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Abstract: The main purpose of this study is to apply three bivariate statistical models, namely
weight of evidence (WoE), evidence belief function (EBF) and index of entropy (IoE), and their
ensembles with logistic regression (LR) for landslide susceptibility mapping in Muchuan County,
China. First, a landslide inventory map contained 279 landslides was obtained through the field
investigation and interpretation of aerial photographs. Next, the landslides were randomly divided
into two parts for training and validation with the ratio of 70/30. In addition, according to the
regional geological environment characteristics, twelve landslide conditioning factors were selected,
including altitude, plan curvature, profile curvature, slope angle, distance to roads, distance to
rivers, topographic wetness index (TWI), normalized different vegetation index (NDVI), land use,
soil, and lithology. Subsequently, the landslide susceptibility mapping was carried out by the above
models. Eventually, the accuracy of this research was validated by the area under the receiver
operating characteristic (ROC) curve and the results indicated that the landslide susceptibility map
produced by EBF-LR model has the highest accuracy (0.826), followed by IoE-LR model (0.825),
WoE-LR model (0.792), EBF model (0.791), IoE model (0.778), and WoE model (0.753). The results of
this study can provide references of landslide prevention and land use planning for local government.

Keywords: Landslide susceptibility; weights of evidence; evidence belief function; index of entropy;
logistic regression; Geographic Information Systems (GIS)

1. Introduction

As one of the most frequently-occurring geological disasters in the world, landslides have triggered
a series of threats to human society including casualties, economic losses, infrastructure destruction,
and geological environment problems [1–3]. Therefore, to reduce the losses, it is absolutely necessary
to study the landslide susceptibility in a region [4,5]. According to the previous researches, landslide
susceptibility can be roughly defined as the landslide occurrence probability in an area under the
synergistic effect of a number of regional geological environmental factors [6,7]. Due to the large
number and variability of landslide conditioning factors involved in the process, it is difficult to
predict landslide-prone areas. What is known is that many geological and topographic conditions
can influence the occurrence of landslides, such as formation lithology, faults, hydrology, attitude,
slope angle, soil, and vegetation [8,9]. As landslide susceptibility mapping is the first and foremost
step in landslide prevention, numerous researchers have been devoted to landslide susceptibility
mapping in past years [10–14]. In general, the methods used in previous studies can be roughly
divided into two types: qualitative and quantitative, for example, analytic hierarchy process (AHP) is
the most commonly-used qualitative approach in landslide susceptibility mapping [14–16]. In recent
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years, machine learning method has been gradually applied in landslide susceptibility mapping
researches, such as artificial neural network (ANN) [17–19], support vector machine (SVM) [20–22],
logistic model tree (LMT) [23,24], rotation forest (RF) [25,26], classification and regression tree
(CART) [27,28], adaptive neuro-fuzzy inference systems (ANFIS) [29,30], and genetic algorithm
(GA) [31,32]. Furthermore, statistical approach is another widely-used model which can also be
divided into two types: bivariate and multivariate. In statistical approaches, the weight of each class
of every factor was calculated by overlying the landslide inventory map and landslide conditioning
factors map [33,34]. The frequently-used statistical approaches are frequency ratio (FR) [35–37], logistic
regression (LR), evidential belief function (EBF) [38,39], weights of evidence (WoE) [40,41], certainty
factor (CF) [42,43], and information value (IV) [44,45].

In this paper, three bivariate statistical methods, namely weight of evidence (WoE), evidence belief
function (EBF), index of entropy (IoE), coupled with logistic regression (LR) were introduced to carry
out the landslide susceptibility mapping in Muchuan County, which lies in the southeast of Sichuan
Province, China. All the approaches were first applied in Muchuan County and the main purpose of
this article is to obtain the landslide susceptibility maps through the above models. The main difference
between this study and literatures referenced above is to achieve accurate landslide susceptibility maps
for Muchuan County through the combination and comparison of those models. At last, the results
were validated by the area under the receiver operating characteristic (ROC) curve.

2. Geological and Geomorphological Setting

The study area (Muchuan County) is located in Leshan city, Sichuan Province, China. It lies
between longitudes 103◦21′ to 104◦37′E, and latitudes 28◦49′ to 29◦31′N (Figure 1). It covers an area of
1408 km2. The attitude of the study area ranges from 290 to 1866 m above the sea level. The annual
rainfall is 1332 mm and it mainly concentrate from June to September. Geologically, the study area
located in the Muchuan–Mabian arcuate fold belt of southwest of Yangtze para-platform where folds
are developed more than faults. The study area is covered by various types of lithological units such
as mudstone, sandstone, siltstone, and coal measure strata (Table 1).

Table 1. Formations.

Group Lithology Geologic Ages

A
Brick red massive allochemical rock, sandstone sandwiched mudstone and siltstone

Brick red thin-thick layer silty fine-grained arkose, mudstone
Brick red massive allochemical rock, sandstone sandwiched mudstone and siltstone

Cretaceous

B
Grayish-purple arkose, siltstone sandwiched mud shale and coquina

Bright red mudstone, sandwiched with the same color sandstone and siltstone
Grayish-purple arkose, siltstone sandwiched mud shale and coquina

Jurassic

C Yellow-gray feldspar-quartz sandstone interbedded with purple-red mudstone Jurassic

D Magenta mudstone, quartz sandstone, and siltstone sandwiched biosparite and marl Jurassic

E Gray sandstone, siltstone, and mudstone
Grayish-yellow debris-feldspar, siltstone, mudstone, and coal Triassic

F Yellow-gray medium-thick dolomite sandwiched limestone, gypsum salt, and salt-soluble breccia Triassic

G Limestone, dolomite, and shale Triassic

H Yellow-green siltstone sandwiched with mudstone and coal Permian

I The upper part is limestone and dolomite and the lower part is shale sandwiched siltstone Permian

J Grayish-green dense amygdaloidal basalt sandwiched picrite, tuff sand mudstone, shed coal and
siliceous rock Permian



Symmetry 2019, 11, 762 3 of 24
Symmetry 2019, 11, x FOR PEER REVIEW 3 of 26 

 

Figure 1. Geographical position of study area. 

3. Materials and Methods 

3.1. Landslide Conditioning Factors  

According to the regional geological environment characteristics and previous studies [46–48], 
12 landslide conditioning factors were selected, including altitude, plan curvature, profile curvature, 
slope angle, distance to roads, distance to rivers, topographic wetness index (TWI), normalized 
different vegetation index (NDVI), land use, soil, and lithology. A digital elevation model (DEM) 
with 30 × 30 m resolution provided by the Geospatial Data Cloud of Chinese Academy of Sciences 
(GSCloud) was introduced to generate a series of topographic factors, such as altitude, plan 
curvature, profile curvature, slope angle, slope aspect, and TWI [49]. The Landsite-8 image 
(LC81300402018099LGN00, April 9, 2018) with resolution of 30×30 m was obtained from the same 
place as DEM and was used to extract the NDVI map using ArcGIS software [50]. The land use map 
was extracted from the regional land use map at a scale of 1:100,000 provided by local Land and 
Resources Bureau. The distance to rivers and distance to roads were obtained from the topographic 
map with the scale of 1:50,000 that provided by the same place as land use map. The soil map was 
extracted from the regional soil map at a scale of 1:1,000,000 that provided by Institute of Soil Science, 
Chinese Academy of Sciences (ISSCAS)[51]. The lithology map was extracted from the regional 
lithology map with the scale of 1:200,000 that provided by National Geological Archives of China 
(NGAC)[52].. Moreover, satellite images from the Google Earth pro 7.1 were also applied to assist the 
research. All the data mentioned above were processed and used to generate the landslide 
conditioning factors in ArcGIS software.  

Figure 1. Geographical position of study area.

3. Materials and Methods

3.1. Landslide Conditioning Factors

According to the regional geological environment characteristics and previous studies [46–48],
12 landslide conditioning factors were selected, including altitude, plan curvature, profile curvature,
slope angle, distance to roads, distance to rivers, topographic wetness index (TWI), normalized different
vegetation index (NDVI), land use, soil, and lithology. A digital elevation model (DEM) with 30 × 30 m
resolution provided by the Geospatial Data Cloud of Chinese Academy of Sciences (GSCloud) was
introduced to generate a series of topographic factors, such as altitude, plan curvature, profile curvature,
slope angle, slope aspect, and TWI [49]. The Landsite-8 image (LC81300402018099LGN00, 9 April
2018) with resolution of 30 × 30 m was obtained from the same place as DEM and was used to extract
the NDVI map using ArcGIS software [50]. The land use map was extracted from the regional land use
map at a scale of 1:100,000 provided by local Land and Resources Bureau. The distance to rivers and
distance to roads were obtained from the topographic map with the scale of 1:50,000 that provided
by the same place as land use map. The soil map was extracted from the regional soil map at a scale
of 1:1,000,000 that provided by Institute of Soil Science, Chinese Academy of Sciences (ISSCAS) [51].
The lithology map was extracted from the regional lithology map with the scale of 1:200,000 that
provided by National Geological Archives of China (NGAC) [52]. Moreover, satellite images from
the Google Earth pro 7.1 were also applied to assist the research. All the data mentioned above were
processed and used to generate the landslide conditioning factors in ArcGIS software.
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As mentioned above, DEM was used to extract topographic related landslide conditioning factors,
such as altitude, plan curvature, profile curvature, slope angle, slope aspect, and TWI. Altitude is one
of the most frequently used factors in landslide susceptibility mapping [53–55]. The main reason is
that the altitude can influence the topographic attributes which lead to spatial variability of different
landscape processes. In addition, the altitude can also influence the vegetation distribution which has
a close relationship with landslide. In this paper, the altitude was divided into eight categories, i.e.
290–500, 500–700, 700–900, 900–1100, 1100–1300, 1300–1500, 1500–1700, and 1700–1866 m (Figure 2a).

Plan curvature is considered as an important factor which controls the aggregation and separation
of topography and has a direct influence on the velocity of water flow and thus erosion [41,56,57].
In this paper, plan curvature ranged from –26.54 to 26.21 and was reclassified into five categories, i.e.
–26.54 to –3.17, –3.17 to –1.10, –1.10 to 0.56, 0.56 to 2.62, and 2.62 to 26.21 (Figure 2b).

Profile curvature is the curvature in vertical plane parallel of the slope section which also has an
influence on the velocity of water flow and thus erosion [58–60]. In this study, the profile curvature
ranged from –34.72 to 29.66 and was reclassified into five categories, i.e. –34.72 to –4.17, –4.17 to –1.39,
–1.39 to 0.88, 0.88 to 3.66, and 3.66 to 29.66 (Figure 2c).

Slope angle directly affects the stability of slope and it is considered as one of the most important
factors in landslide susceptibility mapping [61–63]. In this study, the slope angle ranged from 0 to
77.14◦ and was reclassified into eight categories, i.e. 0◦–10◦, 10◦–20◦, 20◦–30◦, 30◦–40◦, 40◦–50◦, 50◦–60◦,
60◦–70◦, and 70◦–77.14◦ (Figure 2d).

Slope aspect affects the slope stability indirectly via hydrologic processes, such as the direction of
rainfall and sunshine [64–66]. In addition, the slope aspect can also influence the weathering process
and vegetation distribution [67,68]. In this study, the slope was classified into nine categories, i.e.
flat(–1), north(337.5◦–360◦, 0–22.5◦), northeast(22.5◦–67.5◦), east(67.4◦–112.5◦), southeast(112.5◦–157.5◦),
south(157.5◦–202.5◦), southwest(202.5◦–247.5◦), west(247.5◦–292.5◦), and northwest(292.5◦–337.5◦)
(Figure 2e).

Distance to roads is considered as an important factor in landslide susceptibility mapping as it
is an anthropogenic factor which can change surface configuration, cause the slope to lose support
and then induced the occurrence of landslide [69–72]. In this study, five different buffer zones were
generated by the interval of 500 m in ArcGIS software, i.e. 0–500, 500–1000, 1000–1500, 1500–2000 and
>2000 m (Figure 2f).

Distance to rivers affect the hydrologic processes of the slope. The closer to the river, the more
the slope is eroded by the river. It can negatively affect the stability of slope via eroding the toe of
slope [73–76]. In this study, five different buffer zones were classified by the interval of 200 m in ArcGIS
software, i.e. 0–200, 200–400, 400–600, 600–800, and >800 m (Figure 2g).

TWI is an important conditioning factor in landslide occurrence. It is a factor of soil moisture that
has a profound influence on the most of landslides [77–79]. In this study, the TWI ranged from 0.35 to
14.58 and was reclassified into five categories, i.e. 0.35 to 1.63, 1.63 to 2.41, 2.41 to 3.36, 3.36 to 4.81,
and 4.81 to 14.58 (Figure 2h).

NDVI is a factor that indicates the vegetation growth status and vegetation coverage. The negative
value shows the ground is cover by water, snow and so on. 0 means the ground is cover by rock or bare
soil. A positive value indicates the ground is cover by vegetation, which increases with the increase of
coverage. The higher the NDVI value, the lower the possibility of landslide occurrence [80–82]. In this
study, the NDVI ranged from –0.13 to 0.58 and was reclassified into five categories, i.e. –0.13 to 0.13,
0.13 to 0.24, 0.24 to 0.30, 0.30 to 0.37, and 0.37 to 0.58 (Figure 2i).

The other important landslide-related factor in landslide susceptibility mapping is land use and it
has been widely applied in previous researches [83–85]. In this study, the land use map was obtained
through the interpretation of Landsat 8 image. Finally, the land use was reclassified into six categories,
i.e. farm land, forest land, grass land, water, residential areas, and bare land (Figure 2j).
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Soil is the common component that constitutes of slope. Different soil has different physical and
mechanical properties and it can affect the surface water infiltration and groundwater flow [86–89].
The study area has ten soil types (Figure 2k).

Lithology is also considered as an important landslide-related factor in landslide susceptibility
mapping [90]. The variation of lithology may lead to the variation of strength and permeability
of rock stratum. Usually, the landslide slides along a rock stratum with low strength and poor
permeability [91–94]. The study area has ten lithology types (Figure 2l).
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Figure 2. Landslide conditioning factors: (a) Altitude; (b) plan curvature; (c) profile curvature; (d) slope
angle; (e) slope aspect; (f) distance to roads; (g) distance to rivers; (h) topographic wetness index (TWI);
(i) normalized different vegetation index (NDVI); (j) land use; (k) soil; (l) lithology.

3.2. Preparation of Training and Validation Datasets

Chung and Pham indicated that model validation process must be established on the basis of
dividing the dataset [95,96]. Therefore, it was necessary to split the dataset into two parts in landslide
susceptibility mapping. The first part was applied to build the models called training dataset and the
rest was used to verify the model performances named validation dataset. However, there are no
general rules for splitting the proportion of training and validation datasets [97]. According to the
previous studies [98–100], the most commonly-used ratio (70/30) was introduced to select training and
validation datasets, respectively. Finally, the training dataset was built by overlaying the 70% (195)
of landslides onto 12 landslide conditioning factor layers. Oppositely, the rest of the landslides were
used to construct the validation dataset. After the preparation of training and validation datasets,
all the data analysis processes were carried out in ArcGIS software and the results were validated by
Wilcoxon signed-rank test and ROC curve.

3.3. Weight of Evidence

Weight of evidence (WoE) is a spatial information integration model based on the Bayesian
probability model, which can evaluate and predict objects with spatial significance and is one of the
most important techniques in mineral potential assessment [39,101]. During the past years, the WoE
model has been gradually applied in environmental evaluation, geological hazard and the survey of
forest pest [102–104]. In this paper, the WoE model was introduced to landslide susceptibility research
for its great suitability in analyzing the relationships between spatial distribution of landslides and
conditioning factors.

The original description of mathematical formulation of WoE model was introduced by
Bonham-Carter [105,106]. In WoE modeling, the weight of each conditioning factor class was
calculated based on the occurrence of landslides within the area [107]. The weight in this paper can be
separated into positive weight and negative weight and their calculation formulas are presented in
Equation (1) and Equation (2), respectively.

W+
i = In

p{B|L}

P
{
B
∣∣∣L} (1)
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W−i = In
p
{
B
∣∣∣L}

P
{
B
∣∣∣L} (2)

where P is the probability. In represents the natural logarithm. B is the presence of potential landslide
predictive factor, while B is the absence of potential landslide predictive factor. L is the presence of
landslide. L is the absence of landslide. W+

i means positive weight that shows a positive relationship
between predictable variable and landslide and W−i indicates the correlation of them is negative.

The difference between W+
i and W−i is the weight contrast, which magnitude indicates all

the spatial association between predictable variable and landslides. It’s computational equation is
presented in Equation (3).

Ci = W+
i −W−i (3)

where Ci is the weight contrast of W+
i and W−i .

3.4. Evidential Belief Function

The Dempster–Shafer theory (DST) of evidence proposed by Shafer in 1976 is regarded as a spatial
integration model with mathematical representation. The framework of evidence belief function (EBF)
model is developed from DST of evidence [108,109]. The EBF model usually applied as an effective
approach to mineral potential mapping for its powerful ability of analyzing the incomplete data [110].
In addition, it also has the power to combine multiple sources of evidence. The model can evaluate
how close the evidence proves rather than give the probabilities that the assumption is true [111].
EBF model is consisted of four basic functions, namely the degree of belief (Bel), the degree of disbelief
(Dis), the degree of uncertainly (Unc) and the degree of plausibility (Pls). In recent years, EBF model
has been widely and successfully applied in landslide susceptibility mapping [112–114]. In this paper,
the basic functions of EBF model were determined by overlying the landslide inventory map on each
landslide conditioning factor layer and the Bel was regard as the symbol of relationship between
landslide and landslide conditioning factor. The equations of the above four functions can be expressed
in Equations (4)–(8).

Bel =
Bel1 + Bel2 + . . .+ Beln

1−
n∑

i=2
Beli−1Disi −Disi−1Beli

(4)

Dis =
Dis1 + Dis2 + . . .+ Disn

1−
n∑

i=2
Beli−1Disi −Disi−1Beli

(5)

Unc =

n∑
i=2

(Unci−1Unci + Beli−1Unci + BeliUnci−1 + Disi−1Unci + DisiUnci−1)

1−
n∑

i=2
Beli−1Disi −Disi−1Beli

(6)

Pls = Bel + Unc (7)

Bel + Unc + Dis = 1 (8)

where Beli is the degree of belief of ith conditioning factor. Disi is the degree of disbelief of ith factor.
Similarly, Unci means the degree of uncertainty of ith factor. Pls shows the upper limits of probability.
Oppositely, Dis shows the lower limits of probability.

3.5. Index of Entropy

The third model used in this paper is the index of entropy (IoE) model that is based on the
principle of bivariate analysis [115,116]. It can calculate the weight of each input variable and the
weight indicates the disorder of which parameter is the most relevant for the occurrence of landslide
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in a natural environment. The equations applied to calculate the weight of conditioning factors are
expressed in Equations (9)–(14).

Pi j =
b
a

(9)

(Pi j) =
Pi j

S j∑
j=1

Pi j

(10)

H j = −

S j∑
i=1

(Pi j) log2(Pi j) j = 1, 2, 3, . . . , n (11)

H jmax = log2 S j (12)

I j =
H jmax −H j

H jmax
, I = (0, 1) j = 1, 2, 3, . . . , n (13)

W j = I j × Pi j (14)

where a is the domain percentage. b is the landslide percentage. Pij is the probability density of class i
of factor j. Hjmax and Hj are the entropy values of factor j. Sj is the amount of classes factor j. Ij is the
information coefficient factor j. Wj is the weight for the parameter as a whole.

3.6. Logistic Regression

Logistic regression (LR) model believes several physical parameters may affect the probability of
landslide occurrence [117–119]. The LR model allows developing a multivariate regression correlation
between a dependent variable and several independent variables [120,121]. The advantage of LR model
is that through the addition of suitable link function to the usual linear regression model, the variables
can be continuous, discontinuous, or both, and they do not to obey normal distribution [122,123].
In the present study, the main purpose of the LR model is to find the most suitable approach to
obtain the relationship of the presence or absence of landslides with a series of independent variables.
The relationship between the landslide occurrence and independent variables (landslide conditioning
factors) can be described in Equation (15).

P =
1

1 + exp(−Z)
(15)

where P is the probability of landslide occurrence and its range is 0 to 1. Z is a linear sum of constants
that obtained through the product of the independent variables and their respective coefficients.
The interval of Z is -∞ to +∞ and the computational equation is shown in Equation (16).

Z = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn (16)

where α is a constant, βi(i = 1,2,3, . . . ,n) is the coefficient, and xi(i = 1,2,3, . . . ,n) is the
independent variable.

4. Results and Analysis

4.1. Multicollinearity Analysis

Before the data analysis, the most important step is to verify whether the landslide conditioning
factors are correlated with each other and the size of the correlation between them. If there exists a strong
correlation between two or more factors, it will make it difficult to predict landslide occurrence [124].
Therefore, the multicollinearity analysis was introduced to illustrate the connections between the
factors [125]. There are two commonly used statistical parameters in multicollinearity analysis, namely
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tolerance (TOL) and variance inflation factor (VIF), and they are a pair of reciprocals. According to
previous studies [6,126], it can be considered that variables are mutually independent when the range
of TOL value is 0.1 to 1. The multicollinearity analysis results of landslide conditioning factors under
different models are calculated by SPSS software (Table 2) [127]. The results indicate all the factors are
independent from each other. The calculation formulas of TOL and VIF are shown in Equation (16) and
Equation (17), respectively. In addition, the results of correlation between landslides and conditioning
factors calculated by WoE, EBF and IoE models are shown in Table 3.

TOL =
1

VIF
(17)

VIF =
1

1−R2
i

(18)

where Ri is the negative correlation coefficient of the ith independent variable that makes regression
analysis on other independent variables.

Table 2. Analysis. WOE: weight of evidence; EBF: evidence belief function; IoE: index of entropy; TOL:
tolerance; VIF: variance inflation factor.

Number Factors
WOE EBF IoE

TOL VIF TOL VIF TOL VIF

1 Slope aspect 0.921 1.086 0.922 1.085 0.924 1.083
2 Altitude 0.835 1.197 0.659 1.517 0.659 1.517
3 Land use 0.861 1.162 0.830 1.206 0.828 1.208
4 Lithology 0.691 1.447 0.577 1.733 0.577 1.732
5 NDVI 0.980 1.020 0.953 1.050 0.954 1.048
6 Plan curvature 0.898 1.114 0.894 1.118 0.905 1.105
7 Profile curvature 0.912 1.097 0.896 1.116 0.929 1.076
8 Distance to rivers 0.981 1.020 0.969 1.032 0.973 1.028
9 Distance to roads 0.764 1.309 0.706 1.416 0.707 1.414

10 Slope angle 0.869 1.151 0.802 1.247 0.818 1.222
11 Soil 0.798 1.253 0.717 1.394 0.723 1.384
12 TWI 0.916 1.091 0.860 1.163 0.863 1.158

Table 3. Between landslides and conditioning factors using WoE, EBF, and IoE models. Bel: belief; Dis:
the degree of disbelief: Unc: the degree of uncertainly; Pls: the degree of plausibility.

Factors Class No. of
Landslide

No. of Pixels
in Domain W+ W- C Bel Dis Unc Pls Wj

Altitude (m) 290–500 42 727325 0.035 −0.009 0.044 0.270 0.125 0.605 0.875 0.190
500–700 110 1330115 0.394 −0.352 0.746 0.387 0.089 0.524 0.911
700–900 38 640772 0.061 −0.014 0.076 0.277 0.125 0.598 0.875

900–1,100 5 354758 −1.375 0.081 −1.456 0.066 0.137 0.797 0.863
1,100–1,300 0 246634 0.000 0.073 0.000 0.000 0.000 1.000 1.000
1,300–1,500 0 144601 0.000 0.042 0.000 0.000 0.000 1.000 1.000
1,500–1,700 0 50150 0.000 0.014 0.000 0.000 0.000 1.000 1.000
1,700–1,866 0 2344 0.000 0.001 0.000 0.000 0.000 1.000 1.000

Plan curvature −26.54–−3.17 6 125417 −0.153 0.005 −0.159 0.165 0.199 0.636 0.801 0.009
−3.17–−1.10 39 592578 0.166 −0.037 0.203 0.228 0.191 0.582 0.809
−1.10–0.56 75 1660025 −0.211 0.158 −0.369 0.156 0.232 0.612 0.768
0.56–2.62 62 909888 0.200 −0.081 0.282 0.236 0.182 0.582 0.818
2.62–26.21 13 208791 0.110 −0.007 0.118 0.215 0.196 0.588 0.804

Profile curvature −34.72–−4.17 9 170680 −0.056 0.003 −0.059 0.199 0.201 0.600 0.799 0.004
−4.17–−1.39 43 777064 −0.008 0.002 −0.010 0.209 0.201 0.590 0.799
−1.39–0.88 76 1299477 0.048 −0.029 0.077 0.221 0.195 0.585 0.805
0.88–3.66 57 1012294 0.010 −0.004 0.014 0.212 0.200 0.588 0.800
3.66–29.66 10 237184 −0.280 0.018 −0.297 0.159 0.204 0.637 0.796
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Table 3. Cont.

Factors Class No. of
Landslide

No. of Pixels
in Domain W+ W- C Bel Dis Unc Pls Wj

Slope angle (◦) 0–10 0 738575 0.000 0.237 0.000 0.000 0.000 1.000 1.000 0.229
10-20 84 1233686 0.200 −0.128 0.328 0.168 0.110 0.722 0.890
20-30 63 836797 0.300 −0.117 0.417 0.185 0.111 0.703 0.889
30-40 29 433617 0.182 −0.029 0.210 0.165 0.122 0.714 0.878
40-50 11 186715 0.055 −0.003 0.058 0.145 0.125 0.730 0.875
50-60 8 58411 0.899 −0.025 0.924 0.337 0.122 0.541 0.878
60-70 0 8690 0.000 0.002 0.000 0.000 0.000 1.000 1.000

70–77.14 0 208 0.000 0.000 0.000 0.000 0.000 1.000 1.000
Slope aspect Flat 0 1192 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.051

North 28 508458 −0.013 0.002 −0.015 0.124 0.111 0.764 0.889
Northeast 33 489376 0.190 −0.035 0.225 0.152 0.107 0.741 0.893

East 26 507513 −0.085 0.014 −0.099 0.115 0.113 0.772 0.887
Southeast 20 402282 −0.115 0.014 −0.129 0.112 0.113 0.775 0.887

South 24 393289 0.090 −0.012 0.102 0.138 0.110 0.753 0.890
Southwest 16 351360 −0.203 0.020 −0.223 0.103 0.113 0.784 0.887

West 20 414052 −0.144 0.018 −0.162 0.109 0.113 0.778 0.887
Northwest 28 429177 0.157 −0.024 0.181 0.147 0.108 0.744 0.892

Distance to roads (m) 0–500 69 827671 0.402 −0.167 0.569 0.271 0.167 0.562 0.833 0.062
500–1,000 48 611007 0.343 −0.091 0.433 0.255 0.180 0.564 0.820

1,000–1,500 36 493759 0.268 −0.052 0.320 0.237 0.188 0.575 0.812
1,500–2,000 20 366762 −0.022 0.003 −0.025 0.177 0.198 0.625 0.802

> 2,000 22 1197500 −1.110 0.300 −1.410 0.060 0.267 0.674 0.733
Distance to rivers (m) 0–200 57 1032619 −0.010 0.004 −0.014 0.208 0.201 0.591 0.799 0.022

200–400 69 844083 0.382 −0.160 0.543 0.308 0.171 0.521 0.829
400–600 29 700716 −0.298 0.063 −0.361 0.156 0.213 0.630 0.787
600–800 22 496233 −0.229 0.033 −0.263 0.167 0.207 0.626 0.793
> 800 18 423048 −0.271 0.032 −0.303 0.160 0.207 0.633 0.793

TWI 0.35–1.63 104 1318729 0.347 −0.289 0.635 0.401 0.152 0.447 0.848 0.080
1.63–2.41 66 1221212 −0.031 0.016 −0.048 0.275 0.206 0.519 0.794
2.41–3.36 20 653109 −0.599 0.099 −0.698 0.156 0.224 0.621 0.776
3.36–4.81 4 243618 −1.223 0.051 −1.274 0.083 0.213 0.703 0.787
4.81–14.58 1 60031 −1.208 0.012 −1.221 0.085 0.205 0.710 0.795

NDVI -0.13–0.13 2 110968 −1.130 0.022 −1.151 0.077 0.206 0.717 0.794 0.037
0.13–0.24 15 350282 −0.264 0.026 −0.290 0.184 0.206 0.610 0.794
0.24–0.30 41 864378 −0.162 0.048 −0.210 0.204 0.211 0.585 0.789
0.30–0.37 87 1306577 0.177 −0.123 0.300 0.286 0.178 0.536 0.822
0.37–0.58 50 864494 0.036 −0.012 0.049 0.249 0.199 0.553 0.801

Land use Farm land 140 1951094 0.252 −0.449 0.701 0.421 0.108 0.471 0.892 0.207
Forest land 54 1459960 −0.411 0.216 −0.627 0.217 0.210 0.572 0.790
Grass land 0 42187 0.000 0.012 0.000 0.000 0.000 1.000 1.000

Water 0 25016 0.000 0.007 0.000 0.000 0.000 1.000 1.000
Residential areas 1 16239 0.099 0.000 0.100 0.362 0.169 0.469 0.831

Bare land 0 2203 0.000 0.001 0.000 0.000 0.170 0.830 0.830
Soil Type 1 31 440582 0.232 −0.038 0.271 0.188 0.096 0.716 0.904 0.194

Type 2 12 208103 0.033 −0.002 0.036 0.154 0.099 0.747 0.901
Type 3 4 96481 −0.296 0.007 −0.304 0.111 0.100 0.789 0.900
Type 4 9 147720 0.088 −0.004 0.093 0.163 0.099 0.738 0.901
Type 5 1 41304 −0.834 0.007 −0.841 0.065 0.100 0.835 0.900
Type 6 0 3783 0.000 0.001 0.000 0.000 0.000 1.000 1.000
Type 7 0 27855 0.000 0.008 0.000 0.000 0.000 1.000 1.000
Type 8 54 1441599 −0.398 0.207 −0.605 0.100 0.123 0.777 0.877
Type 9 0 68835 0.000 0.020 0.000 0.000 0.000 1.000 1.000

Type 10 84 1020437 0.389 −0.218 0.608 0.220 0.080 0.700 0.920
Lithology A 26 396261 0.163 −0.023 0.185 0.159 0.098 0.743 0.902 0.141

B 43 424981 0.596 −0.120 0.715 0.245 0.089 0.666 0.911
C 59 765703 0.323 −0.113 0.437 0.186 0.089 0.724 0.911
D 17 252004 0.190 −0.016 0.207 0.163 0.099 0.738 0.901
E 38 686719 −0.008 0.002 −0.010 0.134 0.100 0.766 0.900
F 1 267436 −2.702 0.074 −2.777 0.009 0.108 0.883 0.892
G 10 467170 −0.958 0.091 −1.048 0.052 0.110 0.839 0.890
H 0 97599 0.000 0.028 0.000 0.000 0.000 1.000 1.000
I 1 46018 −0.942 0.008 −0.951 0.053 0.101 0.846 0.899
J 0 92808 0.000 0.027 0.000 0.000 0.000 1.000 1.000

4.2. Generating Landslide Susceptibility Maps

Generating landslide susceptibility maps is the final output step after the processes of independence
test of conditioning factors, establishing, training, and validation models, and it can be roughly divided
into two steps [128]. The first step is acquiring the landslide susceptibility indexes (LSIs) of all
evaluation units. The second is regrouping the LSIs. For the first step, the LSI of each evaluation unit
was calculated by probability distribution functions of evaluation models. For the second step, the LSIs
were reclassified into several intervals by standard classification methods in ArcGIS software. Table 4
shows the coefficient of landslide conditioning factor in each ensemble model. When the coefficient is
greater than 0, it indicates that the factor will promote the occurrence of landslide. On the contrary,
a coefficient less than 0 means the factor will impede the occurrence of landslide. While 0 indicates the
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factor has no effect on the occurrence of landslide. It can be seen that only slope aspect impeded the
occurrence of landslide and profile curvature performed best in the promotion factors, especially in
IoE-LR model.

For the slope angle, landslides were most concentrate on the class 50◦–60◦ which owned the
Bel of 0.337, indicating it has the highest probability of landslide occurrence, followed by the class
20◦–30◦. For the land use, the Bel was highest for farm land (0.421) and lowest for grass land, water
and bare land (they have the same Bel of 0). For the soil, the Bel was highest for the type of A (0.188).
In the case of attitude, the Bel was 0.387 for the class 500–700 m. In the case of lithology, the Bel was
0.245 for the type B, indicating landslides were more likely to occur in this lithological condition.
For the TWI, the Bel was the highest for class 0.35–1.63. For the NDVI, the Bel was 0.286 for class
0.30–0.37. For the slope aspect, the Bel was the highest for northeast slopes (0.152) and lowest for flat
slopes (0.0). In the case of distance to roads and rivers, the Bel decreases when distance to a road or
river line increases. In the case of plan and profile curvature, the most of landslides occurred in class
0.56–2.62 and –1.39–0.88, respectively.

The process of LSI calculated by EBF model is illustrated as an example. As described
above, Bel decides the LSI of EBF model, and the calculation equation is shown in Equation (19).
Similarly, the equations for generating LSI of WoE and IoE models are shown in Equation (20) and
Equation (21), respectively. In addition, the EBF-LR model is also illustrated as an example of ensemble
models. Generally, the process of LSI produced by ensemble model can be roughly described as
multiplying the coefficients of ensemble model by the weights obtained in bivariate statistical model.
For example, the LSI of EBF-LR model was obtained by multiplying the coefficients of EBF-LR model
and Bels generated by EBF model, as shown in Equation (22). Similarly, the equations for calculating
LSI of WoE-LR and IoE-LR models are shown in Equation (23) and Equation (24), respectively.
Finally, the natural break method was applied to reclassify the indexes into five classes, such as very
low, low, moderate, high and very high, and the landslide susceptibility maps generated by EBF, WoE,
IoE, EBF-LR, WoE-LR, and IoE-LR models are shown in Figure 3.

LSIEBF = (AltitudeBel) + (PlancurvatureBel) + (Pro f ilecurvatureBel)+

(SlopeangleBel) + (SlopeaspectBel) + (DistancetoroadsBel)+

(DistancetoriversBel) + (TWIBel) + (NDVIBel) + (LanduseBel)+

(SoilBel) + (lithologyBel)

(19)

LSIWoE = (AltitudeC) + (PlancurvatureC) + (Pro f ilecurvatureC)+

(SlopeangleC) + (SlopeaspectC) + (DistancetoroadsC)+

(DistancetoriversC) + (TWIC) + (NDVIC) + (LanduseC)+

(SoilC) + (lithologyC)

(20)

LSIIoE = (Altitude ∗ 0.190) + (Plancurvature ∗ 0.009)+
(Pro f ilecurvature ∗ 0.004) + (Slopeangle ∗ 0.229)+
(Slopeaspect ∗ 0.051) + (Distancetoroads ∗ 0.062)+
(Distancetorivers ∗ 0.022) + (TWI ∗ 0.080) + (NDVI ∗ 0.037)+
(Landuse ∗ 0.207) + (Soil ∗ 0.194) + (lithology ∗ 0.141)

(21)

LSIEBF−LR = (AltitudeBel ∗ 8.123) + (PlancurvatureBel ∗ 4.169)+
(Pro f ilecurvatureBel ∗ 22.826) + (SlopeangleBel ∗ 20.993)+
(SlopeaspectBel ∗ (−17.300)) + (DistancetoroadsBel ∗ 2.634)+
(DistancetoriversBel ∗ 5.298) + (TWIBel ∗ 3.204) + (NDVIBel ∗ 2.710)+
(LanduseBel ∗ 1.560) + (SoilBel ∗ 2.520) + (lithologyBel ∗ 3.951)

(22)
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LSIWoE−LR = (AltitudeC ∗ 1.016) + (PlancurvatureC ∗ 0.628)+
(Pro f ilecurvatureC ∗ 2.878) + (SlopeangleC ∗ 3.995)+
(SlopeaspectC ∗ (−1.856)) + (DistancetoroadsC ∗ 0.467)+
(DistancetoriversC ∗ 1.045) + (TWIC ∗ 0.774) + (NDVIC ∗ 0.720)+
(LanduseC ∗ 0.271) + (SoilC ∗ 0.204) + (lithologyC ∗ 0.484)

(23)

LSIIoE−LR = (Altitude ∗ 2.111) + (Plancurvature ∗ 0.747)+
(Pro f ilecurvature ∗ 4.958) + (Slopeangle ∗ 2.830)+
(Slopeaspect ∗ (−0.883)) + (Distancetoroads ∗ 0.475)+
(Distancetorivers ∗ 1.149) + (TWI ∗ 0.910) + (NDVI ∗ 0.638)+
(Landuse ∗ 0.615) + (Soil ∗ 0.407) + (lithology ∗ 0.502)

(24)
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Table 4. The coefficients of evaluation models.

Landslide Conditioning Factors WoE-LR EBF-LR IoE-LR

Slope aspect 0.780 6.477 15.569
Altitude 1.016 8.123 11.110
Land use 0.271 1.560 2.973
Lithology 0.484 3.951 3.567

NDVI 0.720 2.710 17.231
Plan curvature 0.628 4.169 82.950

Profile curvature 2.878 22.826 1239.456
Distance to rivers 1.045 5.298 52.206
Distance to roads 0.467 2.634 7.665

Slope angle 3.995 20.993 12.357
Soil 0.204 2.520 2.100
TWI 0.774 3.204 11.377

Slope aspect −1.856 −17.300 −17.304

4.3. Model Validation and Comparison

Model validation is an important part of landslide susceptibility research which determines the
accuracy of the study [26,129]. The landslide susceptibility maps will have no practical significances
without model validation [130]. In the first place, the Wilcoxon signed-rank test was introduced to
test the independence of all evaluation models (Table 5). The 95% confidence interval of Wilcoxon
signed-rank test is (-∝, -1.96) ∪ (1.96, +∝). It can be seen form the Table 5 that all the evaluation models
are independent from each other. Then, the receiver operating characteristic (ROC) curve was applied
to assess the predictive ability of those models. The ROC curve is a widely-used statistical approach
as it has the ability to evaluate the prediction accuracy of models quantitatively. The area under the
ROC curve (AUC) shows the performances of landslide susceptibility evaluation models in this paper.
Figure 4 represents the ROC curves of evaluation models and Table 6 shows the parameters of ROC
curves. It can be seen that EBF-LR model has the highest accuracy (0.826), followed by IoE-LR model
(0.825), WoE-LR model (0.792), EBF model (0.791), IoE model (0.778), and WoE model (0.753). The other
statistical methods show the similar results, such as EBF-LR model has the smallest standard error (SE)
and 95% confidence interval (CI).
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Table 5. Wilcoxon signed-rank test for evaluation models.

Model M1 M2 M3 M4 M5 M6 M7 M8

Z −12.651 −12.968 −14.119 −15.345 −13.752 −15.018 −15.077 −16.006
Asymp. Sig. (2-tailed) 0 0 0 0 0 0 0 0

Model M9 M10 M11 M12 M13 M14 M15
Z −14.900 −10.849 −12.203 −10.313 −2.577 −4.809 −3.680

Asymp. Sig. (2-tailed) 0 0 0 0 0 0 0

M1: WoE–EBF, M2: IoE–EBF, M3: EBF_LR–EBF, M4: WoE_LR–EBF, M5: IoE_LR–EBF, M6: IoE–WoE, M7:
EBF_LR–WoE, M8: WoE_LR–WoE, M9: IoE_LR–WoE, M10: EBF_LR–IoE, M11: WoE_LR–IoE, M12: IoE_LR–IoE,
M13: WoE_LR–EBF_LR, M14: IoE_LR–EBF_LR, M15: IoE_LR–WoE_LR.
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Table 6. ROC curves. AUC: Area under curve; SE: standard error; CI: confidence interval.

Variables AUC SE 95% CI

EBF model 0.791 0.0226 0.747 to 0.830
WoE model 0.753 0.0243 0.707 to 0.795
IoE model 0.778 0.0233 0.734 to 0.819

EBF-LR model 0.826 0.0207 0.784 to 0.862
WoE-LR model 0.792 0.0226 0.748 to 0.831
IoE-LR model 0.825 0.0208 0.784 to 0.861

5. Discussions

Landslide is a kind of extremely dangerous geological disasters which has a significant influence on
personal safety as well as property security and geological environment [131,132]. In this paper, based
on LR model, three bivariate statistical models, namely EBF, WoE, and IoE models, were introduced to
carry out the landslide susceptibility mapping in Muchuan County. The performances of those models
were compared and validated by some statistical methods, such as ROC curve. Although those four
models and their ensembles have been applied to landslide susceptibility mapping many times in
recent years, they have the advantages of high accuracy and convenient operation. Althuwaynee et al.
proposed a Geographic Information Systems (GIS)-based EBF model for data analysis and conducting
the landslide susceptibility research in Kuala Lumpur city, Malaysia. They indicated that the prediction
accuracy of EBF model is acceptable and landslide susceptibility map produced by it is trustworthy [38].
Wang et al. applied WoE model to landslide susceptibility mapping at Daguan County, Yunnan Province,
China. The results believed that the method not only provided a reliable and easily interpreted result,
but also simplified the modeling process and greatly improved the work efficiency [114]. Devkote et
al. carried out the landslide susceptibility maps by IoE, LR, and certainty factor (CF) models at
Mugling–Narayanghat road section, Nepal. After the validation and comparison processes, IoE model
gained the highest AUC value, followed by LR and CF models [133]. As for the ensemble models,
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Chen et al. conducted a series of related studies and they reached the same conclusion as in this paper
that the ensemble model obtained higher accuracy than their single models [58,130,134]. In the present
study, a total of 279 landslides were identified and mapped in the landslide inventory map, of which
195 (70%) landslides were randomly selected to establish the landslide models and the rest of the 84
(30%) landslides were used to validate the veracity of models. As there are no general rules for selecting
landslide conditioning factors, twelve factors such as altitude, plan curvature, profile curvature, slope
angle, distance to roads, distance to rivers, TWI, NDVI, land use, soil, and lithology were prepared for
the research according to the previous studies and local geological environment characteristics.

After the selection of landslide conditioning factors, all the factors were subjected to
multicollinearity analysis so as to avoid the influences brought by linear factors. It can be seen
from Table 2 that all the factors are independent from each other. W+ and W- produced by WoE
model are a pair of weight parameters that named positive weight and negative weight. A positive
weight means it may promote the occurrence of landslide, while negative weight means the opposite.
The parameter of Bel generated by EBF model can be regard as the symbol that indicates the relationship
between landslide and landslide conditioning factor. The parameter of Wj generated by IoE model
represents the importance of each factor. It can be seen from the Table 3 that slope angle has the highest
weight (0.229) which means it is the most important factor, followed by land use (0.207), soil (0.194),
altitude (0.190), lithology (0.141), TWI (0.08), distance to roads (0.062), slope aspect (0.051), NDVI
(0.037), distance to rivers (0.022), plan curvature (0.009), and profile curvature (0.004). In addition, it is
obvious to find that Bel and W+ show the same results.

It can be seen from Figure 3 that the south and west sides of all the landslide susceptibility maps
have the low and very low landslide susceptibility. From the parameter layers, it can be concluded
that both the south and west sides have four similar characteristics, such as high altitude, far from the
roads, high ratio of vegetation coverage and land use type is forest land. This may be the presence
of cliffs with rock which is hard to weathering in high-altitude areas [133,135,136]. Besides, far from
the roads means it is less affected by human activities [137,138]. In addition, high ratio of vegetation
coverage and forest land indicates the vegetation growth status in this area is good. In other words,
the better the growth status of vegetation, the lower the possibility of landslide occurrence [139–141].

The ROC curve, SE, and 95% CI were introduced to validate and compare the performances of
evaluation models. According to the parameters of ROC curves, EBF-LR model performed best with
the AUC value of 0.826, followed by IoE-LR, WoE-LR, EBF, IoE, and WoE models with the AUC values
of 0.825, 0.792, 0.791, 0.778, and 0.753, respectively. Generally, all the models performed well in this
study. Based on the LR model, combined with EBF, WoE and IoE models, the landslide susceptibility
of Muchuan County was researched successfully. Last but not least, the models used in this study are
worthwhile to apply in other areas where have the same geological environment characteristics as
study area and the results obtained in this study can provide references for local government.

6. Conclusions

In this case research, WoE, EBF, IoE, and LR models were introduced to generate the landslide
susceptibility maps for the Muchuan County, China. A total of 279 landslides were identified and mapped
through the field investigation and interpretation of aerial photographs. The models were established
by randomly selected 70% of the landslides and validated by the remaining landslides. The correlation
between landslide occurrence and 12 landslide conditioning factors such as altitude, plan curvature, profile
curvature, slope angle, distance to roads, distance to rivers, TWI, NDVI, land use, soil, and lithology was
evaluated by the above models. Finally, six landslide susceptibility maps were classified into five classes,
such as very low, low, moderate, high, and very high, by natural break method. The differences of spatial
prediction ability of different models are compared by AUC values and the validation results indicate the
EBF-LR model has the highest AUC value (0.826), which means EBF-LR model performed best in this
research, followed by IoE-LR, WoE-LR, EBF, IoE and WoE models with the AUC values of 0.825, 0.792,
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0.791, 0.778, and 0.753, respectively. Finally, those landslide susceptibility maps can provide references of
landslide prevention and land use planning for local government.
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