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Abstract: We develop discrete orthogonality relations on the finite sets of the generalized Chebyshev
nodes related to the root systems A2, C2 and G2. The orthogonality relations are consequences of
orthogonality of four types of Weyl orbit functions on the fragments of the dual weight lattices.
A uniform recursive construction of the polynomials as well as explicit presentation of all data needed
for the discrete orthogonality relations allow practical implementation of the related Fourier methods.
The polynomial interpolation method is developed and exemplified.
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1. Introduction

The purpose of this article is to develop uniform explicit discrete orthogonality relations of ten
types of bivariate generalized Chebyshev polynomials [1,2]. The discrete orthogonality relations
are presented for two families of polynomials corresponding to the Lie algebra A2, and four, to the
algebras C2 and G2. Inherent explicit formulas for the bivariate polynomial interpolation are deduced
and exemplified.

Orthogonal polynomials of two variables have been studied by many authors during the last
several decades—see e.g., [3–7] and the references therein. Polynomials of more than one variable that
are orthogonal on a finite set of discrete points are considered in [8–14]. The four types of the current
generalized Chebyshev polynomials corresponding to root systems of Weyl groups are induced by
the four types of the Weyl orbit functions. The symmetric C− and antisymmetric S−functions are
inherent for root systems of all types, the hybrid Ss− and Sl−functions are defined for Bn, Cn, F4 and
G2 only [2]. For the lowest case of root system A1, the classical Chebyshev polynomials of the first
and the second kind are obtained from the corresponding C− and S−functions, respectively. The four
types of polynomials in [13] are built on G2 symmetry and their discretization is inherent to G2 lattice.
The A2 polynomials of [9,11,14,15] and the G2 polynomials of [13], together with their discretizations,
can be translated into our cases by a substitution of variables.

The property that distinguishes our method of discretization of the polynomials is its uniformity.
The same chain of construction steps is followed for the polynomials with underlying root system
of any type and rank. Our limitation to bivariate polynomials is of a practical kind: the polynomials
are presented here in a ready-to-use form for anyone who may have some use for them. Also the
uniformity of our treatment of A2, C2 and G2 polynomials becomes obvious. There are two fundamental
means of calculation of the polynomials. The recurrence relations construction [13,15] is summarized
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for bivariate cases in this paper whereas the generating function method is developed recently
in [16,17]. If the problem should be regarded as discretization of known polynomials of two continuous
variables, then very few such polynomials can be discretized by the method developed in this paper.
The polynomials of two continuous variables that are amenable to our discretization are those that are
the ‘closest’ to the properties of finite dimensional irreducible representations of compact simple Lie
groups of rank two, namely the groups of types A2, C2, and G2.

Due to their proximity to the simple Lie groups, many of the powerful properties of these
groups, that depend on the rank and type of the given group, can be translated to properties of the
polynomials. Discretization of characters is a property, which underlies the discrete orthogonality of
several infinite families of polynomials for each of the groups of rank two. The discrete orthogonality
relations of the polynomials are induced by the orthogonality of the underlying Weyl orbit functions.
Several discretizations of the Weyl orbit functions are currently known [18–22]. Dual weight
lattice discretization of the orbit functions, used in this paper, is presented in all details in [19,21].
The fragments of the dual weight lattices are transformed to the discrete set of points (not a lattice
fragment), where the polynomials are discretely orthogonal. See examples in Figures 1–5.

A uniform description of the polynomials and their orthogonality on discrete sets of points require
a precise set up of the details of the theory that is often found in the literature in diverse variants.
In Section 2 we first introduce the four bases in the real Euclidean space spanned by the roots of the
three groups. There are four bases needed for our consideration of C2 and G2. These are the bases of
roots, coroots, weights and coweights. There are only two bases for A2, the bases of roots and coroots
coincide, as well as the bases of weights and coweights. Section 3 contains the explicit forms of the A2,
C2 and G2 orbit functions, which are needed for the construction of the polynomials, together with
a description of their discrete orthogonality. In Section 4, up to four kinds of polynomials are described
and the recursion relations, necessary for their explicit calculation, are detailed. The sets of points,
the corresponding sets of weights and the resulting discrete orthogonality relations for the polynomials
are presented in Section 5. The application of the discrete orthogonality relations to polynomial
interpolation is also shown. Section 6 contains various concluding remarks and follow-up questions.

2. Weyl Groups and Corresponding Domains

2.1. Roots, Coroots, Weights, Coweights

It is practical for the uniformity of our construction for all the three cases to use four bases in R2:

• the α−basis of simple roots α1, α2,
• the α∨−basis of coroots α∨1 , α∨2 ,
• the ω−basis of the fundamental weights ω1, ω2,
• the ω∨−basis of coweights ω∨1 , ω∨2 .

The ordered pair of simple roots ∆ = (α1, α2) of a simple Lie algebra of rank two consists of two
vectors spanning R2, the real 2−dimensional Euclidean space [23,24]. The roots of ∆ form a basis of
R2 which satisfy certain specific conditions that are different for A2, C2, and G2, namely their relative
lengths and angles between them.

For the cases of A2, C2 and G2, the standard convention 〈α, α〉 = 2 is used for the squared length
of the long roots. Then for short roots of C2 we have 〈α1, α1〉 = 1 and for G2 the squared length of the
short root is 〈α2, α2〉 = 2/3. The angle between the long root and the short root is 3π/4 for C2 and
5π/6 for G2. The angle between the two (long) roots of A2 is 2π/3. The coroots α∨1 , α∨2 are defined as
α∨i = 2αi/ 〈αi, αi〉 , i = 1, 2. In addition to the α−basis of simple roots, we define the ω−basis by

〈
α∨i , ωj

〉
=
〈

αi, ω∨j

〉
= δij , i, j ∈ {1, 2},

where the ω∨−basis, is given by ω∨i = 2ωi/ 〈αi, αi〉 , i = 1, 2.



Symmetry 2019, 11, 751 3 of 26

The root lattice Q and the coroot lattice Q∨ are the sets of all integer linear combinations of simple
roots and coroots, respectively,

Q = Zα1 +Zα2, Q∨ = Zα∨1 +Zα∨2 .

Similarly the weight lattice P and the coweight lattice P∨ are given as

P = Zω1 +Zω2, P∨ = Zω∨1 +Zω∨2 .

Important subsets of the weight lattice P are the cone of dominant weights P+, and the cone of
strictly dominant weights P++,

P+ = Z≥0ω1 +Z≥0ω2, P++ = Z>0ω1 +Z>0ω2.

2.2. Weyl Group and Affine Weyl Group

The reflection rα, α ∈ ∆, which fixes the hyperplane orthogonal to α and passes through the origin
of R2, can be explicitly written as

rαx = x− 〈α, x〉α∨ , x ∈ R2 .

Given a simple Lie algebra with the set of simple roots ∆, the associated Weyl group W is a finite
group generated by reflections ri ≡ rαi , i = 1, 2. Acting on the simple roots ∆, the resulting system
of vectors W∆ is the root system that contains the highest root ξ ∈ W∆. The highest roots are linear
combinations of simple roots with positive integer coefficients, ξ = m1α1 + m2α2. For all three cases
they are given as follows:

A2 : ξ = α1 + α2 , C2 : ξ = 2α1 + α2 , G2 : ξ = 2α1 + 3α2 . (1)

The affine reflection r0 with respect to the highest root ξ is given by

r0x = rξ x +
2ξ

〈ξ, ξ〉 , rξ x = x− 2〈x, ξ〉
〈ξ, ξ〉 ξ , x ∈ R2 . (2)

By adding the affine reflection r0 to the set of generators {r1, r2} one obtains the affine Weyl
group Waff. The group Waff consists of transformations of R2 from W and of shifts by vectors from
the coroot lattice Q∨. In fact it holds that Waff = Q∨ oW. The fundamental domain F of the action
of Waff on R2 is a triangle with vertices

{
0, ω∨1

m1
, ω∨2

m2

}
, where m1, m2 are the coefficients of the highest

root ξ in α−basis (2). The subset Fs ⊂ F, which contains points of F that are not stabilized by any
reflection corresponding to a short root, is called the short fundamental domain Fs. The subset Fl ⊂ F,
which contains points of F that are not stabilized by any reflection corresponding to a long root or by
r0, is called the long fundamental domain Fl .

The hyperplane orthogonal to the highest root and containing the origin of R2, divides the roots in
the root system W∆ into two subsets: the set of positive roots, which contains all simple roots, and the
set of negative roots. The half-sum of the positive roots is the vector denoted $. For all three cases it is
given by

$ = ω1 + ω2. (3)
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The vectors $s, $l which are halves of the sums of the positive short or long roots, respectively,
are given for C2 and G2 as follows,

C2 : $s = ω1, $l = ω2,

G2 : $s = ω2, $l = ω1.
(4)

2.3. Dual Affine Weyl Group

The set of coroots ∆∨ = (α∨1 , α∨2 ), viewed as a set of simple roots by its own right, also generates
the identical Weyl group W. The system of vectors W∆∨ is a root system and contains the highest dual
root η ∈ W∆∨. These highest roots, which can again be expressed as combinations of simple roots
with natural coefficients η = m∨1 α1 + m∨2 α2, are given for all three cases as follows:

A2 : η = α∨1 + α∨2 , C2 : η = α∨1 + 2α∨2 , G2 : η = 3α∨1 + 2α∨2 . (5)

The dual affine reflection r∨0 with respect to the highest dual root is given by

r∨0 x = rη x +
2η

〈η, η〉 , rη x = x− 2〈x, η〉
〈η, η〉 η , x ∈ R2 .

By adding the dual affine reflection r∨0 to the set of generators {r1, r2} one obtains the dual affine
Weyl group Ŵaff, see [19]. The dual affine Weyl group Ŵaff consists of transformations of R2 from W
and of shifts by vectors from the root lattice Q; it holds that Ŵaff = Q oW.

The dual fundamental domain F∨ of the action of Ŵaff on R2 is a triangle with vertices{
0, ω1

m∨1
, ω2

m∨2

}
, where m∨1 , m∨2 are the coefficients (5) of the highest dual root η in α∨−basis, η =

m∨1 α∨1 + m∨2 α∨2 . The subset Fs∨ ⊂ F∨, which contains points of F∨ that are not stabilized by any
reflection corresponding to a short root or by r∨0 , is called the dual short fundamental domain Fs∨.
The subset Fl∨ ⊂ F∨, which contains points of F∨ that are not stabilized by any reflection corresponding
to a long root, is called the dual long fundamental domain Fl∨.

3. Orbit Functions and Corresponding Characters

3.1. Orbit Functions and Characters of Two Variables

Each of the four types of special functions, which correspond to the Weyl groups, induces a family
of orthogonal polynomials. For the three types of orbit functions which are not symmetric, there is
a symmetric character function. These character functions then generate the family of orthogonal
polynomials. The functions in the family of symmetric C−functions Φλ : R2 → C are parametrized by
λ ∈ P+ and given explicitly [25] as

Φλ(x) = ∑
w∈W

e2πi〈wλ, x〉, x ∈ R2, λ ∈ P+ . (6)

The functions in the family of antisymmetric orbit S−functions [26] are labeled by λ + $ and have
the explicit form

ϕλ+$(x) = ∑
w∈W

(det w)e2πi〈w(λ+$), x〉 , x ∈ R2, λ ∈ P+ . (7)

The corresponding symmetric character functions χλ are given by the Weyl character formula,

χλ(x) =
ϕλ+$(x)

ϕ$(x)
, λ ∈ P+.
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Two types of sign homomorphisms [2] determine two additional families of functions for the
algebras C2 and G2. The short sign homomorphism σs : W → {±1} is defined by its values on the
generators rα, α ∈ ∆ of W. To the rα of the short simple root α is assigned −1; to the rα of the long
simple root α is assigned 1. The long sign homomorphism σl is given conversely, assigning the value
−1 to the rα of the long simple root α. The short homomorphism induces a family of Ss−functions,
which are labeled by λ + $s and are of the explicit form

ϕs
λ+$s(x) = ∑

w∈W
σs(w)e2πi〈w(λ+$s), x〉, x ∈ R2, λ ∈ P+.

The corresponding symmetric short character functions χs
λ are given as

χs
λ(x) =

ϕs
λ+$s(x)

ϕs
$s(x)

, λ ∈ P+.

The long homomorphism induces a family of Sl−functions, which are labeled by λ + $l and are
of the explicit form

ϕl
λ+$l (x) = ∑

w∈W
σl(w)e2πi〈w(λ+$l), x〉, x ∈ R2, λ ∈ P+.

The corresponding symmetric long character functions χl
λ are given as

χl
λ(x) =

ϕl
λ+$l (x)

ϕl
$l (x)

, λ ∈ P+.

For λ = aω1 + bω2 and for x = x1α∨1 + x2α∨2 , the inner product is equal to:

〈λ, x〉 = 〈aω1 + bω2, x1α∨1 + x2α∨2 〉 = ax1 + bx2. (8)

3.2. Orbit Functions of A2

In this section, we work out the C−function (6) and the S−functions (7) of A2 relative to the
α∨−basis (x1, x2) and to the ω−basis (a, b). Since the functions Φλ(x) and ϕλ(x) differ only by signs
of certain terms, we write them together, understanding that the upper signs refer to Φλ(x), while the
lower ones belong to ϕλ(x):

cos (2π((a+b)x1−ax2)) ± cos (2π(bx1+ax2)) ± cos (2π((a+b)x1−bx2))

+ cos (2π(ax1+bx2)) ± cos (2π(−ax1+(a+b)x2)) + cos (2π(−bx1+(a+b)x2))

− i [sin (2π((a+b)x1−bx2)) ± sin (2π(bx1+ax2)) ∓ sin (2π((a+b)x1−bx2))

− sin (2π(ax1+bx2)) ∓ sin (2π(−ax1+(a+b)x2)) + sin (2π(−bx1+(a+b)x2))] .

(9)

There is another difference between Φλ(x) and ϕλ(x) that is not visible from (9). The weight
coordinates a and b have a different range,

Φ(a,b)(x) : a, b ∈ Z≥0 ; ϕ(a,b)(x) : a, b ∈ N .

3.3. Orbit Functions of C2

Here we present the C−, S−, Ss−, and Sl−functions of C2. The coordinates (x1, x2) are given
relative to the α∨−basis, and the weight (a, b) in ω−basis of C2. The C− and S−functions of C2 differ
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only by signs of several terms. The upper sign belongs to Φ(a,b)(x1, x2), while the lower sign is from
ϕ(a,b)(x1, x2):

2[cos(2π((a + 2b)x1 + (−a− b)x2))± cos(2π((a + 2b)x1 − bx2))

± cos(2π(−ax1 + (a + b)x2)) + cos(2π(ax1 + bx2)] .

Range of the weight coordinates differ for Φ(a,b)(x1, x2) and for ϕ(a,b)(x1, x2). It is due to the
presence of $ = (1, 1) in (a, b) of ϕ(a,b)(x1, x2) and to its absence in Φ(a,b)(x1, x2).

The Ss−, and Sl−functions of C2 differ only by signs of several terms. The upper sign belongs to
ϕs
(a,b)(x1, x2), while the lower sign is from ϕl

(a,b)(x1, x2):

− 2[cos(2π((a + 2b)x1 + (−a− b)x2))∓ cos(2π((a + 2b)x1 − bx2))

± cos(2π(−ax1 + (a + b)x2)) − cos(2π(ax1 + bx2)].

Ranges of (a, b) in ϕs
(a,b)(x1, x2) and in ϕl

(a,b)(x1, x2) differ because the first contains $s = (1, 0)

while the second contains $l = (0, 1). One has

ϕs
(a,b)(x1, x2) : a ∈ N, b ∈ Z≥0; ϕl

(a,b)(x1, x2) : a ∈ Z≥0, b ∈ N .

3.4. Orbit Functions of G2

The C−, S−, Ss−, and Sl−functions of G2 are presented here. The coordinates (x1, x2) are given
relative to the α∨−basis, and the weight (a, b) in ω−basis of G2. As in the previous cases, the C−
and S−functions of G2 differ only by signs of several terms. The upper sign belongs to Φ(a,b)(x1, x2),
while the lower sign is from ϕ(a,b)(x1, x2):

2[cos(2π((a + b)x1 + (−3a− 2b)x2)) + cos(2π(−ax1 − bx2))

+ cos(2π((2a + b)x1 + (−3a− b)x2)) ± cos(2π(ax1 + (−3a− b)x2))

± cos(2π((2a + b)x1 + (−3a− 2b)x2))± cos(2π((a + b)x1 − bx2))].

Also in this case, the ranges of admissible values of a and b are different for the two functions. Namely

Φ(a,b)(x1, x2) : a, b ∈ Z≥0; ϕ(a,b)(x1, x2) : a, b ∈ N .

The Ss−, and Sl−functions of G2 also differ only by signs of several terms. The upper sign belongs
to ϕs

(a,b)(x1, x2), while the lower one is from ϕl(x1, x2):

2i[sin(2π((a + b)x1 + (−3a− 2b)x2)) − sin(2π(−ax1 − bx2))

± sin(2π((2a + b)x1 + (−3a− 2b)x2))∓ sin(2π(ax1 + (−3a− b)x2))

− sin(2π((2a + b)x1 + (−3a− b)x2)) ∓ sin(2π((a + b)x1 − bx2))].

As in the C2 case, the ranges of (a, b) in ϕs
(a,b)(x1, x2) and in ϕl

(a,b)(x1, x2) differ because the first

contains $s = (0, 1) while the second contains $l = (1, 0). One has

ϕs
(a,b)(x1, x2) : a ∈ Z≥0, b ∈ N; ϕl

(a,b)(x1, x2) : a ∈ N, b ∈ Z≥0 .

3.5. Discrete Orthogonality of Orbit Functions

Discrete orthogonality of the orbit functions represents a starting point for the discrete
orthogonality of the corresponding polynomials. First, we choose some arbitrary natural number
M ∈ N which controls the density of the grids appearing in the discrete orthogonality relations [19].
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Please note that the discrete calculus of the orbit functions is performed over the finite quotient group
1
M P∨/Q∨ and the finite complement set of weights is taken as the quotient group P/MQ. The four
finite sets, on which the discrete calculus of the four types of orbit functions is restricted, are denoted
FM, F̃M, Fs

M and Fl
M and defined as intersections of 1

M P∨/Q∨ with the corresponding subsets of the
fundamental domain:

FM =
1
M

P∨/Q∨ ∩ F , F̃M =
1
M

P∨/Q∨ ∩ F◦ ,

Fs
M =

1
M

P∨/Q∨ ∩ Fs , Fl
M =

1
M

P∨/Q∨ ∩ Fl .
(10)

The point sets FM and F̃M are depicted for the A2 case in [27], the four point sets are FM, F̃M, Fs
M

and Fl
M are illustrated for the C2 case in [19,21] and for the G2 case in [18,28].

The four complementary finite sets of weights, which label the four types of orbit functions,
are denoted ΛM, Λ̃M, Λs

M and Λl
M and defined as intersections of P/MQ with the corresponding

subsets of the magnified dual fundamental domain:

ΛM = P/MQ ∩MF∨ , Λ̃M = P/MQ ∩MF∨◦ ,

Λs
M = P/MQ ∩MFs∨ , Λl

M = P/MQ ∩MFl∨ .
(11)

The sizes of orbits and stabilizers on the maximal torus are also needed for the formulation of
discrete orthogonality. For x ∈ R2/Q∨, we denote the orbit of the group W and its size by

Wx =
{

wx ∈ R2/Q∨ | w ∈W
}

, ε(x) = |Wx|, (12)

and for any λ ∈ P/MQ, we denote the stabilizer Stab∨(λ) of λ in W and its size by

Stab∨(λ) = {w ∈W | wλ = λ} , h(λ) = |Stab∨(λ)|. (13)

Lastly, we recall the well known numbers of the elements of the Weyl group |W| and the
determinant of the Cartan matrix c that appear in discrete orthogonality,

A2 : |W| = 6, c = 3; C2 : |W| = 8, c = 2; G2 : |W| = 12, c = 1 .

Following [19,21], the discrete orthogonality of the four types of orbit functions can be summarized
as follows

∑
x∈FM

ε(x)Φλ(x)Φλ′(x) = c |W|M2h(λ)δλ,λ′ , λ, λ′ ∈ ΛM, (14)

∑
x∈F̃M

ϕλ(x)ϕλ′(x) = cM2δλ,λ′ , λ, λ′ ∈ Λ̃M, (15)

∑
x∈Fs

M

ε(x)ϕs
λ(x)ϕs

λ′(x) = c |W|M2h(λ)δλ,λ′ , λ, λ′ ∈ Λs
M, (16)

∑
x∈Fl

M

ε(x)ϕl
λ(x)ϕl

λ′(x) = c |W|M2h(λ)δλ,λ′ , λ, λ′ ∈ Λl
M. (17)

Here the overline stands for complex conjugation.
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4. Orthogonal Polynomials

4.1. Four Types of Orthogonal Polynomials of Two Variables

The families of orthogonal polynomials are built over four types of functions, C−, S−, Ss−,
and Sl−functions, and the three character functions χλ, χs

λ and χl
λ. The polynomial variables X1, X2

are the lowest character functions χω1 , χω2 for the cases C2, G2, and are taken as Re χω1 , Im χω1 for
the case A2, where the character values are complex. Two families of orthogonal polynomials Tλ and
Uλ, parametrized by λ ∈ P+ and defined for all cases as two variable generalizations of Chebyshev
polynomials of the first and second kind, are induced by the relations

Tλ(X1(x), X2(x)) = Φλ(x), Uλ(X1(x), X2(x)) = χλ(x), x ∈ R2.

Two additional families of orthogonal polynomials Us
λ and Ul

λ, parametrized by λ ∈ P+ and
defined for C2 and G2, are induced by the relations

Us
λ(X1(x), X2(x)) = χs

λ(x), Ul
λ(X1(x), X2(x)) = χl

λ(x), x ∈ R2.

In the following sections, we present the explicit forms of the polynomial variables and recursion
relations for the construction of the polynomials. These relations are needed for the construction
of point sets on which the discrete orthogonality is defined, subsequently. A crucial property is the
dependence of polynomial variables X1(x) and X2(x) on the variables x = x1α∨1 + x2α∨2 . It allows us
to transform the lattice points in R2 to the discrete points in the space of the polynomials, where they
do not form a lattice fragment. Then, we carry over the discrete orthogonality of the orbit functions to
the discrete orthogonality of the polynomials.

4.2. Orthogonal Polynomials of A2

The polynomial variables X1 = Re χω1 and X2 = Im χω1 can be written down as follows, using the
explicit form of C−functions:

X1(x1, x2) =
1
4 (Φ(1,0)(x1, x2) + Φ(0,1)(x1, x2))

= cos (2πx1) + cos (2π(x1 − x2)) + cos (2πx2), (18)

X2(x1, x2) =
1
4i (Φ(1,0)(x1, x2)−Φ(0,1)(x1, x2))

= sin (2πx1)− sin (2π(x1 − x2))− sin (2πx2). (19)

4.2.1. Recurrence Relations for T−polynomials of A2.

Generic recursion relations for T−polynomials of A2 are for k, l ≥ 1 of the following form:

T(k+1,l) =(X1 + iX2)T(k,l) −T(k−1,l+1) −T(k,l−1) ,

T(k,l+1) =(X1 − iX2)T(k,l) −T(k+1,l−1) −T(k−1,l) ,

T(k+1,0) =(X1 + iX2)T(k,0) − 2T(k−1,1) ,

T(0,l+1) =(X1 − iX2)T(0,l) − 2T(1,l−1) .

(20)

The lowest T−polynomials, that are needed to solve the recursion relations (20), are presented
in Table 1.
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Table 1. The lowest irreducible T−polynomials of A2.

(k, l) TTT(k,l)(X1, X2) = TTT(l,k)(X1, X2)

(0, 0) 6
(1, 0) 2X1 + 2iX2
(1, 1) X2

1 + X2
2−3

(2, 0) 2X2
1 − 2X2

2 + 4iX1X2 − 4X1 + 4iX2
(3, 0) 2X3

1 − 2iX3
2 − 6X1X2

2 + 6iX2
1 X2 − 6X2

1 − 6X2
2 + 6

(2, 1) X3
1 + iX3

2 + X1X2
2 + iX2

1 X2 − 2X2
1 + 2X2

2 + 4iX1X2 − X1 − iX2

4.2.2. Recurrence Relations for U−polynomials of A2.

Generic recursion relations for U−polynomials of A2 are for k, l ≥ 1 of the following form:

U(k+1,l) =(X1 + iX2)U(k,l) −U(k−1,l+1) −U(k,l−1),

U(k,l+1) =(X1 − iX2)U(k,l) −U(k+1,l−1) −U(k−1,l),

U(k+1,0) =(X1 + iX2)U(k,0) −U(k−1,1),

U(0,l+1) =(X1 − iX2)U(0,l) −U(1,l−1) .

(21)

The lowest U−polynomials, needed in (21), are presented in Table 2.

Table 2. The irreducible U−polynomials of A2 of degree k + l ≤ 2.

(k, l) UUU(k,l)(X1, X2) = UUU(l,k)(X1, X2)

(0, 0) 1
(1, 0) X1 + iX2
(1, 1) X2

1 + X2
2−1

(2, 0) X2
1 − X2

2 + 2iX1X2 − X1 + iX2

4.3. Orthogonal Polynomials of C2

In this section, we present in coordinates (X1, X2) the recursion relations and the lowest orthogonal
polynomials generated by the Weyl group of C2. Having the scalar product (8), we can write explicit
expressions for the orbit functions in X1 and X2:

X1(x1, x2) =
1
2 Φ(1,0)(x1, x2) = 2 cos (2πx1) + 2 cos (2π(x1 − x2)) ,

X2(x1, x2) =
1
2 Φ(0,1)(x1, x2) + 1 = 2 cos (2πx2) + 2 cos(2π(2x1 − x2)) + 1 .

(22)

4.3.1. Recurrence Relations for T−polynomials of C2.

Generic recursion relations for T−polynomials of C2 are of the form

T(k+1,l) = X1T(k,l) −T(k−1,l) −T(k+1,l−1) −T(k−1,l+1),

T(k+1,0) = X1T(k,0) −T(k−1,0) − 2T(k−1,1),

T(0,l+1) = X2T(0,l) −T(0,l−1) − 2T(2,l−1) −T(0,l),

T(1,l+1) = X2T(1,l) − 2T(1,l) −T(1,l−1) −T(3,l−1),

(23)

for k ≥ 1, l ≥ 1 and

T(k,l+1) = X2T(k,l) −T(k,l−1) −T(k+2,l−1) −T(k−2,l+1) −T(k,l), (24)

for k ≥ 2, l ≥ 1. The lowest T−polynomials, necessary to solve all the recursions above, are presented
in Table 3.
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Table 3. The irreducible T−polynomials of C2.

(k, l) TTT(k,l)(X1, X2)

(0, 0) 8
(1, 0) 2X1
(0, 1) 2X2 − 2
(1, 1) X1X2−3X1

4.3.2. Recurrence Relations for U−polynomials of C2.

Generic recursion relations for U−polynomials of C2 are of the form

U(k+1,l) = X1U(k,l) −U(k−1,l) −U(k+1,l−1) −U(k1,l+1),

U(k+1,0) = X1U(k,0) −U(k−1,0) −U(k−1,1),

U(0,l+1) = X2U(0,l) −U(0,l−1) −U(2,l−1),

U(1,l+1) = X2U(1,l) −U(1,l−1) −U(3,l−1) −U(1,l),

(25)

for k ≥ 1, l ≥ 1 and

U(k,l+1) = X2U(k,l) −U(k,l−1) −U(k+2,l−1) −U(k−2,l+1) −U(k,l), (26)

for k ≥ 2, l ≥ 1. The lowest U−polynomials are presented in Table 4.

Table 4. The irreducible U−polynomials of C2 degree k + l ≤ 2.

(k, l) UUU(k,l)(X1, X2)

(0, 0) 1
(0, 1) X2
(1, 0) X1
(1, 1) X1X2 − X1

4.3.3. Recurrence Relations for Ul−polynomials of C2.

Generic recursion relations for Ul−polynomials of C2 are of the form

Ul
(k+1,l) =X1Ul

(k,l)−U
l
(k−1,l)−U

l
(k+1,l−1)−U

l
(k−1,l+1),

for k ≥ 1, l ≥ 1 and

Ul
(k,l+1) =X2Ul

(k,l)−U
l
(k,l−1)−U

l
(k+2,l−1)−U

l
(k−2,l+1)−U

l
(k,l),

Ul
(k+1,0) =X1Ul

(k,0) −Ul
(k−1,1) −Ul

(k−1,0),

Ul
(0,l+1) =X2Ul

(0,l)−U
l
(0,l−1)−2Ul

(2,l−1)−U
l
(0,l),

Ul
(1,l+1) =X2Ul

(1,l)−2Ul
(1,l)−U

l
(1,l−1)−U

l
(3,l−1),

for k ≥ 2, l ≥ 1. The lowest Ul−polynomials necessary to solve all above recursions are presented
in Table 5.
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Table 5. The irreducible Ul−polynomials of C2.

(k, l) UUUl
(k,l)(X1, X2)

(0, 0) 1
(1, 0) 1

2 X1
(0, 1) X2 − 1
(1, 1) 1

2 X1X2 − X1

4.3.4. Recurrence Relations for Us−polynomials of C2.

Generic recursion relations for Us−polynomials of C2 are of the form

Us
(k+1,l) =X1Us

(k,l) −Us
(k−1,l) −Us

(k+1,l−1) −Us
(k−1,l+1),

Us
(k+1,0) =X1Us

(k,0)−U
s
(k−1,0)−2Us

(k−1,1),

Us
(0,l+1) =X2Us

(0,l)−U
s
(0,l−1)−U

s
(2,l−1),

Us
(1,l+1) =X2Us

(1,l) −Us
(1,l) −Us

(1,l−1) −Us
(3,l−1),

for k ≥ 1, l ≥ 1 and

Us
(k,l+1) =X2Us

(k,l) −Us
(k,l−1) −Us

(k+2,l−1) −Us
(k−2,l+1) −Us

(k,l),

for k ≥ 2, l ≥ 1. The lowest Us−polynomials necessary to solve all above recursions are presented
in Table 6.

Table 6. The irreducible Us−polynomials of C2.

(k, l) UUUs
(k,l)(X1, X2)

(0, 0) 1
(1, 0) X1
(0, 1) 1

2 X2 +
1
2

(1, 1) 1
2 X1X2 − 1

2 X1

4.4. Orthogonal Polynomials of G2

In this section, we present recursion relations and the lowest orthogonal polynomials generated
from the group G2 in new coordinates (X1, X2). Using the scalar product (8), we can write the orbit
functions in α∨−basis in an explicit form:

X1(x1, x2) =
1
2 Φ(1,0)(x1, x2) +

1
2 Φ(0,1)(x1, x2) + 2

=2 + 2 cos (2πx1) + 2 cos (2π(x1 − 3x2)) + 2 cos (2π(2x1 − 3x2))

+ 2 cos (2π(x1 − 2x2)) + 2 cos (2π(x1 − x2)) + 2 cos (2πx2), (27)

X2(x1, x2) =
1
2 Φ(0,1)(x1, x2) + 1

=1 + 2 cos (2π(x1 − 2x2)) + 2 cos (2π(x1 − x2)) + 2 cos (2πx2) . (28)

4.4.1. Recurrence Relations for T−polynomials of G2.

Generic recursion relations for T−polynomials of G2 are of the form

T(k+1,l) =X1T(k,l)−T(k−1,l)−T(k+1,l−3)−T(k−1,l+3)−T(k+2,l−3)−T(k−2,l+3)

−T(k,l−1)−T(k+1,l−1)−T(k−1,l+1)−T(k,l+1)−T(k−1,l+2)−T(k+1,l−2)−2T(k,l),
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for k ≥ 2, l ≥ 3,

T(k,l+1) =X2T(k,l)−T(k,l−1)−T(k+1,l−1)−T(k−1,l+1)−T(k+1,l−2)−T(k−1,l+2)−T(k,l),

for k ≥ 1, l ≥ 2 and

T(k+1,0) =X1T(k,0)−T(k−1,0)−2T(k,0)−2T(k−1,1)−2T(k,1)−2T(k−1,2)−2T(k−1,3)−2T(k−2,3),

T(k+1,1) =X1T(k,1)−T(k−1,1)−T(k−2,4)−T(k−1,4)−2T(k,2)−2T(k−1,2)−T(k−1,3)

−T(k+1,0)−3T(k,1)−T(k,0),

T(k+1,2) =X1T(k,2)−T(k+1,0)−T(k−1,5)−T(k−2,5)−T(k−1,4)−T(k−1,3)−T(k,3)−T(k−1,2)

−2T(k,2)−2T(k,1)−2T(k+1,1),

T(0,l+1) =X2T(0,l)−T(0,l)−T(0,l−1)−2T(1,l−1)−2T(1,l−2),

for k ≥ 2, l ≥ 2. The lowest T−polynomials necessary to solve all above recursions are presented
in Table 7.

Table 7. The irreducible T−polynomials of G2.

(k, l) TTT(k,l)(X1, X2)

(0, 0) 12
(0, 1) 2X2−2
(1, 0) 2X1−2X2−2
(0, 2) 2X2

2−4X1−4X2−2
(1, 1) X1X2−3X2

2+3X1+2X2+5
(2, 0) 2X2

1−4X3
2+8X1X2+2X2

2+4X1+8X2−2
(1, 2) X1X2

2−2X2
1−X3

2−X1X2+4X2
2−2X1−X2−2

(2, 1) X2
1 X2−2X4

2+3X1X2
2+X2

1+4X3
2−2X1X2+2X2

2−3X1−6X2−2
(2, 2) X2

1 X2
2−2X5

2−2X3
1+8X1X3

2−10X2
1 X2+3X4

2−9X2
1+4X3

2−16X1X2−8X2
2−4X1+2X2+5

4.4.2. Recurrence Relations for U−polynomials of G2.

Generic recursion relations for U−polynomials of G2 are of the form

U(k+1,l) =X1U(k,l)−U(k−1,l)−U(k+1,l−3)−U(k−1,l+3)−U(k+2,l−3)−U(k−2,l+3)

−U(k,l−1)−U(k+1,l−1)−U(k−1,l+1)−U(k,l+1)−U(k−1,l+2)−U(k+1,l−2)−2U(k,l),

for k ≥ 2, l ≥ 3

U(k,l+1) =X2U(k,l)−U(k,l−1)−U(k+1,l−1)−U(k−1,l+1)−U(k+1,l−2)−U(k−1,l+2)−U(k,l),

for k ≥ 1, l ≥ 2

U(k+1,0) =X1U(k,0)−U(k−1,0)−U(k−2,3)−U(k−1,3)−U(k−1,2)−U(k,0),

U(k+1,1) =X1U(k,1)−U(k−1,2)−U(k−1,1)−U(k−1,4)−U(k−1,3)−U(k,2)−U(k−2,4)−2U(k,1),

U(k+1,2) =X1U(k,2)−U(k−1,1)−U(k−1,0)−U(k,1)−U(k−1,2)−U(k−1,5)−U(k−1,4)−U(k,3)

−U(k−2,5)−U(k−1,3)−2U(k,2),

U(0,l+1) =X2U(0,l)−U(1,l−1)−U(0,l)−U(1,l−2)−U(1,l−1),

for k ≥ 2, l ≥ 2. The lowest U−polynomials necessary to solve all above recursions are presented
in Table 8.
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Table 8. The irreducible U−polynomials of G2.

(k, l) UUU(k,l)(X1, X2)

(0, 0) 1
(0, 1) X2
(1, 0) X1
(0, 2) X2

2−X1−X2−1
(1, 1) X1X2−X2

2+X1+1
(2, 0) X1+X2

1+2X2+2X1X2−X3
2

(1, 2) X1X2
2−X1−X2

1+X2+X2
2−X3

2
(2, 1) X2

1 X2+X2
1−X2+2X2

2+X1X2
2+X3

2−X4
2−1

(2, 2) X2
1 X2

2+−2X2
1−X3

1−X2−4X1X2−2X2
1 X2−4X2

2−X1X2
2+2X3

2+2X1X3
2+2X4

2−X5
2+1

4.4.3. Recurrence Relations for Ul−polynomials of G2.

Generic recursion relations for Ul−polynomials of G2 are of the form

Ul
(k+1,l) =X1Ul

(k,l)−U
l
(k−1,l)−U

l
(k+1,l−3)−U

l
(k−1,l+3)−U

l
(k+2,l−3)−U

l
(k−2,l+3)

−Ul
(k,l−1)−U

l
(k+1,l−1)−U

l
(k−1,l+1)−U

l
(k,l+1)−U

l
(k−1,l+2)−U

l
(k+1,l−2)−2Ul

(k,l),

for k ≥ 2, l ≥ 3,

Ul
(k,l+1) =X2Ul

(k,l)−U
l
(k,l−1)−U

l
(k+1,l−1)−U

l
(k−1,l+1)−U

l
(k+1,l−2)−U

l
(k−1,l+2)−U

l
(k,l),

for k ≥ 1, l ≥ 2 and

Ul
(k+1,0) =X1Ul

(k,0)−U
l
(k−1,0)−2Ul

(k,0)−2Ul
(k−1,1)−2Ul

(k,1)−2Ul
(k−1,2)−2Ul

(k−1,3)−2Ul
(k−2,3),

Ul
(k+1,1) =X1Ul

(k,1)−U
l
(k−1,1)−U

l
(k−2,4)−U

l
(k−1,4)−2Ul

(k,2)−2Ul
(k−1,2)−U

l
(k−1,3)

−Ul
(k+1,0)−3Ul

(k,1)−U
l
(k,0),

Ul
(k+1,2) =X1Ul

(k,2)−U
l
(k+1,0)−U

l
(k−1,5)−U

l
(k−2,5)−U

l
(k−1,4)−U

l
(k−1,3)−U

l
(k,3)−U

l
(k−1,2)

−2Ul
(k,2)−2Ul

(k,1)−2Ul
(k+1,1),

Ul
(0,l+1) =X2Ul

(0,l)−U
l
(1,l−1)−U

l
(0,l)−U

l
(1,l−2)−U

l
(0,l−1),

for k ≥ 2, l ≥ 2. The lowest Ul−polynomials necessary to solve all above recursions are presented
in Table 9.

Table 9. The irreducible Ul−polynomials of G2.

(k, l) UUUl
(k,l)(X1, X2)

(0, 0) 1
(0, 1) 1

2 X2− 1
2

(1, 0) X1−X2+1
(0, 2) 1

2 X2
2−X1− 1

2 X2−1
(1, 1) 1

2 X1X2−X2
2+

1
2 X1+X2+1

(2, 0) X2
1−X3

2+X1X2+X2
2+X1+2X2−1

(1, 2) 1
2 X1X2

2−X2
1−

1
2 X3

2+
3
2 X2

2−
3
2 X1− 1

2 X2− 1
2

(2, 1) 1
2 X2

1 X2− 1
2 X4

2+
1
2 X2

1+
3
2 X3

2−
1
2 X1X2+

1
2 X1−2X2

(2, 2) 1
2 X2

1 X2
2−

1
2 X5

2−X3
1+

3
2 X1X3

2−2X2
1 X2+X4

2+
1
2 X1X2

2−
5
2 X2

1+
1
2 X3

2−4X1X2− 3
2 X2

2−X1+
1
2
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4.4.4. Recurrence Relations for Us−polynomials of G2.

Generic recursion relations for Us−polynomials of G2 are of the form

Us
(k+1,l) =X1Us

(k,l)−U
s
(k−1,l)−U

s
(k+1,l−3)−U

s
(k−1,l+3)−U

s
(k+2,l−3)−U

s
(k−2,l+3)

−Us
(k,l−1)−U

s
(k+1,l−1)−U

s
(k−1,l+1)−U

s
(k,l+1)−U

s
(k−1,l+2)−U

s
(k+1,l−2)−2Us

(k,l),

for k ≥ 2, l ≥ 3,

Us
(k,l+1) =X2Us

(k,l)−U
s
(k,l−1)−U

s
(k+1,l−1)−U

s
(k−1,l+1)−U

s
(k+1,l−2)−U

s
(k−1,l+2)−U

s
(k,l),

for k ≥ 1, l ≥ 2 and

Us
(k+1,0) =X1Us

(k,0)−U
s
(k−1,0)−U

s
(k−2,3)−U

s
(k−1,3)−U

s
(k−1,2)−U

s
(k,0),

Us
(k+1,1) =X1Us

(k,1)−U
s
(k−1,4)−U

s
(k−2,4)−U

s
(k−1,3)−U

s
(k−1,2)−U

s
(k,2)−U

s
(k−1,1)−2Us

(k,1),

Us
(k+1,2) =X1Us

(k,2)−U
s
(k,3)−U

s
(k+1,1)−U

s
(k−1,5)−U

s
(k−1,4)−U

s
(k−2,5)−U

s
(k+1,0)−U

s
(k−1,3)

−Us
(k−1,2)−U

s
(k,1)−2Us

(k,2),

Us
(0,l+1) =X2Us

(0,l)−U
s
(0,l)−U

s
(0,l−1)−2Us

(1,l−1)−2Us
(1,l−2),

for k ≥ 2, l ≥ 2. The lowest Us−polynomials necessary to solve all above recursions are presented
in Table 10.

Table 10. The irreducible Us−polynomials of G2.

(k, l) UUUs
(k,l)(X1, X2)

(0, 0) 1
(0, 1) X2+1
(1, 0) 1

2 X1+
1
2 X2− 1

2
(0, 2) X2

2−X1−X2−1
(1, 1) 1

2 X1X2− 1
2 X2− 1

2 X2
2+X1

(2, 0) 1
2 X2

1−X3
2+

5
2 X1X2+

3
2 X1+X2

(1, 2) 1
2 X1X2

2−
1
2 X2

1−
1
2 X3

2+X2+
1
2

(2, 1) 1
2 X2

1 X2−X4
2+2X1X2

2+
1
2 X2

1+
1
2 X3

2+X1X2+
3
2 X2

2−X1− 1
2 X2− 1

2
(2, 2) 1

2 X2
1 X2

2−X5
2−

1
2 X3

1+3X1X3
2−

5
2 X2

1 X2+
3
2 X4

2−X1X2
2−2X2

1+2X3
2−5X1X2−3X2

2−
1
2 X1− 1

2 X2+1

5. Discrete Orthogonality

5.1. Sets of Points

The discrete orthogonality of the four types of polynomials is performed on the corresponding
subsets (10) of the finite set FM. These sets have to be transformed by a transformation corresponding
to the polynomial variables X1 and X2. Firstly, let us introduce an index set IM of triplets which labels
the points of FM,

IM =
{
[u0, u1, u2] ∈ (Z≥0)3 | u0 + m1u1 + m2u2 = M

}
,

with m1, m2 being the coefficients of the highest root ξ. Then the representative points of the set FM
can be expressed as [19]

FM =

{
u1

M
ω∨1 +

u2

M
ω∨2

∣∣∣∣ [u0, u1, u2] ∈ IM

}
.

Similarly defined are index sets ĨM, Is
M and Il

M, which label the points of F̃M, Fs
M and Fl

M,
respectively. The form of these index sets can be for all cases deduced from [19,21].
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For each label j = [u0, u1, u2] ∈ IM, determining a point xj =
u1
M ω∨1 + u2

M ω∨2 ∈ FM, we define
a transformed point Zj by

Zj = (X1(xj), X2(xj)) ∈ R2. (29)

We also assign to each j ∈ IM the size of the orbit ε j of xj ∈ FM, defined by (12),

ε j = ε(xj).

For all cases, the coefficients ε j are listed in Table 11.

Table 11. Orders of orbits ε j, j ∈ IM for the cases A2, C2 and G2. It is assumed that u0, u1, u2 6= 0.

j ∈ IM A2 C2 G2

[u0, u1, u2] 6 8 12
[0, u1, u2] 3 4 6
[u0, 0, u2] 3 4 6
[u0, u1, 0] 3 4 6
[0, 0, u2] 1 1 2
[0, u1, 0] 1 2 3
[u0, 0, 0] 1 1 1

All transformed points are then collected in the sets FM, F̃M, Fs
M and Fl

M,

FM =
{

Zj | j ∈ IM
}

, F̃M =
{

Zj | j ∈ ĨM

}
,

Fs
M =

{
Zj | j ∈ Is

M
}

, Fl
M =

{
Zj | j ∈ Il

M

}
.

The numbers of generalized Chebyshev nodes in each of the sets coincide with the corresponding
numbers of points in the sets FM, F̃M, Fs

M and Fl
M from [19,21]. The explicit counting formulas are

derived in Theorem 3.3, Proposition 3.5 in [19] and Theorem 5.2 in [21].
Please note that applying the transform (29) to any x ∈ F one obtains the transformed domain

F ⊂ R2 of F,
F =

{
(X1(x), X2(x)) ∈ R2 | x ∈ F

}
,

and indeed FM ⊂ F.

5.2. General Orthogonality Relations

The general orthogonality relations of bivariate polynomials generalize the standard discrete
weighted orthogonality relations of the Chebyshev polynomials from [29]. The halving of the first
and last boundary terms in the discrete sums in [29] is generalized to bivariate cases by using the
triplets from LM and the corresponding orbit coefficients ε j. Before the orthogonality relations can be
made explicit, it is necessary to reformulate the discrete orthogonality relations of orbit functions to
the corresponding polynomials. Let us define the following three polynomials J(X1, X2), Js(X1, X2)

and Jl(X1, X2) by the relations

J(X1(x), X2(x)) =
∣∣ϕ$(x)

∣∣2 , Js(X1(x), X2(x)) = |ϕs
$s(x)|2,

Jl(X1(x), X2(x)) = |ϕl
$l (x)|2, x ∈ R2.

Since the three functions
∣∣ϕ$(x)

∣∣2, |ϕs
$s(x)|2, |ϕl

$l (x)|2 are W−invariant sums of exponentials,
these polynomials in terms of X1 and X2 indeed exist [1]. The calculation procedure for the
weight polynomials takes advantage of the product-to-sum decompositions of all four types of orbit
functions [21,25]. Each function

∣∣ϕ$(x)
∣∣2 is decomposed as a product ϕ$(x)ϕ−$(x) into a sum of

C−functions (6) that are subsequently expressed in the form of the T−polynomials.
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Using the resulting polynomials J, Js and Jl as weight functions to cancel out the denominators of
characters in discrete orthogonality relations (14)–(17), we obtain new discrete orthogonality relations
for the polynomials,

∑
j∈IM

ε jTλ(Zj)Tλ′(Zj) =c |W|M2h(λ)δλ,λ′ , λ, λ′ ∈ ΛM, (30)

∑
j∈ ĨM

J(Zj)Uλ(Zj)Uλ′(Zj) =cM2δλ,λ′ , λ, λ′ ∈ Λ̃M − $, (31)

∑
j∈Is

M

ε j Js(Zj)Us
λ(Zj)Us

λ′(Zj) =c |W|M2h(λ + $s)δλ,λ′ , λ, λ′ ∈ Λs
M − $s, (32)

∑
j∈Il

M

ε j Jl(Zj)Ul
λ(Zj)Ul

λ′(Zj) =c |W|M2h(λ + $l)δλ,λ′ , λ, λ′ ∈ Λl
M − $l . (33)

5.3. Sets of Weights

Let us introduce an index set LM of triplets which labels the points of ΛM,

LM =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + m∨1 t1 + m∨2 t2 = M

}
,

with m∨1 , m∨2 being the coefficients of the highest dual root η. Then the representative points of the set
ΛM can be expressed as [19],

ΛM = {t1ω1 + t2ω2 | [t0, t1, t2] ∈ LM} .

Similarly are defined subsets L̃M, Ls
M and Ll

M of LM, which label the points of Λ̃M − $, Λs
M − $s

and Λl
M − $l , respectively. Explicit form of these index sets can be deduced from [19,21] and they

are detailed in the next section for all cases. For each point λk = t1ω1 + t2ω2 ∈ ΛM, labeled by
k = [t0, t1, t2] ∈ LM, we assign the size of the stabilizer hk of λk given by (13),

hk = h(λk).

For all cases, the coefficients hk are listed in Table 12.

Table 12. Orders of stabilizers hk, k ∈ LM for the cases A2, C2 and G2. It is assumed that t0, t1, t2 6= 0.

k ∈ LM A2 C2 G2

[t0, t1, t2] 1 1 1
[0, t1, t2] 2 2 2
[t0, 0, t2] 2 2 2
[t0, t1, 0] 2 2 2
[0, 0, t2] 6 4 4
[0, t1, 0] 6 8 6
[t0, 0, 0] 6 8 12

5.4. Discrete Orthogonality of A2 Polynomials

The sets of labels of points IM and ĨM are given explicitly as

IM =
{
[u0, u1, u2] ∈ (Z≥0)3 | u0 + u1 + u2 = M

}
,

ĨM =
{
[u0, u1, u2] ∈ N3 | u0 + u1 + u2 = M

}
,
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and the sets of labels of weights LM and L̃M are given as

LM =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + t2 = M

}
,

L̃M =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + t2 = M− 3

}
.

The coordinates of the points Zj in the sets FM and F̃M are obtained by using the functions (18),
(19) into substitution (29). The sets FM and F̃M are for M = 6 and M = 12 depicted in Figure 1.

-1 1 2 3

-2

-1

1

2

M = 6

X1

X2

-1 1 2 3

-2

-1

1

2

M = 12

X1

X2

Figure 1. The generalized Chebyshev nodes of the A2 polynomials for M = 6 and M = 12. The points
from the set FM are shown as the larger black dots. The points from the set F̃M are shown as the smaller
yellow dots.

Since the function ϕ(1,1)(x) is real-valued, the function
∣∣ϕ$(x)

∣∣2 is decomposed into the sum of
C−functions as∣∣∣ϕ(1,1)(x)

∣∣∣2 = ϕ(1,1)(x)ϕ(1,1)(x) = −Φ(0,0)(x) + 2Φ(1,1)(x) + Φ(2,2)(x)−Φ(3,0)(x)−Φ(0,3)(x).

Therefore, the polynomial weight function J(X1, X2) has the following form,

J(X1, X2) = −T(0,0)(X1, X2) + 2T(1,1)(X1, X2) +T(2,2)(X1, X2)−T(3,0)(X1, X2)−T(0,3)(X1, X2)

= X4
1 + X4

2 + 2X2
1X2

2 − 8X3
1 + 24X1X2

2 + 18X2
1 + 18X2

2 − 27.

The resulting orthogonality relations for the two types of polynomials are thus given as

∑
j∈IM

ε jT(t1,t2)
(Zj)T(t′1,t′2)

(Zj) =18M2h[t0,t1,t2]
δt1t′1

δt2t′2
, [t0, t1, t2], [t′0, t′1, t′2] ∈ LM,

∑
j∈ ĨM

J(Zj)U(t1,t2)
(Zj)U(t′1,t′2)

(Zj) =3M2δt1t′1
δt2t′2

, [t0, t1, t2], [t′0, t′1, t′2] ∈ L̃M.

5.5. Discrete Orthogonality of C2 Polynomials

The sets of labels of points IM and ĨM are given explicitly as

IM =
{
[u0, u1, u2] ∈ (Z≥0)3 | u0 + 2u1 + u2 = M

}
,

ĨM =
{
[u0, u1, u2] ∈ N3 | u0 + 2u1 + u2 = M

}
,
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and the sets Is
M and Il

M are given as

Is
M =

{
[u0, u1, u2] ∈ (Z≥0)3 | u1 ∈ N, u0 + 2u1 + u2 = M

}
,

Il
M =

{
[u0, u1, u2] ∈ (Z≥0)3 | u0, u2 ∈ N, u0 + 2u1 + u2 = M

}
.

The sets of labels of weights LM, L̃M, Ls
M and Ll

M are given as

LM =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + 2t2 = M

}
,

L̃M =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + 2t2 = M− 4

}
,

Ls
M =

{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + 2t2 = M− 2

}
,

Ll
M =

{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + t1 + 2t2 = M− 2

}
.

The coordinates of the points Zj in the sets FM, F̃M, Fs
M and Fl

M are obtained by using the
functions (22) into substitution (29). The sets FM, F̃M, Fs

M and Fl
M are for M = 6 and M = 12 depicted

in Figures 2 and 3.

-4 -2 2 4

-2

2

4

M = 6

X1

X2

-4 -2 2 4

-2

2

4

M = 12

X1

X2

Figure 2. The generalized Chebyshev nodes of the C2 polynomials for M = 6 and M = 12. The points
from the set FM are shown as the larger black dots. The points from the set F̃M are shown as the smaller
yellow dots.

-4 -2 2 4

-2

2

4

M = 6

X1

X2

-4 -2 2 4

-2

2

4

M = 12

X1

X2

Figure 3. The short and long sets of the generalized Chebyshev nodes of the C2 polynomials for M = 6
and M = 12. The points from the set Fs

M are depicted as the smaller green dots and the points from the
set Fl

M are depicted as the larger blue dots.
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The polynomial weight functions J(X1, X2), Js(X1, X2) and Jl(X1, X2) have the following form

J(X1, X2) =X2
1X2

2 − 4X4
1 − 4X3

2 + 22X2
1X2 − 20X2

2 − 7X2
1 − 12X2 + 36,

Js(X1, X2) =4(X2
1 − 4X2 + 4),

Jl(X1, X2) =4(X2
2 − 4X2

1 + 6X2 + 9).

The resulting orthogonality relations for the four types of polynomials are thus given as

∑
j∈IM

ε jT(t1,t2)
(Zj)T(t′1,t′2)

(Zj) =16M2h[t0,t1,t2]
δt1t′1

δt2t′2
, [t0, t1, t2], [t′0, t′1, t′2] ∈ LM,

∑
j∈ ĨM

J(Zj)U(t1,t2)
(Zj)U(t′1,t′2)

(Zj) =2M2δt1t′1
δt2t′2

, [t0, t1, t2], [t′0, t′1, t′2] ∈ L̃M,

∑
j∈Is

M

ε j Js(Zj)Us
(t1,t2)

(Zj)Us
(t′1,t′2)

(Zj) =16M2h[t0+1,t1+1,t2]
δt1t′1

δt2t′2
, [t0, t1, t2], [t′0, t′1, t′2] ∈ Ls

M,

∑
j∈Il

M

ε j Jl(Zj)Ul
(t1,t2)

(Zj)Ul
(t′1,t′2)

(Zj) =16M2h[t0,t1,t2+1]δt1t′1
δt2t′2

, [t0, t1, t2], [t′0, t′1, t′2] ∈ Ll
M.

5.6. Discrete Orthogonality of G2 Polynomials

The sets of labels of points IM and ĨM are given explicitly as

IM =
{
[u0, u1, u2] ∈ (Z≥0)3 | u0 + 2u1 + 3u2 = M

}
,

ĨM =
{
[u0, u1, u2] ∈ N3 | u0 + 2u1 + 3u2 = M

}
,

and the sets Is
M and Il

M are given as

Is
M =

{
[u0, u1, u2] ∈ (Z≥0)3 | u2 ∈ N, u0 + 2u1 + 3u2 = M

}
,

Il
M =

{
[u0, u1, u2] ∈ (Z≥0)3 | u0, u1 ∈ N, u0 + 2u1 + 3u2 = M

}
.

The sets of labels of weights LM, L̃M, Ls
M and Ll

M are given as

LM =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + 3t1 + 2t2 = M

}
,

L̃M =
{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + 3t1 + 2t2 = M− 6

}
,

Ls
M =

{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + 3t1 + 2t2 = M− 3

}
,

Ll
M =

{
[t0, t1, t2] ∈ (Z≥0)3 | t0 + 3t1 + 2t2 = M− 3

}
.

The coordinates of the points Zj in the sets FM, F̃M, Fs
M and Fl

M are obtained by using the
functions (27), (28) into substitution (29). The sets FM, F̃M, Fs

M and Fl
M are for M = 10 and M = 20

depicted Figures 4 and 5.
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5 10

-2

2

4

6

M = 10

X1

X2

5 10

-2

2

4

6

M = 20

X1

X2

Figure 4. The generalized Chebyshev nodes of the G2 polynomials for M = 10 and M = 20. The points
from the set FM are shown as the larger black dots. The points from the set F̃M are shown as the smaller
yellow dots.

5 10

-2

2

4

6

M = 10

X1

X2

5 10

-2

2

4

6

M = 20

X1

X2

Figure 5. The short and long sets of the generalized Chebyshev nodes of the G2 polynomials for
M = 10 and M = 20. The points from the set Fs

M are depicted as the smaller green dots and the points
from the set Fl

M are depicted as the larger blue dots.

The polynomial weight functions J(X1, X2), Jl(X1, X2) and Js(X1, X2) have the following form

J(X1, X2) =X2
1X2

2−4X3
1−4X5

2+26X1X3
2−38X2

1X2−7X4
2+26X1X2

2−47X2
1+32X3

2

−58X1X2−10X2
2−42X1−28X2+49,

Jl(X1, X2) =28− 40X1 − 4X2
1 − 8X2 − 40X1X2 − 4X2

2 + 16X3
2 ,

Js(X1, X2) =28 + 16X1 − 8X2 − 4X2
2 .

The resulting orthogonality relations for the four types of polynomials are thus given as

∑
j∈IM

ε jT(t1,t2)
(Zj)T(t′1,t′2)

(Zj) =12M2h[t0,t1,t2]
δt1t′1

δt2t′2
, [t0, t1, t2], [t′0, t′1, t′2] ∈ LM,

∑
j∈ ĨM

J(Zj)U(t1,t2)
(Zj)U(t′1,t′2)

(Zj) =M2δt1t′1
δt2t′2

, [t0, t1, t2], [t′0, t′1, t′2] ∈ L̃M,

∑
j∈Is

M

ε j Js(Zj)Us
(t1,t2)

(Zj)Us
(t′1,t′2)

(Zj) =12M2h[t0+1,t1,t2+1]δt1t′1
δt2t′2

, [t0, t1, t2], [t′0, t′1, t′2] ∈ Ls
M,

∑
j∈Il

M

ε j Jl(Zj)Ul
(t1,t2)

(Zj)Ul
(t′1,t′2)

(Zj) =12M2h[t0,t1+1,t2]
δt1t′1

δt2t′2
, [t0, t1, t2], [t′0, t′1, t′2] ∈ Ll

M.

5.7. Polynomial Interpolation

The polynomial interpolation in numerical analysis is the interpolation of a given data set by
a polynomial: given some data on points FM inside the fundamental region F, find a polynomial which
goes exactly through this data. The method for the polynomial interpolation follows via standard
Fourier methods from the discrete orthogonality relations of polynomials—see also [19].
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Using T−polynomials of A2 we choose the following model function on F

f (X1, X2) = e−
X2

1+X2
2

2σ2 ,

where σ =
√

0.15. The interpolating polynomial IM[ f ] of f has the following form

IM[ f ](Z) = ∑
[t0,t1,t2]∈LM

a[t0,t1,t2]
T(t1,t2)

(Z),

where Z = (X1, X2) ∈ F and the coefficients a[t0,t1,t2]
∈ C with [t0, t1, t2] ∈ LM are given by

a[t0,t1,t2]
=

1
18M2h[t0,t1,t2]

∑
j∈IM

ε jT(t1,t2)
(Zj) f (Zj).

The coefficients ε j and h[t0,t1,t2]
are taken from Tables 11 and 12, respectively, Zj’s are defined

via Equation (29).
We present the explicit form of the interpolating polynomials for M = 3, 6. The interpolating

polynomials are computed numerically and the coefficients a[t0,t1,t2]
, for which |a[t0,t1,t2]

| < 10−7,
are neglected. For M = 3 is the resulting interpolating polynomial I3[ f ] of the following form

I3[ f ](X1, X2) =1− 0.555525X2
1 + 0.148138X3

1 − 0.555525X2
2 − 0.444414X1X2

2

and the form of I6[ f ] is

I6[ f ](X1, X2) =1− 1.72233X2
1 + 0.450768X3

1 + 0.732702X4
1 − 0.415715X5

1 + 0.060357X6
1

− 1.72233X2
2 − 1.3523X1X2

2 + 1.4654X2
1X2

2 + 0.831431X3
1X2

2 − 0.44988X4
1X2

2

+ 0.732702X4
2 + 1.24715X1X4

2 + 0.601705X2
1X4

2 − 0.009749X6
2 .

The contour plot of function f is shown in Figure 6 and the interpolating polynomials I6[ f ],
I9[ f ] and I12[ f ] are plotted in Figure 7. One observes that for higher M, the interpolating polynomial
IM[ f ](X1, X2) is getting closer to the model function f (X1, X2). We calculate also the integral error of
the interpolation, values of the integral errors are shown in Table 13.

f (X1, X2)

Figure 6. The model function f plotted over the domain F of A2.

I6[ f ](X1, X2) I9[ f ](X1, X2) I12[ f ](X1, X2)

Figure 7. The contour plots of the interpolating polynomials I6[ f ], I9[ f ] and I12[ f ] plotted over the
domain F of A2.
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Table 13. Values of the integral errors of the polynomial interpolations of the functions f and g.

M Number of Points 1
π2

∫
F(A2)

| f − IM [ f ]|2 J−1/2 1
π2

∫
F(A2)

|g− IM [g]|2 J−1/2

3 10 0.0146447 0.062784
6 28 0.0013806 0.015796
9 55 0.0002049 0.004072

12 91 0.0000716 0.000906

Consider another model function g on F given by

g(X1, X2) = cos

(
π

X2
1 + X2

2
3

)
.

The contour plot of function g is shown in Figure 8 and the interpolating polynomials I6[g], I9[g]
and I12[g] are plotted in Figure 9. The values of the integral errors are shown in Table 13.

g(X1, X2)

Figure 8. The model function g plotted over the domain F of A2.

I6[g](X1, X2) I9[g](X1, X2) I12[g](X1, X2)

Figure 9. The contour plots of the interpolating polynomials I6[g], I9[g] and I12[g] plotted over the
domain F of A2.

Example 1. We present an example of the orthogonality for U−polynomials for the case A2 and M = 4.
Then we have the following points in Kac coordinates,

Ĩ4 ={[1, 1, 2], [1, 2, 1], [2, 1, 1]}, L̃4 = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

For each j ∈ Ĩ4, the transform (29) converts the points xj ∈ F̃4(A2) in ω∨−basis to points Zj ∈ F̃4(A2) as(
1
4 , 1

2

)
→
(
− 1

2 ,
√

3
2

)
,
(

1
2 , 1

4

)
→
(
− 1

2 ,−
√

3
2

)
,
(

1
4 , 1

4

)
→ (1, 0) .

The values of U−polynomials are given by

U(0,0)(1, 0) = 1, U(0,0)

(
− 1

2 ,−
√

3
2

)
= 1, U(0,0)

(
− 1

2 ,
√

3
2

)
= 1,

U(1,0)(1, 0) = 1, U(1,0)

(
− 1

2 ,−
√

3
2

)
= − 1+i

√
3

2 , U(1,0)

(
− 1

2 ,
√

3
2

)
= − 1−i

√
3

2 ,

U(0,1)(1, 0) = 1, U(0,1)

(
− 1

2 ,−
√

3
2

)
= − 1−i

√
3

2 , U(0,1)

(
− 1

2 ,
√

3
2

)
= − 1+i

√
3

2 .

The values of the Jacobian J at points Zj ∈ F̃4(A2) are the same for all points and equal J(Zj) = 16.
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We show the orthogonality only for the weight [1, 0, 0] ∈ L̃4. The other relations are anologon,

J(1, 0)U(0,0)(1, 0)U(0,0)(1, 0) + J(− 1
2 ,
√

3
2 )U(0,0)(− 1

2 ,
√

3
2 )U(0,0)(− 1

2 ,
√

3
2 )

+ J(− 3
2 ,− 3

√
3

2 )U(0,0)(− 3
2 ,− 3

√
3

2 )U(0,0)(− 3
2 ,− 3

√
3

2 ) = 48 = 3 · 42,

J(1, 0)U(0,0)(1, 0)U(1,0)(1, 0) + J(− 1
2 ,
√

3
2 )U(0,0)(− 1

2 ,
√

3
2 )U(1,0)(− 1

2 ,
√

3
2 )

+ J(− 3
2 ,− 3

√
3

2 )U(0,0)(− 3
2 ,− 3

√
3

2 )U(1,0)(− 3
2 ,− 3

√
3

2 ) = 0,

J(1, 0)U(0,0)(1, 0)U(0,1)(1, 0) + J(− 1
2 ,
√

3
2 )U(0,0)(− 1

2 ,
√

3
2 )U(0,1)(− 1

2 ,
√

3
2 )

+ J(− 3
2 ,− 3

√
3

2 )U(0,0)(− 3
2 ,− 3

√
3

2 )U(0,1)(− 3
2 ,− 3

√
3

2 ) = 0.

Example 2. For case G2 we check the orthogonality of Ul polynomials and M = 8. Then it holds that

Il
8 = {[6, 1, 0], [4, 2, 0], [3, 1, 1], [2, 3, 0], [1, 2, 1]},

Ll
8 = {[5, 0, 0], [3, 0, 1], [2, 1, 0], [1, 0, 2], [0, 1, 1]}.

For each j ∈ Il
8, the transform (29) converts the points xj ∈ Fl

8(G2) in ω∨−basis to points Zj ∈ Fl
8(G2) as(

1
8 , 0
)
→
(

4(1+
√

2), 3+2
√

2
)

,
(

1
4 , 0
)
→ (2, 3) ,

(
1
8 , 1

8

)
→ (0, 1) ,( 3

8 , 0
)
→
(

4(1−
√

2), 3−2
√

2
)

,
(

1
4 , 1

8

)
→ (0,−1) .

The values of U−polynomials are given by

U(0,0)

(
4(1+

√
2), 3+2

√
2
)
= 1, U(0,0)(2, 3) = 1, U(0,0)(0, 1) = 1,

U(0,0)

(
4(1−

√
2), 3−2

√
2
)
= 1, U(0,0)(2, 3) = 1,

U(0,1)

(
4(1+

√
2), 3+2

√
2
)
= 1 +

√
2, U(0,1)(2, 3) = 1, U(0,1)(0, 1) = 0,

U(0,1)

(
4(1−

√
2), 3−2

√
2
)
= 1−

√
2, U(0,1)(2, 3) = −1,

U(1,0)

(
4(1+

√
2), 3+2

√
2
)
= 2 + 2

√
2, U(1,0)(2, 3) = 0, U(1,0)(0, 1) = 0,

U(1,0)

(
4(1−

√
2), 3−2

√
2
)
= 2− 2

√
2, U(1,0)(2, 3) = 2,

U(0,2)

(
4(1+

√
2), 3+2

√
2
)
= 2 +

√
2, U(0,2)(2, 3) = 0, U(0,2)(0, 1) = −1,

U(0,2)

(
4(1−

√
2), 3−2

√
2
)
= 2−

√
2, U(0,2)(2, 3) = 0,

U(1,1)

(
4(1+

√
2), 3+2

√
2
)
= 3 + 2

√
2, U(1,1)(2, 3) = −1, U(1,1)(0, 1) = 1,

U(1,1)

(
4(1−

√
2), 3−2

√
2
)
= 3− 2

√
2, U(1,1)(2, 3) = −1.

The values of the Jacobian Jl at points Zj ∈ Fl
8(G2) are

Jl
(

4(1+
√

2), 3+2
√

2
)
= 48− 32

√
2, Jl(2, 3) = 64, Jl(0, 1) = 32,

Jl
(

4(1−
√

2), 3−2
√

2
)
= 48 + 32

√
2, Jl(0,−1) = 16.

Similarly as in Example 1 we show the orthogonality for one weight [1, 0, 2] ∈ Ll
8,

12Jl(0,−1)Ul
(0,2)(0,−1)Ul

(0,2)(0,−1) + 12Jl(0, 1)Ul
(0,2)(0, 1)Ul

(0,2)(0, 1)
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+ 6Jl(4− 4
√

2, 3− 2
√

2)Ul
(0,2)(4− 4

√
2, 3− 2

√
2)Ul

(0,2)(4− 4
√

2, 3− 2
√

2)

+ 6Jl(4 + 4
√

2, 3 + 2
√

2)Ul
(0,2)(4 + 4

√
2, 3 + 2

√
2)Ul

(0,2)(4 + 4
√

2, 3 + 2
√

2)

+ 6Jl(2, 3)Ul
(0,2)(2, 3)Ul

(0,2)(2, 3) = 768 = 12 · 82 · 1.

6. Concluding Remarks

• The orthogonality of our polynomials is expressed as the sum of values of the polynomials over
the points of the domain. Crucial for the orthogonality are the weight functions J, Js, Jl that are
determined here. The weight functions are different for polynomials of each type and for each of
the three groups A2, C2, G2. Let us emphasize that the set of points in the domain for any value of
M ∈ N is not a fragment of a lattice. It would be interesting to characterize such sets of isolated
points without reference to the orthogonality of orbit functions on lattices.

• Our approach begins with the sums of exponential functions (‘orbit functions’) determined by the
orbits of the Weyl groups of A2, C2, G2 on the corresponding weight lattice and their refinements.
Discrete orthogonality of orbit functions [19,21] on finite fragments of 2D lattices of any density
is the input that makes our work possible. Such functions serve us as a departure point for
a description of the polynomials of two discrete variables that are orthogonal on a set of isolated
points inside of a finite domain of a complex space. Moreover, their orthogonality is maintained
when the finite domain is populated by ever increasing set of points. The density is determined by
our choice of any positive integer M. The greater M, the greater number of points is in the domain.

• The classical product-to-sum formula for the Chebyshev polynomials [7] of the first kind Tn(x),
which is for m, n ≥ 0 of the form 2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x) has a straightforward
generalization to the T−polynomials. This 2D product-to-sum formula is readily derived from
the product-to-sum formulas of C−orbit functions, see e.g. [25], and has the following form

Tλ(X1, X2) ·Tλ′(X1, X2) = ∑
w∈W

T|λ+wλ′ |(X1, X2),

where |λ + wλ′| denotes the unique point of W(λ + wλ′)−orbit which lies in P+. Even though
the existence of more complicated formulas, which would generalize product-to-sum formulas
for the Chebyshev polynomials of the second kind Un(x) to 2D relations for U−, Us− and
Ul−polynomials, may be expected, their explicit form deserves further study.

• The example of interpolation demonstrates promising behavior of the polynomial interpolation
fM. Visual inspection and the integral error estimates of the interpolations of the model function f
lead to the conclusion that the interpolation error is small once the minimal distances of the points
FM become smaller than the variance σ2 of the model function. The existence of general conditions
for the convergence of the functional series of polynomials { fM}∞

M=1 poses an open problem.
The aliasing problem of the classical Chebyshev polynomials is generalized via the action of the
magnified dual affine Weyl group MQ o W. Two polynomials Tλ and Tλ′ are identical on the
nodes FM if there exists an element of the magnified dual affine Weyl group w ∈ MQ oW such
that λ = wλ′. Possible generalization of the current Weyl group multivariate approach to wavelet
analysis [30–32] poses open problem.

• Another practical aspect of the discrete orthogonality relations is the possibility of deriving
inherent cubature formulas [2,33]. For successful computer implementation of these numerical
integration formulas the data contained in the presented discrete orthogonality relations,
it is necessary to include the weight functions. The data specifying the groups A2, C2, G2 are
different. However, our approach is uniform to the extent that it can be directly applied to study
the polynomials of higher rank groups, their discrete orthogonality, polynomial interpolation
properties, cubature formulas and other practical aspects.
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