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Abstract: In the present research paper, our aim is to introduce a new subfamily of meromorphic
p-valent (multivalent) functions. Moreover, we investigate sufficiency criterion for such
defined family.
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1. Introduction

Let the notation Ωp be the family of meromorphic p-valent functions f that are holomorphic
(analytic) in the region of punctured disk E = {z ∈ C : 0 < |z| < 1} and obeying the following
normalization

f (z) =
1
zp +

∞

∑
j=1

aj+p zj+p (z ∈ E) . (1)

In particular Ω1 = Ω, the familiar set of meromorphic functions. Further, the symbol MS∗
represents the set of meromorphic starlike functions which is a subfamily of Ω and is given by

MS∗ =
{

f : f (z) ∈ Ω and <
(

z f ′(z)
f (z)

)
< 0 (z ∈ E)

}
.

Two points p and p′ are said to be symmetrical with respect to o if o′ is the midpoint of the line
segment pp′. This idea was further nourished in [1,2] by introducing the familyMS∗s which is defined
in set builder form as;

MS∗s =

{
f : f (z) ∈ Ω and <

(
−2z f ′(z)

f (−z)− f (z)

)
< 0 (z ∈ E)

}
.
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Now, for −1 ≤ t < s ≤ 1 with s 6= 0 6= t, 0 < ξ < 1, λ is real with |λ| < π
2 and p ∈ N,

we introduce a subfamily of Ωp consisting of all meromorphic p-valent functions of reciprocal order ξ,
denoted by NSλ

p (s, t, ξ), and is defined by

NSλ
p (s, t, ξ) =

{
f : f (z) ∈ Ωp and <

(
e−iλ psptp

sp − tp
f (sz)− f (tz)

z f ′ (z)

)
> ξ cos λ (z ∈ E)

}
.

We note that for p = s = 1 and t = −1, the classNSλ
p (s, t, ξ) reduces to the classNSλ

1 (1,−1, ξ) =

NSλ
∗ (ξ) and is represented by

NSλ
∗ (ξ) =

{
f : f (z) ∈ Ω and <

(
e−iλ f (−z)− f (z)

2z f ′ (z)

)
> ξ cos λ (z ∈ E)

}
.

For detail of the related topics, see the work of Al-Amiri and Mocanu [3], Rosihan and
Ravichandran [4], Aouf and Hossen [5], Arif [6], Goyal and Prajapat [7], Joshi and Srivastava [8],
Liu and Srivastava [9], Raina and Srivastava [10], Sun et al. [11], Shi et al. [12] and Owa et al. [13],
see also [14–16].

For simplicity and ignoring the repetition, we state here the constraints on each parameter as
0 < ξ < 1, −1 ≤ t < s ≤ 1 with s 6= 0 6= t, λ is real with |λ| < π

2 and p ∈ N.

We need to mention the following lemmas which will use in the main results.

Lemma 1. “Let H ⊂ C and let Φ : C2 × E∗ → C be a mapping satisfying Φ (ia, b : z) /∈ H for a, b ∈ R
such that b ≤ −n 1+a2

2 . If p (z) = 1 + cnzn + · · · is regular in E∗ and Φ (p (z) , zp′ (z) : z) ∈ H ∀ z ∈ E∗,
then < (p (z)) > 0.”

Lemma 2. “Let p(z) = 1 + c1z + · · · be regular in E∗ and η be regular and starlike univalent in E∗ with
η(0) = 0. If zp′(z) ≺ η(z), then

p(z) ≺ 1 +
z∫

0

η(t)
t

dt.

This result is the best possible.”

2. Sufficiency Criterion for the Family NSλ
p (s, t, ξ)

In this section, we investigate the sufficiency criterion for any meromorphic p-valent functions
belonging to the introduced family NSλ

p (s, t, ξ) :

Now, we obtain the necessary and sufficient condition for the p-valent function f to be in the
family NSλ

p (s, t, ξ) as follows:

Theorem 1. Let the function f (z) be the member of the family Ωp. Then

f (z) ∈ NSλ
p (s, t, ξ)⇔

∣∣∣∣ eiλ

G (z) −
1

2ξ cos λ

∣∣∣∣ < 1
2ξ cos λ

, (2)

where

G (z) = p sptp

(sp − tp)

f (sz)− f (tz)
z f ′ (z)

. (3)
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Proof. Suppose that inequality (2) holds. Then, we have∣∣∣∣2ξ cos λ− e−iλG (z)
2ξ cos λe−iλG (z)

∣∣∣∣ <
1

2ξ cos λ

⇔
∣∣∣∣2ξ cos λ− e−iλG (z)

2ξ cos λe−iλG (z)

∣∣∣∣2 <
1

4ξ2 cos2 λ

⇔
(

2ξ cos λ− e−iλG (z)
) (

2ξ cos λ− e−iλG (z)
)
<
(

eiλG(z)
)

e−iλG(z)

⇔ 4ξ2 cos2 λ− 2ξ cos λ
(

eiλG(z) + e−iλG (z)
)
< 0

⇔ 2ξ cos λ− 2<
(

e−iλG (z)
)
< 0

⇔ <
(

e−iλG (z)
)
> ξ cos λ,

and hence the result follows.

Next, we investigate the sufficient condition for the p-valent function f to be in the family
NSλ

p (s, t, ξ) in the following theorem:

Theorem 2. If f (z) belongs to the family Ωp of meromorphic p-valent functions and obeying

∞

∑
n=p+1

∣∣∣∣( sn − tn

sp − tp sptp − nβ cos λ

p
eiλ
)∣∣∣∣ |an| <

1
2

(
1−

∣∣∣1− 2β cos λeiλ
∣∣∣) , (4)

then f (z) ∈ NSλ
p (s, t, ξ) .

Proof. To prove the required result we only need to show that∣∣∣∣∣∣
2eiλξ cos λz f ′ (z) /p− sptp

(tp−sp) ( f (tz)− f (sz))
sptp

(tp−sp) ( f (tz)− f (sz))

∣∣∣∣∣∣ < 1. (5)

Now consider the left hand side of (5), we get

LHS =

∣∣∣∣∣∣
2eiλξ cos λz f ′ (z) /p− sptp

(tp−sp) ( f (tz)− f (sz))
sptp

(tp−sp) ( f (tz)− f (sz))

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
(
2eiλξ cos λ− 1

)
+

∞
∑

n=p+1

(
sn−tn

sp−tp sptp − 2nξ cos λ
p eiλ

)
anzn+p

1 +
∞
∑

n=p+1

( sn−tn

sp−tp
)

sptpanzn+p

∣∣∣∣∣∣∣∣∣
≤

∣∣2eiλξ cos λ− 1
∣∣+ ∞

∑
n=p+1

∣∣∣( sn−tn

sp−tp sptp − 2β cos λeiλ n
p

)∣∣∣ |an| |zn+p|

1−
∞
∑

n=p+1

∣∣( sn−tn

sp−tp
)

sptp
∣∣ |an| |zn+p|

≤

∣∣2eiλξ cos λ− 1
∣∣+ ∞

∑
n=p+1

∣∣∣( sn−tn

sp−tp sptp − 2β cos λeiλ n
p

)∣∣∣ |an|

1−
∞
∑

n=p+1

∣∣( sn−tn

sp−tp
)

sptp
∣∣ |an|

.

By virtue of inequality (4), we at once get the desired result.
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Also, we obtain another sufficient condition for the p-valent function f to be in the family
NSλ

p (s, t, ξ) by using Lemma 1, in the following theorem:

Theorem 3. If f (z) ∈ Ωp satisfies

<
{

e−iλ
(

αz
G ′ (z)
G (z) + 1

)
G (z)

}
> β cos λ− n

2
((1− β) α cos λ) ,

then f (z) ∈ NSλ
p (s, t, ξ) , where G (z) is defined in Equation (3).

Proof. Let we choose the function q (z) by

q (z) =
e−iλG (z)− β cos λ + i sin λ

(1− β) cos λ
, (6)

then Equation (6) shows that q (z) is holomorphic in E and also normalized by q (0) = 1.

From Equation (6) , we can easily obtain that

e−iλG (z)
(

1 + αz
G ′ (z)
G (z)

)
= Φ

(
q (z) , zq′ (z) , z

)
,

where
Φ
(
q (z) , zq′ (z) , z

)
=
[
(1− β) αzq′ (z) + (1− β) q (z) + β

]
cos λ− i sin λ.

Now for all a, b ∈ R satisfying 2y ≤ −n
(
1 + a2) , we have

< {Φ (ia, b, z)} ≤ β cos λ− n
2

(
1 + a2

)
(1− β) α cos λ

≤ β cos λ− n
2
(1− β) α cos λ.

Now, let us define a set as

H =
{

ζ : < (ζ) > β cos λ− n
2
((1− β) α cos λ)

}
,

then, we see that Φ (ia, b, z) /∈ H and Φ (q (z) , zq′ (z) , z) ∈ H. Therefore, by using Lemma 1, we obtain
that < (q (z)) > 0.

Further, in the next theorem, we obtain the sufficient condition for the p-valent function f to be in
the family NSλ

p (s, t, ξ) by using Lemma 2.

Theorem 4. If f (z) is a member of the family Ωp of meromorphic p-valent functions and satisfies∣∣∣∣ eiλ

G (z)

(
zG ′ (z)
G (z)

)∣∣∣∣ < 1
β cos λ

− 1, (7)

then f (z) ∈ NSλ
p (s, t, ξ) , where G (z) is given by Equation (3).

Proof. In order to prove the required result, we need to define the following function

q (z) cos λ = e−iλG (z) + i sin λ,



Symmetry 2018, 11, 764 5 of 7

then, Equation (6) shows that th function q (z) is holomorphic in E and also normalized by q (0) = 1.

Now, by routine computations, we get

zq′(z)
q (z)− i tan λ

=
zG ′ (z)
G (z) .

Now, let us consider z
(

1
q(z) cos λ−i sin λ

)′
and then by using inequality (7), we have

∣∣∣∣∣z
(

1
q (z) cos λ− i sin λ

)′∣∣∣∣∣ =
∣∣∣∣ eiλ

G (z)

(
zG ′ (z)
G (z)

)∣∣∣∣ < 1
β cos λ

− 1,

therefore

z
(

1
q (z) cos λ− i sin λ

)′
≺ (1− β cos λ) z

β cos λ
.

Using Lemma 2, we have

1
(q(z)− i tan λ) cos λ

≺ 1 +
(1− β cos λ)

β cos λ
z,

equivalently

(q(z)− i tan λ) cos λ ≺ β cos λ

β cos λ + (1− β cos λ) z
= H (z) (say) . (8)

After simplifications, we get

1 +<
(

zH′′ (z)
H′ (z)

)
= 2β cos λ− 1 > 0, f or

1
2
< β < 1.

The region H (E) shows that it is symmetric about the real axis and also H (z) is convex. Hence

< (G (z)) ≥ H (1) > 0,

or
< (q (z) cos λ− i sin λ) > β cos λ,

or
<
(

e−iλG (z)
)
> β cos λ, f or

1
2
< β < 1.

Finally, we investigate the sufficient condition for the p-valent function f to be in the family
NSλ

p (s, t, ξ) in the following theorem:

Theorem 5. If f (z) ∈ Ωp satisfies∣∣∣∣∣
(

2β cos λeiλ

G (z) − 1
)′∣∣∣∣∣ ≤ η |z|γ , for 0 < η ≤ γ + 1, (9)

then f (z) ∈ NSλ
p (s, t, ξ) , where G (z) is defined in Equation (3).

Proof. Let us put

G (z) = z
(

2β cos λeiλ

G (z) − 1
)

.
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Then G (0) = 0 and G (z) is analytic in E. Using inequality (9), we can write∣∣∣∣∣
(

G (z)
z

)′∣∣∣∣∣ =
∣∣∣∣∣
(

2β cos λeiλ

G (z) − 1
)′∣∣∣∣∣ ≤ η |z|γ .

Now,

∣∣∣∣(G (z)
z

)∣∣∣∣ =
∣∣∣∣∣∣

z∫
0

(
G (t)

t

)′
dt

∣∣∣∣∣∣ ≤
|z|∫
0

∣∣∣∣∣
(

G (t)
t

)′∣∣∣∣∣ dt ≤
|z|∫
0

η |t|γ dt =
η |z|γ+1

γ + 1
< 1,

and this implies that ∣∣∣∣2β cos λeiλ

G (z) − 1
∣∣∣∣ < 1.

Now by using Theorem 1, we get the result which we needed.

3. Conclusions

In our results, a new subfamily of meromorphic p-valent (multivalent) functions were introduced.
Further, various sufficient conditions for meromorphic p-valent functions belonging to these
subfamilies were obtained and investigated.
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