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Abstract: Efficiently functioning public transport has a significant positive impact on the entire
transportation system performance through numerous aspects, such as the reduction of congestion,
energy consumption, and emissions. In most cases, the basic elements of public transport are the
bus transport subsystem. Currently, in addition to criteria such as punctuality, the frequency of
departures, and the number of transfers, a travelling comfort level is an important element for
passengers. An overcrowded bus may discourage travelers from choosing this mode of transport and
induce them to use a private car despite the existence of many other facilities offered by a given public
transport system. Therefore, the forecasting of bus passenger demand, as well as bus occupancy at
individual bus stops, is currently an important research direction. The main goal of the article is to
present the conceptual framework for the Advanced Travel Information System with the prediction
module. The proposed approach assumes that the prediction module is based on the use of the Markov
Chain concept. The efficiency and accuracy of the obtained prediction were presented based on a
real-life example, where the measurements of passengers boarding and alighting at bus stops were
made in a selected Cracow bus line. The methodology presented in the paper and the obtained results
can significantly contribute to the development of solutions and systems for a better management
as well as a cost and energy consumption optimisation in the public transport system. Current
and forecasted information related to bus occupancy, when properly used in the travel information
system, may have a positive impact on the development of urban mobility patterns by encouraging
the use of public transport. This article addresses the current and practical research problem using an
adequate theoretical mathematical tool to describe it, reflecting the characteristics and nature of the
phenomenon being studied. To the best of the authors’ knowledge, the article deals for the first time
with the problem of prediction of onboard bus comfort levels based on in-vehicle occupancy.

Keywords: onboard comfort level; Markow chain; bus passenger occupancy prediction

1. Introduction

Efficiently functioning public transport has a significant positive impact on the entire transportation
system performance through numerous aspects, such as the reduction of congestion, energy
consumption, and emissions. In most cases, the fundamental elements of public transport are
the bus transport subsystem. Currently, in addition to criteria such as punctuality, the frequency of
departures, and the number of transfers, the comfort of travelling is an essential element for travelers.
It may be significantly related to the degree of occupancy and capacity of the bus. An overcrowded
bus may discourage travelers from choosing this mode of transport and induce him to use a private
car despite the existence of many other facilities offered by a given public transport system. Therefore,
the forecasting of bus passenger demand and the forecasting of bus occupancy at individual bus stops
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is currently an important research direction. The variability and cyclicity in passenger flows make
such forecasts extremely useful. From the perspective of transport system planners, they can be used
for an optimal allocation of resources and bus types in relation to current demand. From the traveler’s
point of view, the use of this type of forecast can help to reduce waiting times at the bus stop as well as
helping him choose the right departure time. The forecasting methods and techniques used in this area
mainly concern long-term prediction. Given the above, the main goal of the article is to present the
framework of the prediction subsystem for the Advanced Travel Information System (ATIS), which
enables one to predict the onboard comfort level related to the actual bus occupation.

The article is organized as follows. The first section is a literature review. It describes the
conceptual framework for the ATIS subsystem with the comfort level prediction module. It also
discusses the potential application of the proposed approach. The main core of the article concerns the
forecasts in the public transportation system; hence, the second part of the literature review deals with
that area. Subsequently, the theoretical background of the Markov chain (MC) for the prediction model
is presented, defining the comfort level states. The characteristics and benefits of applying the MC
for an onboard bus comfort level prediction based on a real-life case study summarise the previous
theoretical discussion.

2. Literature Review

2.1. Predictive Framework for ATIS Subsystem

The principle of information is defined as one of the foundations of the city’s transport policy.
The Advanced Traveler Information System (ATIS) is a way to implement the information principle and
is an integral part of the Intelligent Transport Systems (ITS) [1,2]. ATIS systems can use all transport
data, including the traffic volume, journey times, and restrictions on selected sections, timetables,
vehicles locations in the network, interchanges, traffic events, and weather conditions. The information
can come both from the vehicles and traffic management centres [3,4].

Access to information from ATIS systems can be public or limited. Restrictions may result from
the payment of access to the system or from the fact that the system is dedicated to selected users [5].
Research [6] shows that mobile phone users with Internet access are most likely to use information
from ATIS systems, and the interest of travelers in accessing travel information is directly related to the
usefulness of the presented data by ATIS systems [4].

The considered issue in the paper is one of the crucial problems, mainly when bus congestion
results in the resignation of some passengers from travelling with public transport. Well-prepared
forecasts make it possible to make good use of rolling stock, to plan a journey, and to manage urban
public transport. Figure 1 presents a diagram of the information flow and relevance of a forecasting
module within ATIS. The data based on which the model was created and tested came from buses
operating in Cracow.



Symmetry 2019, 11, 755 3 of 13Symmetry 2019, 11, x FOR PEER REVIEW 3 of 13 

 

 

 
Figure 1. Diagram of the created Advanced Traveler Information System system. 

The development of information technology has a significant impact on the functioning of cities 
and urban public transport. This has enabled the development in a short time of many mobile 
applications aimed at facilitating travel. They relate to trip planning, checking timetables, or 
information about the location of the exact vehicle based on the GPS signal. Common access to such 
extensive information has led to an increase in passenger requirements. 

Moreover, information about the current or predicted passenger demand in public transport 
vehicles is becoming critical. The automatic passenger counting systems using buses do not provide 
the utilization of data in real time. However, the data will be sufficiently accurate to be used to 
produce a forecast. Such predictions will enable the optimization of the allocation of buses to public 
transport lines and the creation of applications for passengers (in the framework of ATIS). 

The problem connected with bus allocations to public transport lines is important for carriers. 
The increasing number of rolling stocks types makes it more challenging to obtain an optimal 
solution. A large number of urban bus manufacturers and the choice of the cheapest offers by carriers 
make it difficult to maintain a uniform fleet of vehicles. Vehicles of the same dimensions may differ 
in travel comfort with the same number of passengers. That is why, in order to achieve a high level 
of comfort for passengers with a maximum use of rolling stock, it is necessary to optimise the 
allocation of buses to public transport lines. The solutions that emerged within this topic are 
described in articles, the most important of which are presented in the table below (Table 1).

Figure 1. Diagram of the created Advanced Traveler Information System system.

The development of information technology has a significant impact on the functioning of cities and
urban public transport. This has enabled the development in a short time of many mobile applications
aimed at facilitating travel. They relate to trip planning, checking timetables, or information about the
location of the exact vehicle based on the GPS signal. Common access to such extensive information
has led to an increase in passenger requirements.

Moreover, information about the current or predicted passenger demand in public transport
vehicles is becoming critical. The automatic passenger counting systems using buses do not provide
the utilization of data in real time. However, the data will be sufficiently accurate to be used to produce
a forecast. Such predictions will enable the optimization of the allocation of buses to public transport
lines and the creation of applications for passengers (in the framework of ATIS).

The problem connected with bus allocations to public transport lines is important for carriers.
The increasing number of rolling stocks types makes it more challenging to obtain an optimal solution.
A large number of urban bus manufacturers and the choice of the cheapest offers by carriers make it
difficult to maintain a uniform fleet of vehicles. Vehicles of the same dimensions may differ in travel
comfort with the same number of passengers. That is why, in order to achieve a high level of comfort
for passengers with a maximum use of rolling stock, it is necessary to optimise the allocation of buses
to public transport lines. The solutions that emerged within this topic are described in articles, the
most important of which are presented in the table below (Table 1).
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Table 1. Articles on the optimization of the allocation of rolling stock to public transport lines.

Issues Raised in the Papers Articles

Optimal queuing of rolling stock at depots for
line departure

Blasum M. Bussieck M.R., Hochstattler W., Moll C.H.,
Scheel H., Winter T. [7]

Optimising the number of vehicles serving the urban
public transport system

Haase K., Deaulniers G., Denosiers J. [8] Kidwai F.A.,
Marwah B.R., Deb K., Karim M.R. [9]

Optimisation of the allocation of rolling stock to lines -
environmental criteria

Jimenez F., Roman A., (2016), Li J.Q., Head K.L. [10] Li L.,
Lo H.K., Cen X. [11] Beltran B., Carrese S., Cipriani E.,

Petrelli M. [12]

Allocation of rolling stock to lines, as part of public
transport planning, day by day planning Lusby R.M., Larsen J., Bull S. [13]

Characteristics of management systems for the
allocation of rolling stock to lines

Gancarz T. (1998), Papierkowski K. [14] Cejrowski M.,
Krych A., Pawłowski M. [15] Moreira J.M., de Sousa J.F. [16]

Optimisation of the allocation of rolling stock to lines
to minimise fuel consumption Oziomek J., Rogowski A. [17,18]

The optimisation of bus allocations to urban public transport lines is presented in different ways
in scientific publications. First, the allocation of rolling stock to public transport lines is taken as the
queuing of vehicles at depots [7]. However, this solution does not take into account the possibility of a
rolling stock rotation between different depots. When there is more than one depot, it is impossible
to obtain an optimal solution. Other articles define the allocation of rolling stock as scheduling that
reduces costs and the number of vehicles that are needed [8,17,18]. This approach is characterised by the
use of various optimisation methods, both traditional linear programming methods and heuristics [9].
However, it should be noted that the analysed models do not use data on the forecast of demand for
transport services. In [13], the problem of a model that is resistant to fluctuations in parameters was
noted (the issue of planning the allocation of rolling stock for each day). The solutions presented in
the publication are based on the example of railway transport. Another type of criterion which is
becoming more and more important due to the growing social awareness of environmental protection
is the optimization of the allocation of rolling stock as a means of minimising the environmental
impact. This topic is described extensively in [10–12,19]. Finally, there are publications that describe
the existing tools to support decision-making when scheduling the allocation of rolling stock to public
transport lines [10,14,16,20].

2.2. Prediction Methods in Public Transportation

The main problem in public transportation, which researchers are trying to model and predict, is
passenger demand. It has a direct influence on the efficiency of the public transport system, raising
the competitiveness of this mean of transport and, lastly, fulfilling the expectations of passengers and
encouraging them to choose this type of transport.

The problem of bus occupancy level forecasting is quite an important aspect, particularly for
decision-makers. This is why there is an abundance of articles addressing this issue. A plurality of
methods whose aim is to deal with this kind of forecasting shows an interest attached to the seriousness
of this issue. Table 2 shows selected methodologies, types, modes of transport and the studies in which
they were presented.
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Table 2. Passenger demand and flow prediction studies in public transport.

Author(s) Methodology Type Modes

Y. Mo, Y. Su [21] Neural networks Transit passenger Flow Bus

Y. Li [22] Grey Markov Chain model Flow Railway

S. Z. Zhao, T. H. Ni, Y. Wang, X. T.
Gao [23]

Wavelet analysis, Neural
networks Flow Transit system

L. Liu, R. C. Chen [24] Deep learning method Flow Bus rapid transit

Y. Li, X. Wang, S. Sun, X. Ma, G.
Lu [25]

Multiscale radial basis
function networks Flow Subway

J. Zhang, D. Shen, L. Tu, F. Zhang,
C. Xu, Y. Wang, C. Tian, X. Li, B.

Huang, Z. Li [26]

Extended Kalman filter
model Flow Bus transit system

Q. Chen, W. Li, J. Zhao [27] Least Squares Support
Vector Machine Flow Bus

R. Xue, D. J. Sun, S. Chen [28] Time series and interactive
multiple model (IMM) Demand Bus

C. Zhou, P. Dai, R. Li [29]
Time-varying Poisson model,

Weighted time-varying
Poisson model, ARIMA

Demand Bus

Z. Ma, J. Xing, M. Mesbah, L.
Ferreira [30]

Interactive Multiple,
Model-based Pattern Hybrid

(IMMPH)
Demand Bus

T. H. Tsai, C. K. Lee, C. H. Wei [31] Neural network Demand Railway

Z. Wang, C. Yang, C. Zang [32]
Hybrid model (BP neural

network & time series
model)

Flow prediction Bus stop

J. Roos, S. Bonnevay, G. Gavin [33] Dynamic Bayesian network Flow forecasting Metro

Z. Wei, Z. Jinfu [34] Grey-Markov Method Passenger traffic Passenger turnover

Z. S. Xiao, B. H. Mao, T. Zhang [35] Hybrid model—BP neural
network and Markov Chain Daily passenger volume Rail transit station

According to Table 2, it is evident that there were not so many papers that tried to solve the
passenger prediction problem using the Markov Chain method. Most of the presented methods are
used to predict the passenger flow or demand in the short-term. The Markov chain method appears
mostly in a combination of Markov and Grey models to forecast the passenger flow or as a hybrid
model—the Back Propagation neural network and Markov model—to forecast the daily passenger
volume in the rail transit station. This shows the existence of different fields of research on the most
accurate methods for forecasting the passenger demand or flow to improve public transportation
efficiency directly.

There are certain areas in public transportation in which prediction can be beneficial during not
only the organisation process but also the adaptation to real conditions. These may include, besides the
passenger demand or flow prediction, the bus arrival time [36] prediction. From the public transport
organiser’s point of view, the passenger structure prediction in the transportation corridor may also
be useful. For this purpose, D. Wang, X. Sun and Y. Li utilized the Markov process [37]. In order to
meet the expectations of public transport users, an important area of prediction is public transport trip
flows [38].

3. Onboard Bus Comfort Level and Markov Chain Concept

3.1. Bus Comfort Level

Onboard bus comfort is an essential aspect of the satisfaction perceived by bus passengers.
The quality of the bus transit in terms of passenger comfort is usually an extensive set of partial
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influence factors, which are very difficult to quantify. Hence, this is usually the reason why they are not
included in the various indicators for assessing the quality of public transport. Therefore, the group
of indicators describing the comfort of travel include the inconvenience of travel resulting from the
limited availability of seats or even standing in the vehicle. The literature most frequently mentions the
nuisance ratio, and the nuisance ratio or seat occupancy rate, for different reference levels in the form
of standards for the number of seats in a vehicle. The driving discomfort coefficient µ j determines
how many times a journey by public transport in specific conditions is more onerous in comparison
with a journey where the passenger sits and the filling of standing places is small (0.5 passenger/m2).
The driving discomfort µ j is calculated from the following formula (based on [39]):

µ j = 0.8 + 3.6× (q− 0.15)2 (1)

where q is the relative onboard occupation calculated as:

q =
N

CN
(2)

where N is the absolute onboard occupation (number of passengers in the vehicle), and CN is the
nominal capacity of the vehicle (using the area of standing places as 0.15 m2/person).

The onboard comfort level can be defined based on the calculated value of the driving discomfort
µ j, and it could be one of the below possibilities [39]:

1. Comfort level A (corresponding to a factor of discomfort µ j < 0.8)—means that: approximately
10–70% of the vehicle seats are occupied; each passenger has a guaranteed seating position
without being forced to travel in the immediate vicinity of another passenger; passengers travel
without difficulty in carrying luggage, trolleys, bicycles, etc.

2. Comfort level B (corresponding to a factor of discomfort µ j ε [0.8, 1.0) means that: all or almost
all seating positions are occupied (70–100%); possibility to easily carry a baggage, trolleys,
bicycles, etc.

3. Comfort level C (corresponding to a factor of discomfort µ j ε [1.0, 1.4) means that: the small
number of standing places is occupied, but it is possible to have free movement within the vehicle:
easy access to the punch (up to 2 persons/m2).

4. Comfort level D (corresponding to a factor of discomfort µ j ε [1.4, 2.1) indicates that the onboard
occupancy level results in a difficulty of free movement in the vehicle and in access problems to
the punch (up to 4 persons/m2).

5. Comfort level E (corresponding to the discomfort factor µ j ε [2.1, 3.4) indicates an already high
onboard congestion causing very difficult access to the punch (up to 6–7 persons/m2).

6. Comfort level F (corresponding to a factor of discomfort µ j ≥ 3.4 is characterised by: very high
in-vehicle congestion, during which it is not possible to cancel the ticket; the ride involves a large
physical effort, with standing passengers pressing into the seating area; there are large difficulties
in closing the door and incidental damages to the closing device; it is necessary to give way to
passengers getting off their seats (over 7 persons/m2).

3.2. Short-Term In-Vehicle Occupation Predictions Based on Markov Chains Model

The problem of in-vehicle occupancy forecasting in public transport may be closely related to
previously defined comfort levels. The specificity of the inflow of passengers to the given bus line stops
in the following hours is stochastic. Therefore, it seems appropriate to use discrete Markov processes
to determine the expected occupancy level of the vehicle at subsequent departures from a given stop
on the line. Markov’s process is a sequence of random variables, in which the probability of what will
happen depends only on the present state. In the considered issue, only Markov processes defined on
a discrete space of states will be used (Markov chains).
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Let us denote by X = (X0, X1, . . .) a sequence of discrete random variables. The value of the
variable Xt will be called the state of the chain at the moment t. It is assumed that the set of states S is
calculable. The finite set of states can be defined as the state space S as follows:

s ∈ S, S =
{
s1, s2, . . . , sk−1, sk

}
, k < ∞ (3)

The discrete timestamps used in the considered problem can be defined as follows:

tεT, T = {1, 2, . . . , tmax}, tmax ≤ ∞ (4)

Definition 1. A sequence of random variables X is a Markov chain if the Markov condition is fulfilled:

P(Xt = s|X0 = x0, . . .Xt−1 = xt−1) = P(Xt = s|Xt−1 = xt−1)∧ tεT ∧ x0, x1, . . . xt−1 ∈ S (5)

Thus, for the Markov chain, the distribution of the conditional probability of the position in the time step t
depends only on the conditional probability of the position in the previous step and not on the previous trajectory
points (history).

Definition 2. Let P be a matrix of dimensions (k × k) and elements
{
pi j : i, j = 1, . . . k

}
. A sequence of random

variables (X0, X1, . . .) with values from a finite set of states S =
{
s1, s2, . . . , sk−1, Sk

}
is called the Markov

process, with the transition matrix P, if for each t, any i, j ∈ {1, . . . k} and all i0, . . . it−1 ∈ {1, . . . k},

P
(
Xt+1 = s j

∣∣∣X0 = si0 , X1 = si1 , . . . , Xt−1 = sit−1 , Xt = si
)
= P

(
Xt+1 = s j

∣∣∣Xt = si
)
= pi j

The elements of the transition matrix pi j fulfill the following conditions:

∧ tεT pi j = P
(
Xt+1 = s j

∣∣∣Xt = si
)

pi j ≥ 0 ∧ i, j ∈ {1, . . . k}

∧
i

∑
j

pi j = 1

Definition 3. The Markov chain is homogenous when for each time stamp it is described by the same transition
matrix P. The transition matrix is fixed and does not depend on time.

In the use of Markov chains, the initial state plays a crucial role. Formally, the initial state is a
random variable X0. Therefore, the Markov chain often starts with a certain probability distribution
across the state space.

Definition 4. The initial distribution is a vector defined as follows:

D(0) =
[
d(0)1 , d(0)2 , . . . , d(0)k

]
= [P(X0 = s1), P(X0 = s2), . . . , P(X0 = sk)]

To determine the distribution of the forecasted state of the modelled object for the n-th time step ahead, the
following equation can be used:

D(t+n) = D(t)
·P

n

where n is the parameter defining the forecasting horizon.
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4. Case Study

In order to verify the approach proposed in the article, a simulation experiment was carried out.
The basis of the example was to estimate the forecasted state of the vehicle occupancy for a selected
communication line with a given number of stops. In the example, a real data set from the automatic
counting systems of the vehicle was used. The analysed time horizon covered two weeks for one of
the most crowded bus lines in Cracow. The line under consideration belongs to one of the highest
frequency levels and contain 19 bus stops. On business days, the number of trips on the line under
consideration was tmax = 68, whereas on weekends tmax = 47. In the computational example, the
forecasts of the occupation state S = {1, 2, . . . 6} were determined sequentially for one time step ahead
(each single departure from the bus stop was a correspondingly successive time step). The state s1 = 1
corresponds to the lowest level of vehicle occupancy, while s6 = 6 denotes the highest. For each time
step t, the initial state distribution D(t) has been updated on the basis of the available historical data.
The elements of the transition matrix P were estimated empirically based on the historical data set
individually for each bus stop in order to map its specificity and dynamics. The forecasted state was
assumed to be the one for which the probability of occurrence in the forecasted state distribution D(t+1)

was the highest. Figure 2 shows an exemplary adjustment of state forecasts to the real observed states
of vehicle occupancy for a selected bus stop on a given day.
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Figure 2. Adjustment of the forecasted vehicle occupancy states to the observed values for a given
bus stop.

The presented sequence of observed vehicle occupancy states and received forecasts concerns
the bus stop located in the second part of the analysed transport line. This is evidenced by the high
variability of the observed states during the working day. The obtained forecast values, despite errors,
try to keep up with the pace of changes in the observed time series.

The distribution of the root means square errors for each bus stop for the considered period is
shown in Figure 3.
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Figure 3. Distribution of root mean square errors for the analysed period.

The distribution of Root Mean Square Error (RMSE) errors received along the time horizon and
bus stop number indicates that the highest values occur at the bus stops in the second part of the line
journey (counting from the first stop). This results in the specificity of the analysed line, which passes
through crucial areas in the city and numerous interchange nodes. This generates a greater randomness
and variability among the incoming passengers, which leads to more significant forecasting errors.
Lower errors characterise periods (t = 6 Saturday, t = 7 Sunday) due to the reduced number of trips.

In order to determine how often the model made an error and how much the predicted occupancy
state of the vehicle differed from the observed state, an error histogram was prepared, as shown
in Figure 4.
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Figure 4. Prediction error histogram.

The histogram shows the frequency occurrence of a forecast error equal to e1 = 1, e2 = 2, . . . e5 = 5,
where e1 is the difference by one state, e2 by two states, etc. In the period of time covered by the
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analysis, the most numerous group is the e1 error set, where the obtained forecast differs only by one
state from the observed real value. The second, much less numerous group is e2. The sets of errors e3

and e4 constitute a small percentage of the whole population, while the remaining errors did not occur
at all during the examined time horizon.

The averaged absolute percentage forecast errors for the relevant period and subsequent stops are
presented in Table 3.

Table 3. Mean absolute percentage forecast errors.

MEAN ABSOLUTE PERCENTAGE ERRORS [%]
ANALYZED TIME HORIZON [days]

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0,0 0,0 0,0 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,5 0,5 2,3 1,0 0,0 0,0 0,0 0,0 0,5 0,5 0,0 0,0
4 0,5 2,5 0,5 3,3 0,5 1,4 0,0 0,5 1,5 1,5 3,5 0,0 0,0
5 2,0 2,2 1,0 3,8 1,0 4,2 2,1 2,5 2,5 3,0 2,2 0,5 0,7
6 6,5 9,5 3,5 11,3 7,2 9,4 2,1 8,2 10,4 9,5 12,4 5,5 2,4
7 8,5 11,7 4,7 12,3 8,2 5,2 20,8 7,5 10,0 9,5 12,3 7,7 5,2
8 9,2 10,9 5,5 14,0 11,2 5,9 6,3 9,5 16,3 14,5 15,7 8,5 7,3
9 10,2 11,4 7,2 12,2 12,4 9,7 7,6 11,2 19,5 18,2 15,8 10,7 7,3
10 11,7 12,2 8,0 17,3 13,2 20,0 6,3 15,0 23,8 25,2 18,7 9,7 9,7
11 19,0 21,6 12,2 23,7 24,9 23,1 14,2 21,7 24,2 21,7 23,3 12,9 8,0
12 22,5 24,4 20,4 15,6 20,6 18,5 21,0 19,5 24,3 19,0 22,6 20,8 13,9
13 22,8 23,3 25,4 20,6 17,8 13,3 22,4 19,9 23,3 20,9 20,1 20,1 24,5
14 23,0 24,7 36,8 19,5 21,1 17,5 25,5 18,7 21,4 27,2 18,6 18,7 25,8
15 24,5 24,0 32,0 21,0 22,9 17,3 19,4 16,6 21,1 25,1 22,4 20,2 26,3
16 25,8 23,0 27,1 19,3 18,0 19,3 17,8 19,3 22,5 30,1 21,6 18,7 26,9
17 24,4 23,3 26,8 20,1 19,4 17,9 18,1 18,0 22,2 28,9 19,1 19,0 26,9
18 19,4 18,7 24,5 19,7 20,9 15,3 14,4 18,1 17,5 30,5 21,1 20,7 17,8

N
um

be
r

of
bu

s
st

op

19 7,5 10,1 10,2 8,1 8,8 12,7 4,5 6,5 11,7 27,3 10,3 10,4 12,2

5. Discussion

The results of the research presented in this article indicate that the application of Markov chains
to forecast the bus occupancy level in public transport is entirely justified because it represents, to
a reasonable degree, the features of the urban public transport system. Compared to the works
mentioned in the literature review, which mostly refer to the problem of passenger flow forecasting in
the transport network, the authors’ research was strictly focused on forecasting the bus comfort level
related to the vehicle occupancy, which can be directly used by travelers to optimize their trips and
to change their travel patterns to more environmentally friendly ones. The obtained results can be
useful not only for fleet management in the public transport system but also for the development of
passenger information systems and trip planning.

Nevertheless, this approach requires further research based on a larger data set sample from an
automatic counting system over a longer time horizon. It would also be desirable to determine the
influence of other factors on the forecasting effectiveness (season of the year, weather, and specificity
of the analysed communication line). The calculated forecast errors are the most significant for
interchanging stops, due to the high variability of passenger flows in these places. Therefore, it seems
justified to carry out studies with the use of heterogeneous Markov chains, where the transition matrix
would be variable depending on the time, type of bus stop or communication line. Such an analysis
could be very useful for the practical application and further verification of the proposed approach.
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6. Conclusions

The discussed issue in the article concerns the problem of forecasting vehicle occupation in public
transport. The analysed issue is particularly important due to the growing problems of congestion
and the negative impact of road transport in cities. The methodology presented in the paper and
the obtained results can significantly contribute to the development of solutions and systems for a
better management as well as a cost and energy consumption optimisation in the public transport
system. Current and forecasted information related to bus occupancy, when used correctly in the
travel information system, such as ATIS, may have a positive impact on the development of urban
mobility patterns by encouraging the use of public transport. In this way, it is possible to support the
implementation of a sustainable development postulate in the context of transport.

The transportation system, especially public transport, is an artificial, complex, dynamic and
uncertain system. These features influence the internal transport process, which is why proper
management is challenging to implement. Therefore, it seems appropriate to use discrete Markov
processes to determine the expected occupancy level of vehicles at subsequent departures from a given
stop on the line. The presented calculation shows that the thesis is correct and creates an incentive for
more in-depth investigations.
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