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Abstract: In this paper, we provide a novel reversible data hiding method using adaptive block
truncation coding based on an edge-based quantization (ABTC-EQ) approach. We exploit the
characteristic not being used in ABTC-EQ. To accomplish this, we first utilized a Canny edge detector
to obtain an edge image and classify each block in a cover image into two versions, edge-block and
non-edge-block. Subsequently, k-means clustering was used to obtain three quantization levels and
derive the corresponding bit map while the current processing block was the case of an edge-block.
Then Zero-Point Fixed Histogram Shifting (ZPF-HS) was applied to embed the secret information
into compressed code. The experimental results show that our method provides a high embedding
capacity for each test image and performance is better than other methods.

Keywords: BTC; edge-based quantization; reversible data hiding; histogram shifting technique

1. Introduction

Due to the continuing advance of networks in recent years, it has become increasingly convenient
and necessary for users to transmit messages to each other through the Internet. This, however, also
creates many security problems, including the opportunity for a malicious attacker to destroy the
transmitted information or tamper with data due to the openness of the Internet. To address these
issues, researchers have explored different approaches, such as conventional cryptographic algorithms
and information hiding methods. The former transforms the encrypted message into a meaningless
format, but may leave clues for attackers. In contrast, the latter un-perceptively embeds the protected
message into cover media. In terms of avoiding attacker attention, the information hiding approach
outperforms conventional cryptographic algorithms.

Over the past decade, a variety of information hiding schemes have been proposed [1–19]. These
information hiding schemes can be divided into two categories based on the subject that is embedded
into a cover media. One is used for secret message transmission [1–4,6,7,10–19] and the other is used
for claim of ownership [5,8,9] which is also called watermark scheme. The cover media used to carry a
secret message can be image, text, audio or video. Currently, images are the primary media used to
conceal secret messages because they can be easily found from the Internet. To embed a secret message
into a cover image, there are three alternatives, including: spatial domain [1–4], frequency domain [5–8]
and compression domain [9–20]. Spatial domain-based information hiding schemes conceal a secret
message into a cover image by simply modifying pixel values of the cover image. A representative
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example is Least Significant Bit (LSB) substitution [1]. Frequency domain-based information hiding
schemes need to transform a cover image into the frequency domain by using discrete wavelet transform
(DWT) [21], discrete cosine transform (DCT) [22], etc. The frequency coefficients are then modified
to carry a secret message. For compression domain-based information hiding, a secret message is
embedded into the compression codes of a cover image and the compression codes are generated by
any kind of compression algorithm, such as VQ [23], SMVQ [24], block truncation coding (BTC) [20] or
JPEG. Among the above three types of information hiding schemes, frequency domain methods offer
relatively higher protection compared to the others. Based on the reversibility feature of the proposed
information hiding schemes, information hiding schemes can be further classified into those that are
irreversible [1,2,5,6] and reversible [3,4,7–12,14–20,25–33]. The former can only extract information
that is embedded in the media. Decoders still cannot completely restore the original cover image even
after the hidden message has been extracted.

For example, in 2004, Chen et al. provided an irreversible scheme that embeds the secret data
into a cover image by exploiting the Least Significant Bit (LSB) [1]. Decoders can determine the secret
bit according to the LSB value of each pixel. However, decoders cannot recover each pixel back to
the original, because this method directly changes the LSB value without recording any information
regarding the replaced bits. However, irreversible information hiding schemes are not suitable for
concealing a secret message into a cover image that requires exact restoration after data extraction,
such as in military or medical applications.

In 1997, Barton [27] first proposed a reversible data hiding method. In this approach, the bits to be
overlaid were compressed in advance and added to the bitstring. After that, the bitstring carrying
hidden compressed bits was embedded into data block in the cover image. In 2002, Celik et al. [28]
presented a method called generalized least significant bit, G-LSB for short, where they utilized a
variant of an arithmetic compression algorithm (CALIC) [29] to encode a message and hide the resulting
interval number along with extra information that was exploited to recover the cover image. In 2003,
Tian [30] proposed a novel reversible information hiding method called difference expansion (DE) by
embedding the secret message into the difference values between each pixel pair in a cover image.
In 2004, Alattat [31] improved Tian’s method by exploiting the difference in expansion of vectors
instead of two adjacent pixels to enhance embedding capacity. In 2006, Ni et al. proposed a reversible
scheme that hides secret data using histogram shifting [3]. They calculated the frequency of each pixel
in the cover image and found zero and peak points to embed the secret data based on the histogram
modification. When the receiver extracts the secret message from the cover image, the modified pixel
can be recovered back to the original pixel value according to the modified method.

In 2009, Tai et al. [4] designed an efficient extension of the histogram modification technique
by constructing a histogram of a cover image based on the differences between pixel values of each
pixel pair to enhance the hiding capacity of Ni et al.’s scheme. In 2011, Li et al. [32] proposed a novel
reversible watermarking scheme by exploiting prediction-error expansion (PEE), adaptive hiding and
pixel selection. Their scheme concentrated on highly relevant regions and pixels of the cover image,
and it obtains a high embedding capacity with less distortion. In 2012, in order to provide good
visual quality and higher embedding capacity, Chang et al. [33] proposed a reversible data hiding
scheme that determines whether a pixel is embeddable or not by calculating the absolute difference of
its neighboring pixels. In Chang et al.’s scheme, once the derived absolute difference is larger than
the predetermined threshold, the corresponding pixel remains unchanged to maintain a high image
quality. However, these methods described above are mainly designed for the spatial domain rather
than the compression domain. In general applications, images needed to be compressed before they
are transmitted over the Internet because the size of raw images can be large. Since image compression
is very popular, it is necessary to design reversible data hiding techniques for the compression domain.

Over the last few years, many hiding schemes designed for the compression domain have been
proposed to reduce the transmission size of multimedia files during transmission and to increase the
number of alternatives for cover media. Among these methods, many hiding schemes have been
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proposed based on block truncation coding (BTC) [14–19], which has been the most efficient and fastest
compression method. In 2008, Chang et al. presented an information hiding scheme based on BTC [14].
They applied a genetic algorithm to substitute the original three bitmaps by finding an approximate
optimal common bit map. Subsequently, the common bit map and block quantization levels for
each block are used to hide the secret information. Side matching and quantization level orders are
utilized to make the method reversible. In 2011, Li et al. proposed a reversible data hiding scheme
based on BTC [15]. In their scheme, they utilized two quantization levels to generate a histogram.
Histogram shifting and bitplane flipping are used to hide the secret data into a compressed code
stream to improve the hiding capacity and to retain acceptable image quality. For example, if the secret
bit is 1 then the high value and low value will be swapped with each other in the compression code,
etc. In 2013, Sun et al. presented a novel BTC-based reversible hiding scheme by adopting a joint
neighbor coding technique to embed the secret data into quantization levels [16]. In 2015, Lin et al.
also proposed a reversible information hiding method based on BTC. In their scheme, they embed
the secret information into the bit map of each image block [19]. However, their method only utilized
the concept of BTC, and they did not compress the image so that the stego-image is not the BTC
codestream. Although many BTC-based reversible data hiding schemes have been proposed, we found
that these schemes are limited by a blocking effect problem. As such, in this paper, we try to propose a
BTC-based reversible data hiding scheme without a blocking effect problem. To solve the blocking
effect problem while offering a reversibility feature, we utilized Zero-Point Fixed Histogram Shifting
(ZPF-HS) to embed the secret information and adaptive block truncation coding based on edge-based
quantization (ABTC-EQ) to improve image quality and obtain a high embedding capacity.

The reminder of this paper is divided into five sections. Section 2 introduces the ABTC-EQ method,
which forms the basis of our proposed reversible data hiding scheme. Section 3 briefly describes our
proposed reversible data hiding scheme. Section 4 presents experiments to prove the performance of
the proposed scheme. Finally, conclusions are given in Section 5.

2. Related Work

2.1. Histogram Shifting Technique (HS)

In 2006, Ni et al. presented an information hiding method based on the histogram shifting
technique (HS) [3]. HS is a simple and efficient reversible data hiding method. In their scheme, they
calculated the frequency of each pixel value in a cover image and generated an image histogram. Some
pixel values from the histogram are selected and modified to embed the secret data. The modified
pixel values can be recovered when the secret information is extracted, such that reversible data hiding
is achieved. Their scheme is described as follows:

Step 1. Input an H ×W sized cover image I.
Step 2. Compute the frequency of each pixel value and construct an image histogram. Peak and zero
are the values of peak point and zero point, respectively.
Step 3. Shift the pixel values according to a pair for peak and zero. If peak > zero, the histogram ranging
from zero + 1 to peak − 1 will be shifted to the left side by decreasing 1. Otherwise, the histogram
ranging from peak + 1 to zero− 1 will be shifted to the right side by adding 1.

I′row, col =

{
Irow, col + 1, if peak + 1 ≤ Irow, col ≤ zero− 1 and peak < zero
Irow, col − 1, if zero + 1 ≤ Irow, col ≤ peak− 1 and peak > zero

(1)

where Irow, col and I′row, col are the pixel values at the locations (row, col) of cover image I and modified
cover image I′, respectively.
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Step 4. Embed the secret information into the modified cover image I′. If the secret bit S is “1”
and the pixel value is equal to peak, it will be increased or decreased by 1. Otherwise, its value
remains unchanged.

I′′row, col =


I′row, col + 1, if I′row, col = peak and peak < zero, S = 1
I′row, col − 1, if I′row, col = peak and peak > zero, S = 1
I′row, col , if I′row, col = peak and peak < zero, S = 0
I′row, col , if I′row, col = peak and peak > zero, S = 0

(2)

Step 5. Repeat Step 4 until all I′row, col are processed.
Step 6. Output stego-cover image I′′ .

2.2. ABTC-EQ

In 2015, Mathews et al. [23] proposed a novel adaptive block truncation coding technique called
ABTC-EQ. It is introduced in detail in this section to offer a better understanding of our proposed
method. The cover image is compressed according to the result presented in the edge image that is
derived by Canny edge detection [21]. Next, a quantization approach is processed based on the edge
information of each block. If a block is determined as non-edge-block, it proceeds with bi-clustering.
In contrast, an edge-block proceeds with tri-clustering. All steps are described as follows:

Step 1. Input cover image I sized as H ×W pixels and divide it into k× k non-overlapping blocks bi’s,
where i = 0, 1, . . . , H

k ×
W
k − 1 and k = 4, 8, . . . 32.

B =


b0 · · · b H

k −1
...

. . .
...

. · · · b H
k ×

W
k −1


Step 2. Utilize Canny edge detection to obtain the edge map of the whole cover image denoted as emp.

Canny edge detection is an optimal algorithm including three steps to detect edge information
from the given cover image. The first step is to reduce the noise by using Gaussian filter. Next, find the
gray levels and apply a non-maximum suppression technique to thin the edge. Then, utilize double
thresholds and connectivity analysis to indicate the edge map emp for the given cover image I.
Step 3. Divide the emp into k× k non-overlapping edge-blocks ei’s.

emp =


e0 · · · e H

k −1
...

. . .
...

. · · · e H
k ×

W
k −1


Step 4. Perform block classification based on edge-blocks generated by Step 3.

If there is only one edge value, it is 1 in edge-block ei and the rest of the values are 0, and block bi
can be determined as an edge-block with three quantization levels and goes to Step 5. Otherwise, it
belongs to the non-edge-block with two quantization levels and goes to Step 6.
Step 5. Employ k-means clustering [22] to partition the pixels in the current block bi into three clusters,
C0, C1 and C2, respectively.

C f =


C0 =

{
x0

0, x0
1, . . . , x0

r

}
C1 =

{
x1

0, x1
1, . . . , x1

r

}
C2 =

{
x2

0, x2
1, . . . , x2

r

}
Then calculate the mean values of each cluster using Equation (3), and these three mean values

will serve as three quantization levels.
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µ f =
1

m f

∑m f−1

r=0
x f

r , (3)

where f = 0, 1 or 2, 0 ≤ r ≤ k× k− 1, m f is the member of each cluster and x f
r ’s mean the members in

each cluster.
The bpi

n in BMPi will be defined according to Equation (4).

BMPi =


bpi

0 · · · bpi
k−1

...
. . .

...
. · · · bpi

k×k−1

, where bpi
n =


00 , if x f

r ε C0

01 if x f
r ε C1

10 if x f
r ε C2

, (4)

where BMPi is the bit map of bi, bpi
n is the value in BMPi and n = 0, 1, . . . , k× k− 1.

Step 6. Find the maximum (max) and minimum (min) values of gray levels in block bi. Then, compute
the average value avg of block bi.

Calculate the value of threshold T using Equation (5).

T =
max + min + avg

3
. (5)

Construct the BMPi by using Equation (6) and calculate the two quantization levels hi and li by
using Equations (7) and (8).

BMPi =


bpi

0 · · · bpi
k−1

...
. . .

...
. · · · bpi

k×k−1

, where bpi
n =

{
1 , if pi

n > T
0 , if pi

n ≤ T
(6)

hi =
1

num0

num0−1∑
r=0

pi
n, if pi

n > T (7)

li =
1

num1

num1−1∑
r=0

pi
n, if pi

n ≤ T (8)

Here pi
n is the pixel value in block bi, num0 is the number of pixels that are greater than T, num1

means the numbers that are smaller than or equal to T, hi is the high value in bi and li is the low value.
Step 7. Repeat Step 4 to Step 6 until all block bi’s are processed and then obtain ABTC-EQ
compressed codes.

Figure 1a,b show the encoding flowcharts of BTC [13] and ABTC-EQ [23], respectively. To simplify
our example shown in Figure 1, a single block bi sized 4× 4 pixels using BTC and ABTC-EQ, respectively,
is demonstrated. We used Equation (9) to calculate the Mean Square Error (MSE) of BTC and ABTC-EQ,
whose values were 698 and 55, respectively. Obviously, ABTC-EQ has good performance when a block
is in the complexity area.

MSE =
1

H ×W

H−1∑
row=0

W−1∑
col=0

(
I′row,col − Irow,col

)2
(9)

where I′row,col and Irow,col are the values of the decompressed pixel and the original pixel values.
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Figure 1. Compression flowcharts of block truncation coding (BTC) and adaptive block
truncation coding based on edge-based quantization (ABTC-EQ algorithms): (a) BTC encoding
and (b) ABTC-EQ encoding.

3. Proposed Scheme

This section presents the proposed scheme. In our method, we utilized ABTC-EQ to compress the
cover image because its reconstructed image quality is relatively good compared to other BTC variant
techniques. Next, ZPF-HS was used to embed the secret information into an ABTC-EQ compressed
code stream. To further enlarge the hiding capacity of our proposed method, we also embed the
secret data into quantization levels. As background for our proposed scheme, Section 3.1 reviews the
zero-point fixed histogram shifting (ZPF-HS) that will be used for data embedding in our approach.
Our proposed scheme contains two phases: a data embedding phase and the data extraction and
recovery phase, which are demonstrated in Sections 3.2 and 3.3, respectively.
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3.1. Zero-Point Fixed Histogram Shifting (ZPF-HS)

The histogram shifting technique [3], called HS for short, is a simple and efficient hiding method,
and has been widely adopted in various reversible data hiding schemes. In this section, the features
of HS are explored and then expanded to support a zero-point fixed scenario as zero-point fixed
histogram shifting, called ZPF-HS for short. Finally, ZPF-HS is adopted in our proposed scheme.

In our proposed method, there are only three histogram bins that need to addressed if the
compressed blocks are determined as edge-blocks and the corresponding bit map is the source for our
ZPF-HS. Figure 2 shows examples of three possible cases of the bit map for an edge-block. In ABTC-EQ,
bits 11 are not being used, as shown in Figure 2. In our scheme, zero point (zero) is always set as 11 and
the peak point (peak) is defined as the bit values in the bit map which has a large population.
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Figure 2. (a–c) are the bit maps and histograms of each case.

Take Figure 2a for example: there are 8 bit values “00”, 5 bit values “01” and 3 bit values “10” in
bit map-1. Therefore, peak point is defined as “00”. We exploit the first case shown in Figure 2a as an
example to explain in detail our proposed ZFP-HS in Figure 3. Figure 3a shows the original bit map
and its corresponding histogram, Figure 3b presents the secret data and Figure 3c is the result of the
modified bit map and its corresponding histogram after embedding. In this example, peak is defined as
“00” and zero is defined as “11”, then according to Equation (10) with a zig-zag scan, the secret data can
be embedded into the original bit map and the modified bit map is shown in Figure 3c.

peak =

{
peak , if secret bit is 0
11 , if secret bit is 1

(10)
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3.2. Data Embedding Phase

In our proposed data embedding phase, the embedding operations and encoding phase of
ABTC-EQ are merged seamlessly. Blocks are identified as non-edge-block and edge-block after Canny
edge detection. Therefore, two block types are identified and two cases of data hiding operations
need to be explored in our embedding phases as shown in Figure 4. For an edge-block case, both
quantization levels and a bit map are used for data hiding. By contrast, only quantization levels are
used for data embedding in a non-edge-block.
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In our data embedding phase, the input cover image is sized as H ×W pixels. Each block bi is
sized k× k pixels, where i = 0, 1, . . . , H

k ×
W
k − 1. Note that the ABTC-EQ procedure is also included

as shown in Figure 4. Secret information S is a bitstream in binary form, and sl is the value of a secret
bit in S, where sl = 0 or 1 and l = 0, 1, 2, . . . , N. N is the number of maximum capacity of cover image
I. And S is embedded into the ABTC-EQ compressed code stream of cover image I.

Input: Cover image I and secret information S.
Output: Code stream CS.
Step 1. Divide I into k× k non-overlapping blocks bi’s.
Step 2. Utilize ABTC-EQ to compress the current processing block bi.
Step 3. Determine block bi to be edge-block or non-edge-block. If block bi is an edge-block, then go to
Step 4. Otherwise, go to Step 8.
Step 4. Insert one bit to serve as the indicator and set it as 1. Then, use Equation (3) to compute the
mean values µ0, µ1 and µ2 of three clusters C0, C1 and C2, respectively. Finally, cluster Cy1w, which
has a large population will be encoded as 1‖µy1‖, where || represents the concatenation operation and
y1 = 0, 1 or 2.
Step 5. Read the next sl from S, if sl = 0, and the remaining clusters will be
encoded as 1‖µy1‖max

{
µ f−{y1}

}
‖min

{
µ f−{y1}

}
, where y2 and y3 ∈ {0, 1, 2}. Otherwise, encode by

1‖µy1‖min
{
µ f−{y1}

}
‖max

{
µ f−{y1}

}
.

Step 6. Embed the next sl from S into the BMPi and obtain a modified BMPi by using Equation (10).
Step 7. Output 1‖µy1min

{
µ f−{y1}

}
‖max

{
µ f−{y1}

}
‖modified BMPi to be part of CS.

Step 8. Insert one bit as the indicator and set it as 0. Then, use Equations (7) and (8) to compute two
quantization levels hi and li.
Step 9. Determine the next sl, if the next sl = 0, indicator, hi and li will be encoded by 0‖hi‖li. Otherwise,
it will be encoded by 0‖li‖hi.
Step 10. Output the indicator, that is the sequence according to the corresponding embedding order of
two quantization levels, and the original bit map BMPi to be part of CS.
Step 11. Repeat Step 2 to Step 10 until all blocks bi’s are processed.
Step 12. Obtain output code stream CS.

We obtain the modified code stream CS, which concealed the S after all the steps are completed.
An example of our proposed data embedding phase is shown in Figure 5 to explain each step in
detail. Figure 5a shows an example of a 4× 4 sized block bi. Figure 5b presents the histogram of three
clusters corresponding bpi

n in block bi. Figure 5c,d present the original BMPi and the modified BMPi,
respectively. Figure 5e provides the code stream of a modified BMPi. Figure 5f is the sequence of the
indicator, three quantization levels and modified BMPi. Figure 5f presents the binary form of Figure 5g.
In Figure 5, all pixels in block bi will be partitioned into three clusters exploiting k-means clustering.
Then, compute the mean values µ f of three clusters using Equation (3). Because C0 has the largest
population, the C0 corresponding to bpi

n is peak. The indicator and three quantization levels µ f ’s will
be encoded by 1‖µ0‖µ2‖µ1 while the next sl is 1. In the next step, construct BMPi, embed the next sl
into BMPi using Equation (10) and obtain the modified BMPi. Finally, we obtain the modified code
stream CS.
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3.3. Extraction and Recovery Phase

In this section, hidden secret information S is extracted from code stream CS. Because one indicator
has been added during our data embedding phase, a decoder can be guided by the indicator to
conduct the extraction operation. If the indicator is 1, block bi will be judged as an edge-block. Three
quantization levels will be extracted and among three quantization levels of bpi

n will serve as the peak.
In other words, our proposed scheme does not need extra information to record the value of peak
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to recover the BMPi, as the histogram shifting technique is adopted in our scheme. Flowchart for
extraction and recovery phase is shown in Figure 6.  Symmetry 2019, 11, x FOR PEER REVIEW 11 of 17 
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Input: Code stream CS.
Output: Cover image I and secret information S.
Step 1. Read the 1-bit indicator in the CS and determine the value of the indicator, if the indicator
value is 1, then go to Step 2. Otherwise, go to Step 8.
Step 2. Read the next 56 bits, then obtain the bit stream of three quantization levels µ′0, µ′1 and µ′2, and
the modified BMPi. Its sequence is 1‖µ′0‖µ

′

1‖µ
′

2‖modified BMPi.
Step 3. Determine the maximum of µ′1 and µ′2. If µ′1 > µ

′

2, the hidden sl = 0. Otherwise, the hidden
sl = 1.
Step 4. Construct the modified BMPi and sort µ′0, µ′1 and µ′2 in descending order. The value of peak is
µ′0’s corresponding bpi

n.
Step 5. Extract the next sl from the modified BMPi. If bpi

n = peak, the hidden sl = 0. And if bpi
n = 11,

the hidden sl = 1.
Step 6. Modify zero back to peak where zero = 11.
Step 7. Decompress block bi according to each bpi

n’s corresponding quantization level.
Step 8. Read the next 32 bits, then obtain the bit stream of two quantization levels µ′0 and µ′1, and the
original BMPi. Its sequence is 0‖µ′0‖µ

′

1‖original BMPi.
Step 9. Determine the maximum of µ′0 and µ′1. If µ′0 > µ

′

1, the hidden sl = 0. Otherwise, the hidden
sl = 1.
Step 10. Sort µ′0 and µ′1 in descending order and decompress block bi according to each bpi

n’s
corresponding quantization level.
Step 11. Repeat Steps 1 to 10 until all bits in CS are read and proceeded.
Step 12. Obtain secret information S and decompressed cover image I.

After all steps are completed, decompressed cover image I and secret information S are obtained.
We also provide an example to further clarify the extraction and recovery phases, which is shown in
Figure 7. Figure 7a shows the CS in binary form, Figure 7b presents the sequence of indicator, three
quantization levels and modified BMPi, Figure 7c shows the modified BMPi, Figure 7d presents the
original BMPi and Figure 7e provides the extracted S. In Step 1, three quantization levels µ′0, µ′1 and µ′2
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are converted into decimal values. Because µ′1 = 115 is less than µ′2 = 155, hidden s0 is judged as 1.
In Step 2, µ′0 = 190, µ′1 = 115 and µ′2 = 155 are sorted in descending order, and µ′0 corresponding to
bpi

n is peak, so the bpi
n of peak is determined as 00. As the next step, the modified BMPi is constructed

and s1, 2, ..., 7 are extracted from a modified BMPi. If bpi
n = peak, the hidden sl = 0. If bpi

n = 11, the
hidden sl = 1. After extracting all S from the modified BMPi, change all bpi

n values of 11 into peak.
Finally, we can obtain the original BMPi as shown in Figure 7d.
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4. Experimental Results

We describe some experimental results in this section to demonstrate hiding capacity, output code
stream size and the compression ratio in our proposed method. The eleven 512× 512 test grayscale
cover images as shown in Figure 8 were used for our experiments. The results of their edge images
based on Canny edge detection are shown in Figure 9.
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To illustrate the performance of our proposed method, the results of our scheme with two different
block sizes, 4× 4 pixels and 8× 8 pixels, are shown in Tables 1 and 2, respectively. In Tables 1 and 2,
we present embedding capacity (number of bits), the size of CS (number of bits), compressed ratio
(CR) (%) and peak signal-to-noise-ratio (PSNR) (dB) of ABTC-EQ and BTC in two different block sizes,
4× 4 pixels and 8× 8 pixels, respectively. Obviously, compressing the image to exploit ABTC-EQ can
obtain an overall better image quality than BTC, as seen in Tables 1 and 2 by exploiting Equation (12).
Because our scheme embeds the secret data into the compression code stream, a decompressed image
cannot be directly obtained from the CS that carries the hidden secret data. As for PSNR (db), it denotes
the decompressed image of the recovery CS. The CR of conventional BTC is 0.25 using Equation (11).
The size of output CS (number of bits) and PSNR (dB) using ABTC-EQ in the case of an 8× 8 block
size for bi is similar to the result of the BTC of the 4× 4 block size for bi. In our scheme, we utilize the
characteristic of ABTC-EQ to apply our proposed ZPF-HS to embed the secret data, and we see that
the size of CS before and after hiding are the same in our method. Despite the size, our CS (number of
bits) is very large because of the cost of bits, while bi is the edge-block. But the problem of a blocking
effect can be better solved with our method than with other compression methods. The average hiding
capacity (number of bits) and PSNR (dB) in our experiment are 74,138 (number of bits) and 36.327
(number of bits), respectively. Additionally, the PSNR (dB) means the resulting image after extracting
the secret information in Tables 1 and 2.

CR =
CS

H ×W × n
(11)

PSNR = 10× log10

(
2552

MSE

)
. (12)

Table 1. Performance of our proposed method in 4× 4 block sizes for each block bi.

Image with Block
Size 4 × 4

Capacity
(Number of Bits)

CS
(Number of Bits)

CR
(%)

ABTC-EQ
PSNR (dB)

BTC
PSNR (dB)

Lena 63,342 675,384 0.3220 37.115 33.659
Baboon 102,999 796,152 0.3796 31.255 27.752
Peppers 63,603 670,944 0.3199 37.486 34.151

F-16 66,094 675,240 0.3220 37.405 33.359
Fishing boat 70,813 695,712 0.3317 35.944 32.000

Girl 88,051 739,800 0.3528 38.157 34.706
Gold hill 89,745 751,176 0.3582 37.075 33.659
Sailboat 69,283 689,736 0.3289 34.653 31.139
Tiffany 72,395 691,536 0.3298 40.153 36.991

Toys 56,115 650,696 0.3103 37.666 33.216
Barbara 73,083 710,496 0.3388 32.688 29.868
Average 74,138 704,261 0.3358 36.327 32.773

From Table 1, we can see that the average capacity is around 74,000 bits and the CR is about
0.3358% when the block size is 4× 4 pixels.

Table 2. Performance of our proposed method in 8× 8 block sizes for each block bi.

Image with Block
Size 8 × 8

Capacity
(Number of Bits)

CS
(Number of Bits)

CR
(%)

ABTC-EQ
PSNR (dB)

BTC
PSNR (dB)

Lena 76,671 480,096 0.2289 33.892 30.273
Baboon 110,340 565,488 0.2696 29.025 25.843
Peppers 83,774 486,792 0.2321 33.995 30.273

F-16 80,009 474,264 0.2261 34.276 30.204
Fishing boat 84,791 489,960 0.2336 32.821 29.042

Girl 108,217 544,104 0.2594 34.934 31.055
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Table 2. Cont.

Image with Block
Size 8 × 8

Capacity
(Number of Bits)

CS
(Number of Bits)

CR
(%)

ABTC-EQ
PSNR (dB)

BTC
PSNR (dB)

Gold hill 114,533 559,440 0.2668 33.859 30.723
Sailboat 87,997 495,432 0.2362 31.887 28.129
Tiffany 90,900 497,088 0.2370 37.239 33.979

Toys 70,889 455,112 0.2170 34.198 30.069
Barbara 87,264 510,048 0.2432 30.917 27.832
Average 90,489 505,257 0.2409 33.368 29.766

In comparison, we can see that the average capacity is up to 90,000 bits and the CR is about
0.2409% when the block size is changed to 8 × 8 pixels as shown in Table 2. Certainly, the average
image quality will be slightly decreased to 33.368 dB, but it is significantly higher than the average
PSNR offered by conventional BTC.

To demonstrate the performance results for our proposed scheme, the proposed method in this
experiment was compared to previous schemes, i.e., Chang et al. [14], Li et al. [15], Sun et al. [16] and
Lin et al. [19] in terms of embedding capacity (number of bits) and embedding efficiency (EF) (%), the
results of which are shown in Table 3. These four existing schemes are selected and compared with
our proposed scheme because they are reversible data hiding schemes and they are either designed
for BTC or AMBTC. Moreover, their hiding strategies are embedding secrets into bitmap and two
quantization levels, which are the same as ours. Here, EF was used to evaluate embedding efficiency,
which is defined as follows:

EF =
Capacity
‖CS‖

, (13)

where ‖CS‖ is the size of the output CS and Capacity is the embedding capacity of each test image.

Table 3. Embedding capacity (number of bits) and EF (%) for the proposed scheme and four
previous schemes.

Schemes Parameters Lena F-16 Sailboat Girl Toys Barbara

Chang et al. [14]
Capacity 31,011 30,518 28,766 30,962 27,870 30,151

CS 524,288 524,288 524,288 524,288 524,288 524,288
EF 0.0591 0.0582 0.0549 0.0591 0.0532 0.0575

Li et al. [15]
Capacity 16,789 17,659 17,082 16,990 17,761 16,755

CS 524,288 524,288 524,288 524,288 524,288 524,288
EF 0.032 0.0337 0.0326 0.0324 0.0339 0.032

Sun et al. [16]
Capacity 64,008 64,008 64,008 64,008 64,008 64,008

CS 524,288 524,288 524,288 524,288 524,288 524,288
EF 0.1221 0.1221 0.1221 0.1221 0.1221 0.1221

Lin et al. [19]
Capacity 262,112 261,984 262,096 262,128 262,112 262,128

CS 2,097,152 2,097,152 2,097,152 2,097,152 2,097,152 2,097,152
EF 0.125 0.1249 0.125 0.125 0.125 0.125

Our scheme
Capacity 76,671 80,009 84,791 108,217 70,889 87,264

CS 480,096 474,264 495,432 544,104 455,112 510,048
EF 0.1597 0.1687 0.1731 0.1989 0.1558 0.1711

In this experiment, the size of all test images were 512 × 512 pixels and the block size was
set as 8 × 8 pixels. In this experiment, our embedding capacity was better than three previous
schemes [14,16,17]. While Lin et al.’s scheme provides good hiding capacity performance, their scheme
extracts the secret data from the 512× 512 resulting images instead of extracting the secret information
from the output CS (number of bits). Therefore, the size of each CS (number of bits) in Lin et al.’s
scheme is 512× 512× 8. The size of our CS (number of bits) remains unchanged even after embedding
the secret information. In our scheme, the sizes of CS’s for, “Lena,” “F-16,” “Sailboat,” “Girl,” “Toys”
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and “Barbara” are 480,096 (number of bits); 474,264 (number of bits); 495,432 (number of bits); 544,104
(number of bits); 455,112 (number of bits) and 510,048 (number of bits), respectively, and are shown in
Table 3. For the purpose of having a better comparison with the previous four methods, we utilize EF
(%) to analyze the performance of our scheme and compare to other schemes using Equation (13). Our
proposed scheme obtained a higher EF than the previous four methods. Moreover, the EF offered by
Lin et al.’s scheme is lower than ours because their results are presented as images rather than from the
code stream.

5. Conclusions

This paper presented a novel reversible data hiding method using block truncation coding based
on an edge-based quantization approach. By applying two embedding levels and our proposed
ZPF-HS to hide the secret information, it was possible to have a high capacity, high PSNR and high EF
despite the generation of a large CS size. In addition, we utilized n bits after the indicator to record the
peak while blocks are edge-block to ensure that our method exactly restores the original cover image.
The experimental results show that our proposed method is indeed suitable for hiding large volumes
of information in multimedia. However, it still remains that one value 11 of bitmap cannot be used
in the ABTC-EQ compressed method. Our future work will concentrate on how to utilize this value
that is not being used in ABTC-EQ to enhance image quality and how to exploit this feature to embed
more secret information into compressed code. Moreover, two possible approaches, i.e., CNN and
hyperchaos, will be explored and applied when we try to study the above two objectives.
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