
Behl et al. method (BM-1):

yk = xk −m
f (xk)

f ′(xk)

zk = yk −m
f (xk)

f ′(xk)
uk(1 + 2uk − u2

k)

xk+1 = zk + m
f (xk)

f ′(xk)

wkuk
1− wk

[
− 1− 2uk + 6u3

k −
1
6
(85 + 21m + 2m2)u4

k − 2vk

]
.

Behl et al. method (BM-2):

yk = xk −m
f (xk)

f ′(xk)

zk = yk −m
f (xk)

f ′(xk)
uk(1 + 2uk)

xk+1 = zk −m
f (xk)

f ′(xk)

wkuk
1− wk

[1 + 9u2
k + 2vk + uk(6 + 8vk)

1 + 4uk

]

where uk =
(

f (yk)
f (xk)

) 1
m

, vk =
(

f (zk)
f (xk)

) 1
m

, wk =
(

f (zk)
f (yk)

) 1
m

.
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Behl et al. method (BM-3):

yk = xk −m
f (xk)

f ′(xk)

zk = yk −mu
f (xk)

f ′(xk)

1 + γu
1 + (γ− 2)u

xk+1 = zk −
m
2

uv
f (xk)

f ′(xk)

[
1− (2v + 1)(2u(2γ− γ2 + 4γu + u + 4)− 2γ + 5)

2γ + 2(γ2 − 6γ + 6)u− 5

]

where u =
(

f (yk)
f (xk)

) 1
m

, v =
(

f (zk)
f (yk)

) 1
m

and γ = 1
3 .

All computations are performed in the programming package Mathematica [32] in PC with
Intel(R) Pentium(R) CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System) Microsoft Windows 7
Professional and 4 GB RAM using multiple-precision arithmetic. Performance of the new methods
is tested by choosing value of the parameter β = 0.01. Choice of the initial approximation x0 in the
examples is obtained by using the procedure proposed in [33]. For example, the procedure when
applied to the function of Example 2 in the interval [2, 3.5] using the statements

f[x_ ]=xˆ 9-29xˆ 8+349xˆ 7-2261xˆ 6+8455xˆ 5-17663xˆ 4+15927xˆ 3+6993xˆ 2-24732x+12960;
a=2; b=3.5; k=1; x0=0.5*(a+b+Sign[f[a]]*NIntegrate[Tanh[k *f[x]],{x,a,b}])

in programming package Mathematica yields a close initial approximation x0 = 3.20832 to the
root α = 3.

Numerical results displayed in Tables 1–6 contain: (i) values of first three consecutive errors
|xk+1 − xk|, (ii) number of iterations (k) needed to converge to the required solution with the stopping
criterion |xk+1 − xk|+ | f (xk)| < 10−100, (iii) computational order of convergence (COC) using (25)
and (iv) the elapsed CPU-time (CPU-time) in seconds computed by the Mathematica command
“TimeUsed[ ]”. Further, the meaning of a× e± b is a× 10±b in Tables 1–6.

The following examples are chosen for numerical tests:

Example 1. We consider the Planck’s radiation law problem [34]:

ϕ(λ) =
8πchλ−5

ech/λkT − 1
(26)

which determines the energy density with in an isothermal black body. Here, c is the speed of light, λ is the
wavelength of the radiation, k is Boltzmann’s constant, T is the absolute temperature of the black body and h is
the Planck’s constant. Suppose, we would like to calculate wavelength λ which corresponds to maximum energy
density ϕ(λ). From (26), we get

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= AB.

It can be seen that a maximum value for ϕ occurs when B = 0, that is, when

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.

Then, setting x = ch/λkT, the above equation becomes

1− x
5
= e−x. (27)
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We consider this case for four times and obtained the required nonlinear function

f1(x) =
(

e−x − 1 +
x
5

)4
. (28)

The aim is to find a multiple root of the equation f1(x) = 0. Obviously, one of the multiple root x = 0
is not taken into account. As argued in [34], the left-hand side of (27) is zero for x = 5 and right-hand side is
e−5 ≈ 6.74 × 10−3. Hence, it is expected that another multiple root of the equation f1(x) = 0 might exist near
to x = 5. The calculated value of this multiple root is given by α ≈ 4.96511423 with x0 = 3.5. As a result, the
wavelength (λ) corresponding to which the energy density is maximum is approximately given as

λ ≈ ch
(kT)4.96511423

.

Numerical results are shown in Table 1.

Example 2. Finding eigen values of a large sparse matrix is a challenging task in applied mathematics and
engineering. Calculating even the roots of a characteristic equation of square matrix greater than 4 is another big
challenge. So, we consider the following 9× 9 matrix (see [23])

M =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


.

The characteristic polynomial of the matrix (M) is given as

f2(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960.

This function has one multiple zero at α = 3 of multiplicity 4. We find this zero with initial approximation
x0 = 3.2. Numerical results are shown in Table 2.

Example 3. Consider an isentropic supersonic flow along a sharp expansion corner (see [2]). Then relationship
between the Mach number before the corner (i.e., M1) and after the corner (i.e., M2) is given by

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2
− tan−1

(M2
1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

where b = γ+1
γ−1 , γ is the specific heat ratio of the gas.

For a special case study, we solve the equation for M2 given that M1 = 1.5, γ = 1.4 and δ = 100. In this
case, we have

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)
− tan−1

(1
2

√
5
6

))
− 11

63
= 0,

where x = M2.
We consider this case for ten times and obtained the required nonlinear function

f3(x) =
[

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)
− tan−1

(1
2

√
5
6

))
− 11

63

]10
.
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The above function has zero at α = 1.8411027704926161 . . . with multiplicity 10. This zero is calculated
using initial approximation x0 = 2. Numerical results are shown in Table 3.

Example 4. The van der Waals equation-of-state

(
P +

a1n2

V2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific
for each gas. Determination of the volume V of the gas in terms of the remaining parameters requires the solution
of a nonlinear equation in V.

PV3 − (na2P + nRT)V2 + a1n2V = a1a2n3.

Given the parameters a1 and a2 of a particular gas, one can obtain values for n, P and T, such that this
equation has three real zeros. By using the particular values (see [23]), we obtain the nonlinear equation

x3 − 5.22x2 + 9.0825x− 5.2675 = 0,

where x = V. This equation has a multiple root α = 1.75 with multiplicity 2. We further increase the
multiplicity of this root to 8 by considering this case for four times and so obtain the nonlinear function

f4(x) = (x3 − 5.22x2 + 9.0825x− 5.2675)4.

The initial guess chosen to obtain the solution 1.75 is x0 = 1.5. Numerical results are shown in Table 4.

Example 5. Next, we assume a standard nonlinear test function from Behl et al. [17] which is defined by

f5(x) =
(
−
√

1− x2 + x + cos
(πx

2

)
+ 1
)6

.

The function f5 has multiple zero at α = −0.728584046 . . . of multiplicity 6. We select initial
approximation x0 = −0.76 to obtain zero of this function. Numerical results are exhibited in Table 5.

Example 6. Lastly, we consider another standard test function which is defined as

f6(x) = x(x2 + 1)(2ex2+1 + x2 − 1) cosh2
(πx

2

)
.

This function has multiple zero α = i of multiplicity 4. Let us choose the initial approximation x0 = 1.5i
to compute this zero. The computed results are displayed in Table 6.

Table 1. Performance of methods for example 1.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 2.13 4.82× 10−8 4.27× 10−67 4 8.000 0.608
ZM-2 6.43 5.30× 10−7 6.10× 10−59 4 8.000 0.671
BM-1 1.03× 10−1 3.34× 10−6 9.73× 10−20 5 3.000 0.687
BM-2 1.03× 10−1 3.35× 10−6 9.82× 10−20 5 3.000 0.702
BM-3 1.85 2.44× 10−8 1.15× 10−69 4 8.000 0.640
M-1 1.65 1.86× 10−8 3.08× 10−70 4 8.000 0.452
M-2 9.64× 10−1 1.86× 10−9 5.08× 10−78 4 8.000 0.453
M-3 1.64 1.81× 10−8 2.80× 10−70 4 8.000 0.468
M-4 9.55× 10−1 1.84× 10−9 5.09× 10−78 4 8.000 0.437
M-5 1.65 1.86× 10−8 3.29× 10−70 4 8.000 0.421
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Table 2. Performance of methods for example 2.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 2.24× 10−1 3.06× 10−8 3.36× 10−62 4 8.000 0.140
ZM-2 6.45× 10−1 1.99× 10−6 5.85× 10−48 4 8.000 0.187
BM-1 9.85× 10−3 4.51× 10−7 4.14× 10−20 5 3.000 0.140
BM-2 9.86× 10−3 4.52× 10−7 4.18× 10−20 5 3.000 0.140
BM-3 1.97× 10−1 5.21× 10−9 4.23× 10−69 4 8.000 0.125
M-1 2.07× 10−1 6.58× 10−8 5.78× 10−59 4 8.000 0.125
M-2 1.21× 10−1 2.12× 10−9 1.01× 10−70 4 8.000 0.110
M-3 2.05× 10−1 6.68× 10−8 7.64× 10−59 4 8.000 0.125
M-4 1.20× 10−1 2.24× 10−9 1.79× 10−70 4 8.000 0.109
M-5 2.07× 10−1 8.86× 10−8 7.65× 10−58 4 8.000 0.093

Table 3. Performance of methods for example 3.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 3.19× 10−2 2.77× 10−16 0 3 7.995 2.355
ZM-2 7.25× 10−2 5.76× 10−14 0 3 7.986 2.371
BM-1 5.84× 10−4 1.78× 10−11 5.08× 10−34 4 3.000 2.683
BM-2 5.84× 10−4 1.78× 10−11 5.09× 10−34 4 3.000 2.777
BM-3 3.07× 10−2 4.39× 10−17 0 3 8.002 2.324
M-1 3.05× 10−2 4.52× 10−16 0 3 7.993 1.966
M-2 1.96× 10−2 2.65× 10−17 0 3 7.996 1.982
M-3 3.04× 10−2 5.46× 10−16 0 3 7.993 1.965
M-4 1.96× 10−2 3.05× 10−17 0 3 7.996 1.981
M-5 3.05× 10−2 5.43× 10−16 0 3 7.992 1.903

Table 4. Performance of methods for example 4.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 2.21× 10−1 1.83× 10−1 7.19× 10−3 6 8.000 0.124
ZM-2 Fails – – – – –
BM-1 1.15 1.06 5.83× 10−2 7 3.000 0.109
BM-2 2.44× 10−2 4.15× 10−3 5.41× 10−4 7 3.000 0.110
BM-3 2.67× 10−2 3.06× 10−3 9.21× 10−4 5 7.988 0.109
M-1 3.55× 10−2 2.32× 10−3 1.42× 10−10 5 8.000 0.084
M-2 3.05× 10−2 7.06× 10−3 2.94× 10−3 6 8.000 0.093
M-3 3.30× 10−2 5.82× 10−4 4.26× 10−5 5 8.000 0.095
M-4 2.95× 10−2 1.22× 10−2 6.70× 10−3 6 8.000 0.094
M-5 5.01× 10−2 1.20× 10−2 5.06× 10−6 5 8.000 0.089

Table 5. Performance of methods for example 5.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 1.02× 10−2 1.56× 10−14 0 3 7.983 0.702
ZM-2 2.40× 10−2 5.32× 10−14 7.45× 10−89 4 8.000 0.873
BM-1 2.55× 10−4 7.84× 10−11 2.26× 10−30 5 3.000 0.920
BM-2 2.55× 10−4 7.84× 10−11 2.26× 10−30 5 3.000 0.795
BM-3 9.57× 10−3 2.50× 10−15 0 3 7.989 0.671
M-1 9.44× 10−3 2.07× 10−14 0 3 7.982 0.593
M-2 5.96× 10−3 1.02× 10−15 0 3 7.990 0.608
M-3 9.42× 10−3 2.48× 10−14 0 3 7.982 0.562
M-4 5.95× 10−3 1.18× 10−15 0 3 7.989 0.530
M-5 9.44× 10−3 2.62× 10−14 0 3 7.982 0.499
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Table 6. Performance of methods for example 6.

Methods |x2− x1| |x3− x2| |x4− x3| k COC CPU-Time

ZM-1 1.38× 10−2 5.09× 10−4 2.24× 10−27 4 8.000 1.217
ZM-2 3.13× 10−2 4.80× 10−3 7.00× 10−20 4 7.998 1.357
BM-1 4.76× 10−5 1.26× 10−36 0 3 8.000 0.874
BM-2 4.76× 10−5 2.57× 10−36 0 3 8.000 0.889
BM-3 1.37× 10−2 4.98× 10−4 3.38× 10−28 4 8.000 1.201
M-1 7.34× 10−6 1.14× 10−41 0 3 8.000 0.448
M-2 8.25× 10−6 4.84× 10−41 0 3 8.000 0.452
M-3 7.71× 10−6 2.09× 10−41 0 3 8.000 0.460
M-4 8.68× 10−6 8.58× 10−41 0 3 8.000 0.468
M-5 8.32× 10−6 4.03× 10−41 0 3 8.000 0.436

From the numerical values of errors we examine that the accuracy in the values of successive
approximations increases as the iteration proceed. This explains the stable nature of methods.
Also, like the existing methods the new methods show consistent convergence nature. At the stage
when stopping criterion |xk+1 − xk|+ | f (xk)| < 10−100 has been satisfied we display the value ‘ 0 ’ of
|xk+1 − xk|. From the calculation of computational order of convergence shown in the penultimate
column in each table, we verify the theoretical eighth order of convergence. However, this is not
true for the existing eighth-order methods BM-1 and BM-2, since the eighth order convergence is not
maintained. The efficient nature of proposed methods can be observed by the fact that the amount of
CPU time consumed by the methods is less than that of the time taken by existing methods. In addition,
the new methods are more accurate because error becomes much smaller with increasing n as compare
to the error of existing techniques. The main purpose of implementing the new derivative-free methods
for solving different type of nonlinear equations is purely to illustrate the exactness of the approximate
solution and the stability of the convergence to the required solution. Similar numerical experiments,
performed for many other different problems, have confirmed this conclusion to a good extent.

5. Conclusions

In the foregoing study, we have proposed the first ever, as far as we know, class of optimal
eighth order derivative-free iterative methods for solving nonlinear equations with multiple roots.
Analysis of the local convergence has been carried out, which proves the order eight under standard
assumptions of the function whose zeros we are looking for. Some special cases of the class are
presented. These are implemented to solve nonlinear equations including those arising in practical
problems. The methods are compared with existing techniques of same order. Testing of the numerical
results shows that the presented derivative-free methods are good competitors to the existing optimal
eighth-order techniques that require derivative evaluations in their algorithm. We conclude the work
with a remark that derivative-free techniques are good options to Newton-type iterations in the cases
when derivatives are expensive to compute or difficult to evaluate.
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