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Abstract: Diabetic retinopathy (DR) is a complication of diabetes that exists throughout the world.
DR occurs due to a high ratio of glucose in the blood, which causes alterations in the retinal
microvasculature. Without preemptive symptoms of DR, it leads to complete vision loss. However,
early screening through computer-assisted diagnosis (CAD) tools and proper treatment have the
ability to control the prevalence of DR. Manual inspection of morphological changes in retinal
anatomic parts are tedious and challenging tasks. Therefore, many CAD systems were developed in
the past to assist ophthalmologists for observing inter- and intra-variations. In this paper, a recent
review of state-of-the-art CAD systems for diagnosis of DR is presented. We describe all those CAD
systems that have been developed by various computational intelligence and image processing
techniques. The limitations and future trends of current CAD systems are also described in detail
to help researchers. Moreover, potential CAD systems are also compared in terms of statistical
parameters to quantitatively evaluate them. The comparison results indicate that there is still a need
for accurate development of CAD systems to assist in the clinical diagnosis of diabetic retinopathy.

Keywords: diabetic retinopathy; fundus angiography; DR-related lesions; blood vessels;
computer-assisted diagnosis; machine learning; deep learning; image processing

1. Introduction

Diabetes mellitus (DM) is specified by a group of unhinging metamorphoses caused by insulin
resistance [1]. Insulin resistance leads to a high ratio of glucose in the blood (hyperglycemia), which may
eventually ensue to macro (stroke, heart attack) and micro (neuropathy, retinopathy, and nephropathy)
vascular pathologies [2]. According to recent statistics [3], there are about 382 million people diagnosed
as diabetic patients and this number is expected to increase to reach 592 million by 2030. DM has
two main clinical types, including typel diabetes (T1D) and type 2 diabetes (T2D). About 90% of
diabetic patients across the globe have T2D diabetes, which is stimulated by the resistance of insulin.
Diabetic retinopathy (DR) is one of the significant ramifications of DM and creates a progressive visual
illness in the adult population characterized by the deterioration of tinny retinal vessels [4-6]. However,
early screening and treatment through computer-aided diagnostic (CAD) programs can assist patients
to prevent complete blindness occurring.

Several clinical studies show that the presence of microaneurysms (MAs), soft/hard exudates
(EXs), and hemorrhages (HMs) in the fundus image are pathognomonic signs of diabetic retinopathy.
MAs are bulges of thin vessels and appear as small and sharp borders of red spots on the retinal
surface whereas EXs exist in the retinal region due to the leakage of proteins from vessels and appear
as white/yellowish-white spots of a small size. HMs look like red deposits with non-uniform margins
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and are caused by the leaking of weak capillaries. Furthermore, DR is broadly classified into two stages
based on vessel degeneration and ischemic change, including non-proliferative diabetic retinopathy
(NPDR) and proliferative diabetic retinopathy (PDR). NPDR is further subdivided in to mild (presence
of MAs), moderate (advance than mid-level), and severe (venous beading in at least two quadrants,
MA, HM in four retina quadrants) stages, while PDR is an advanced stage of DR. Moreover, NPDR is
clinically recommended for the detection of the severity level of DR [7-10].

CAD programs are used to symmetrically analyze and segment basic retinal (optic disc, cup,
macula, and vessels) components and abnormal (EXs, HMs, MAs, and fovea) lesions within the retinal
image for the early screening of DR. A clinically recommended protocol followed by the current
CAD methods for DR assessment exists, as given in Table 1. It describes the DR classes with their
clinical definitions.

Table 1. A standard scale for DR screening [11].

DR Types Clinical Features
Normal No abnormal lineaments
Mild NPDR Found MA
Moderate NPDR Maximum number of MAs, EXs, and HMs
Severe NPDR All abnormal features in four quadrants
PDR All abnormal features with new blood vessel formation

Innovation in the field of science and technology has made human life healthier, secure, and more
livable. For instance, automated medical imaging analysis is a novel area of research that identifies
serious diseases by utilizing imaging technology. Those automated diagnosis systems (ADSs) are
called computer-aided systems (CADs), which provide services for the ease of humanity. The role of
CAD systems has been recognized in the diverse range of medical diagnoses, such as brain tumor
detection, glaucoma detection, diabetic retinopathy detection, gastrointestinal detection, macular edema,
cardiac grading, Alzheimer’s and Parkinson’s assessment, breast cancer diagnosis, and many more [11].
Those CAD systems have produced similar results with human observations. The development of
CAD devices relies on the image features extracted from images using computational methods [12].
Manual inspection of retinal anatomic (e.g., optic disc, cup, fovea, macula, and vascular structure)
features and DR lesions is a tedious and repetitive task for clinical personnel. Moreover, human
analysis of DR is subjective and requires technical domain knowledge to observe inter- or intra-changes
in retinal components. As a result, computer-aided diagnostic (CAD) systems are required to execute
early DR screening programs using color fundus images. These CAD systems may reduce the time,
cost, and efforts of clinicians in the manual analysis of retinal images [13,14].

In past studies, several authors have reviewed different retinal image analysis algorithms and their
applications [15-17] for CAD-based DR screening. A comprehensive review of the image segmentation
methods for optic disc, cup, and DR detection is presented in [15]. Another study in [16] highlighted
image preprocessing, segmentation of basic and abnormal retinal features, and DR detection methods.
Patton et al. in [17] presented a review on the image registration, preprocessing, segmentation of
pathological features, and different imaging modalities for DR diagnosis. However, none of them
compared and reviewed recent state-of-the-art machine learning algorithms. Accordingly, in this
article, an extensive overview of recent state-of-the-art CAD systems for the detection of normal and
abnormal retinal features is summarized. Specifically, advanced deep learning, image processing,
machine learning, and computer vision-based methods are described for the early grading of DR using
color fundus images.

1.1. Digital Fundus Imaging

Fundus imaging has enabled computerized screening tools to deal and document many retinal
diseases without the intervention of clinical experts. In general, the acquisition of a fundus image is
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done by the fundus camera, which consists of a low power microscope capable of capturing an inner
side of the retinal structure, such as the optic disc, cup, macula, or posterior pole. An example of a
typical fundus image is given in Figure 1, which shows the basic fundus structure and NPDR stages
with lesions. Fundus imaging has been found to be a simple and cost-effective technique, facilitating
ophthalmologists to quickly analyze and screen images received from a diverse range of locations, e.g.,
rural or urban areas, and then providing possible clinical suggestions. It is worth noting that fundus
angiography undergoes DR screening using three kinds of image modalities: (i) An RGB, (ii) red free
channel, and (iii) fluorescent images [18]. Samples of these channels can be observed in the STARE,
MESSIDOR, DRIVE, DIARETDB, and HRF datasets [19,20]. These clinical materials have often been
adopted by the research community to develop DR-based CAD systems.

(©) (d)

Figure 1. A sample of a fundus image, where (a) represents retinal anatomic features; (b) mild NPDR;
(c) moderate NPDR; (d) severe NPDR.

1.2. Performance Measure

The advantage of DR-based CAD methods is that they can generate a real-time DR screening
mechanism to respond to both patients and doctors in minimal time. To evaluate and test the
performance of those CAD methods against the ground truth (i.e., manual notions of retinal features
provided by clinicians) labels, various statistical parameters, such as the sensitivity (SE), specificity
(SP), accuracy, precision, F1-score, and area under the curve (AUC), are utilized to provide an objective
comparability among these approaches. These parameters are based on true positives, true negatives,
false positives, and false negatives. The formulas used for the measurement of SE, SP, accuracy, and
precision are: TP/(TP + EN), TN/(TN + FP), (TP + TN)/(TP + FP + TN + FN), and TP/(TP + FP),
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respectively. The F1-score can be calculated as an equal weight of both SE and precision: 2TP/(2TP +
FP + FN). In addition, an AUC of 1 indicates a good performance of the method while an AUC of 0.5
shows a moderate performance [21,22].

e TP (true positives), indicates accurate classification of a disease subject.

e TN (true negatives), means a normal subject is correctly classified.

e FP (false positives), denotes an incorrect classification of a normal subject as a disease subject.
e FN (false negatives), means a disease subject is incorrectly detected as a normal subject.

The aim of this review is to investigate and demonstrate the recent automated scientific algorithms,
i.e., deep learning, and traditional methods for DR-based CAD systems. An investigation into the
framework, datasets, and experimental results, including any key gaps in these topics, is provided in
detail. Finally, the review is concluded with some solutions to the discussed algorithms’ limitation and
future trends in the designing and training of more powerful deep learning models for DR diagnosis.

1.3. Paper Organization

This article has the following five main sections. Section 2 provides segmentation and
extraction methods using image acquisition, preprocessing, enhancement, and segmentation techniques.
In Section 3, we briefly explain the latest trends in popular deep learning methods for DR. Section 4
provides a survey on the current DR-based screening systems. A discussion is also given in Section 4
that addresses the objective of the article with major challenges of the reviewed methods and some
proposed solutions outlined. This section also provides comparisons between the hand-crafted and
deep features used in the past to detect DR. Finally, the paper is concluded in Section 5.

2. Detection Methods of DR

The following sections provide an extensive study of computational segmentation and classification
algorithms implemented for the detection of retinal anatomic landmarks with DR lesions using fundus
images. For clarity, Figure 2 depicts a graphical representation of these detection methods.

OD detection arts =~ =— Morphologlcal and
OD & OC geometrical arts
segmentation
arts i i ixel-
OC detection arts Machine learning and pixel
based arts
Supervised and
Balood vessel unsupervised arts
extraction arts .
Mathematical Mathematical morphology,
Segmentation and morphology arts supervised and
classification of retinal unsupervised arts
features .
MAs detection arts
I\gAS and HMs < Mathematical
etection arts .
HMs detection arts ———.  morphology, image

processing and machine
learning arts

Exudate detection Pixel-based, machine and
arts mathematical morphology arts

Figure 2. State-of-the-art CAD systems for diagnosis of diabetic retinopathy using retinal fundus images.

2.1. Optic Disc and Cup Segmentation

The optic disc (OD) is a clinical intense fundus feature and is considered as a preliminary indicator
of retinal vessel, optic cup (OC), macula, and fovea detection in fundus photographs. Localization and
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segmentation of the OD boundary indicates a disc contour and center. Most OD extraction approaches
in the literature are based on morphological and geometrical-based methods, as explained in the
subsequent paragraphs.

Considering the significance of optic disc segmentation for reliable glaucoma and DR screening,
the author in [23] considered morphological features to segment the OD boundary. The finite impulse
response (FIR) filter was applied to remove retinal vessels and to extract morphological features for disc
extraction. The author reported an average accuracy of 98.95% using a small set of images. However,
the algorithm was unsuccessful on low bright disc color images. Similarly, Alshayeji et al. in [24]
applied an edge detection algorithm based on a gravitational law followed by pre- and post-processing
steps for OD segmentation. They showed an accuracy of 95.91% with a cost of high running time.
A real-time approach was developed in [25] for OD segmentation, in which the disc boundary was
extracted after the removal of vessels using a region growing adaptive threshold and ellipse fitting
methods. They obtained an accuracy of 91%.

The authors in [26] used the green plane of a fundus image for OD detection because it provides
much higher information. They determined an accuracy of 94.7%. Abed et al. in [27] presented
a hybrid nature-inspired model named swarm intelligence with a pre-processing stage for OD
segmentation. The authors obtained an average accuracy of 98.45% with less running time than other
published methods. However, this model is highly dependent on preprocessing steps and algorithm
parameters. Some other CAD algorithms have been developed based on the geometrical principle for
OD segmentation with higher accuracy, such as the Hough circle cloud [28], ensemble of probability
models [29], sliding band filter [30], and active contour models [31,32]. In a previous study [28], a fully
automated software called Hough circle cloud was developed for OD localization. This yielded an
average accuracy of 99.6%. However, the software was tested on a small dataset and was implemented
on powerful graphical processing units (GPUs) instead of local computers. The system proposed
in [29] addressed the strengths of different object detection methods for OD segmentation. The authors
achieved an accuracy of 98.91%. Nevertheless, the application was computationally expensive, i.e.,
based on pre-/post-processing steps and dependencies of each algorithm member existed.

A multi-resolution sliding band filter (SBF) was employed by [30] to locate the OD area. After the
elimination of the vessel structure, a low resolution SBF was used on the cropped images and achieved
an initial estimation of the disc. High resolution SBF was then applied on the initial disc points to
obtain a final approximation of the OD. The final disc area was selected by obtaining the maximum
number of responses from a high resolution SBF and smoothing method, and obtained an average
overlapping area of 85.66%. However, this scheme was noticeably less competitive on a complex
pattern of a few retinal samples. The studies reported in [31,32] presented a performance comparison of
10 region-based active contour models (ACMs) for OD localization. Among these methods, the gradient
vector flow (GVF)-ACM was found to be superior regarding the OD segmentation with a 97% accuracy.
However, both these methods were evaluated on small datasets followed by pre-/post-processing steps.
To detect the disc area, the authors of [33] used the vessel direction, intensity, and bright area of the disc.
These features were extracted using geometric methods and then combined through the confidence
score method. The highest confidence value indicates accurate OD segmentation. The algorithm was
tested on a small number of images and was reported as being robust in the presence of other bright
lesions, with, on average, a 98.2% accuracy.

Optic cup boundary extraction is also a tedious task because of the interweavement of blood vessels
around the cup region. In addition, OC is a brightest yellowish feature of fundus images that resides
within the disc region and is a preliminary sign of glaucoma retinopathy [34,35]. OC segmentation
methods in the literature can be categorized into machine learning and pixel-based classification
schemes, as covered in the following subsection.

Tan et al. in [36] developed a fully automated OC detection algorithm based on a multiscale
super-pixel classification model. They employed different ranges of multi-scale pixel approaches
for retinal vessel removal and image normalization. Finally, the cup area was localized using a
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combination of sparsity-based multiscale super-pixel models. The authors obtained significant results
(7.12% higher rate than other methods) for OC localization. However, the scheme was computationally
expensive and was tested on a small number of images. The authors in [37] suggested entropy sampling
and a convolutional neural network (CNN) for cup segmentation using a small amount of images.
The authors yielded a classification accuracy of 94.1%. Although, the method was unsuccessful in
translating the sampling points to obtain more reliable results. Chakravarty and Sivaswamy in [38]
proposed a joint segmentation model for disc and cup boundary extraction. Textural features of the
disc and cup were extracted using the coupled and sparse dictionary approaches. These selected
features were finally applied for cup detection. Their system achieved 0.85 of the area under the
receiving operating curve (AUC) in the optic cup boundary extraction. Nevertheless, their proposed
application was less impressive in estimating the cup-to-disc (CDR). In a previous study [39], an ant
colony optimization (ACO) algorithm was considered for OC segmentation. Their software reported
an AUC of 0.79. However, the method was unsuccessful on few samples to characterize the cup
boundary. Complementary features of both the disc and cup from the fundus and spectral domain
optical coherence tomography (SD-OCT) modalities have shown great potential for OC extraction [40].
An adaptive threshold approach was applied by Issac et al. in [41] for disc and cup segmentation.
Color features, e.g., mean and standard deviation, were computed from the fundus image and then
applied for the subtraction of background parts of the OD and OC. Finally, OD and OC boundaries
were extracted from the red and green channels, as shown in Figure 3. The authors reported an
accuracy of 92%. However, their scheme was tested on a small dataset and failed on low contrast
images. A summary of the aforementioned disc and cup extraction approaches is given in Table 2,
illustrating the particular method, datasets used, and the number of images.

Figure 3. Cont.
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(e)

Figure 3. Proposed OD and OC segmentation by [41]: (a) Input image; (b) preprocessed red channel;
(c) OD segmentation; (d) green channel; (e) OC segmentation.

Table 2. Current OD and OC detection algorithms.

Method Database Accuracy (%) Color Space Data
Optic disc segmentation schemes
. DRIVE, DIRATEDBO, .
FIR filter [23] DIRATEDB1, DRIONS 98.95 24 and 8 bits 369
Edge detection [24] DRIVE, DiaRet, DMED, STARE 95.91 8 bit 303
Region growing [25] MESSIDOR, DRIVE. local dataset 91 8 bit 1384
Wavelet features [26] Local dataset 94.7 24 bit 63
Swarm intelligence [27] DRIVE, DiaRet, DMED, STARE 98.45 8 bit 318
Hough transform [28] DRIVE, DIARETDB1 99.6 8 bit 129
DIARETDBO0&1, DRIVE, .
Ensemble models [29] MESSIDOR 98.91 24 bit 1459
. 1 ) ONHSD, MESSIDOR, .
Sliding band filter [30] INSPIRE-AVR - 8 bit 1339
Active contour models [32] RIM-ONE 97 8 bit 169
. Private dataset, RIM-ONE, .
Active contour model [33] DIARETDBO 98.2 8 bit 59

Optic cup segmentation methods

Super pixel classification [36] ORIGA - 24 bit 650
CNN [37] DRISHTI-GS 94.1 24 bit 50
INSPIRE, DRISHTI-GS,
sparse dictionary [38] RIM-ONEv2, DRIONS-DB, - 8 bit 1577
MESSIDOR, DATASET-1
Ant colony optimization [39] RIM-ONE - 8 bit 159
An adaptive threshold [41] Private dataset 92 8 bit 63

2.2. Blood Vessel Extraction

The detection of structural changes of the retinal vascularization system in color fundus
angiography is a critical and repetitive task for clinical personnel. Accurate vessel segmentation leads
to fast and reliable assessment by the DR-CAD system. Additionally, the detection of geometrical-based
vessel features and secular changes of vessels, as shown in Figure 4, assists less experienced doctors in
the accurate diagnosis of DR. Retinal vessel segmentation methods in the literature can be divided into
three groups: Supervised-based, unsupervised-based, and mathematical morphology-based methods.
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Figure 4. A sample of a fundus image showing secular changes of vessels.

Kaur and Mittal in [42] developed a vascular detection system using fundus images. Preprocessing
was initially done to normalize the images from low contrast and non-uniform illumination.
They extracted the pixel intensity and geometric features using a matched filter and then fed these to
a neural network classifier to classify vessels from a non-vascular region. The authors obtained an
accuracy of 95.45%. Their intermediate results are shown in Figure 5. However, the approach had less
significance in the detection of lesions that contribute to an incorrect vascular structure. Neto et al.
in [43] presented an unsupervised coarse segmentation approach for vessel detection with an average
accuracy of 87%. They incorporated multiple concepts, i.e., mathematical morphology, curvature, and
spatial dependency, with the coarse-to-fine method to accurately define thin and elongated vessels from
vessel pixels. However, the algorithm was unsuccessful in the determination of the vessel diameter
and was also found to be less satisfactory at segmenting vessel structures on low contrast images.
To detect changes in the structural and micro-pattern of vessels, several textural descriptors were
applied to extract vascular features. These features were fed into a forest classifier to classify true
vessel points from non-vessel patterns [44]. A sensitivity (SE) of 96.1% and specificity (SP) of 92.2% in
the classification of true vessel points was reported. A comprehensive review of supervised-related,
unsupervised-related, image processing-related, and data mining-related algorithms is presented
in [45-47] with high vessel segmentation results.

Figure 5. Cont.
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Figure 5. (a) Original image; (b) ground truth; (c) proposed vasculature extraction [42].

The study in [46] combined normal and abnormal retinal features with the patient’s contextual
information at adaptive granularity levels through data mining methods to segment retinal vessels.
The authors obtained more significant results than existing methods on larger datasets for the detection
of vessels and other retinal pathologies. However, the system running time was highly expensive.
Another study in [47] used the sequential application of image pre-/post-processing and data mining
methods for vessel segmentation. Their framework reported an accuracy of 95.36% at the cost of a
long processing time and low specificity (SP) for vessel segmentation. Zhang et al. [48] proposed an
unsupervised vessel segmentation approach in which labelling inconsistencies from ground truth labels
were optimized. Key point descriptors were furnished to generate a texton dictionary to distinguish
vessel pixels from on-vessel intensities. The approach yielded an accuracy of 95.05%. However,
this method suffers from false positive results around the disc and the left part of the peripheral region.
These limitations can be overcome by utilizing some pre-processing steps in the future. Tan et al. [49]
implemented a seven-layer-based convolutional neural network (CNN) for the segmentation of retinal
vessels and reported a classification accuracy of 94.54%. Wang et al. [50] also used a CNN model
with ensemble learning for vessel segmentation. They employed two classifiers, including CNN and
random forest classifier, after image normalization to classify vessel parts from non-vessel structures.
They obtained a classification accuracy of 97.5% at the cost of a long training time. Few machine
learning techniques have been shown to have an excellent performance in vessel detection using
retinal angiography, e.g., hybrid feature vector and random forest classifier [51], gumbel probability
distribution (GPD) [52], and direction map [53]. The tool in [51] incorporated robust features from
various algorithms into a 17-dimensional feature vector for vessel pixel characterization. This feature
vector was then processed by the random forest classifier to distinguish vessel pixels from non-vessel
pixels, and yielded an accuracy of 96%. Their proposed method was found to be computationally
expensive because it followed 13 gabor filters to extract vessel features.

In a previous study [52], a novel matched filter named GPD was implemented after image
contrast enhancement using PCA greyscale conversion and adaptive local contrast enhancement
methods. A sequence of experiments was executed to select an optimal parameter that was then
used to design a GDP filter. Finally, clearer vessel structures were extracted after post-processing
followed by thresholding and length filtering with a 0.91 AUC. The authors in [53] recommended a
direction map strategy called SEVERE (segmenting vessels in retina images) for vessel segmentation.
They considered a green channel image from the color RGB image without following any preprocessing
steps, and then direction maps were utilized for the segmentation of vessel patterns within images.
Their method achieved an accuracy of 97%. Hassan et al. [54] used mathematical morphology for the
accurate segmentation of retinal vessels. A smoothing operation was applied to enhance the vessel
structure, and then vessel classification was performed using the K-means algorithm, with a 96.25%
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accuracy. Eysteinn et al. [55] applied an unsupervised model followed by a morphological approach
and fuzzy classification for retinal vessel classification. The model achieved a classification accuracy of
94%. However, their method was computationally expensive and depended on human labeled data.

Differentiation among thin and thick retinal vessels has become a challenging task due to the
existence of low contrast, the illumination of images, and the existence of bright lesions. For this
reason, hybrid methods, like the phase-preserving denoising method, fuzzy conditional entropy (FCE)
techniques, and saliency with active contour models, were exploited in [56-58] to detect thin and
thick vessels. The authors in [56] recommended a multimodal mechanism for thin and thick vessel
segmentation. Thin vessels were identified by using a phase-preserving line detection method after
the subtraction of poor image quality, while the approximate level of thick vessels was identified
using a maximum entropy thresholding method. Their application was noticeably powerful in the
discrimination of thin and thick vessel structures in retinal images, with a 0.95 AUC. In a previous
study [57], an integrated system was designed for the automatic extraction of diverse structures of blood
vessels from fundus images. Original images were normalized using curvelet denoising and a band
pass filter (BPF) to remove noise and enhance the contrast of thin vessels. A matched filter response was
considered as a dataset by the FCE algorithm to identify the best thresholds. The differential evolution
method was utilized on the best thresholds for the extraction of different vessel outlines, like thin,
thick, and medium vessels, with an average accuracy of 96.22%. The multiplication of reflection and
illumination components, called retinex theory, was applied to stable thin vessel contrast and global
image quality. Afterwards, an image was divided into super-pixels and given to the saliency method
to find interesting vessel regions. To refine the vessel detection results, an infinite ACM was considered
to distinguish the complex patterns of vessels, yielding a 0.8 AUC [58].

Line detection and pixel-based techniques were applied in [59] for the segmentation of small
vessels. After preprocessing, the line detection method was implemented for image segmentation.
Long and medium size vessels were then localized using the adaptive thresholding method. Finally,
the pixel-based tensor voting procedure was applied by for small vessel extraction. Farokhian et al.
in [60] considered a bank of 180 Gabor filters followed by the optimization method, called an imperialism
competitive algorithm, for vessel segmentation and reported a 93% precision. A Gabor filter is designed
on the rotation degree of 1 scale to detect image and vessel edges. Next, an optimization method was
then employed for accurate vessel segmentation. Similarly, a template matching approach using a
Gabor function for the detection of the center of vessel lines after specification of the region of interest
was considered in [61] for low contrast thin vessel structure extraction and presented a 96% accuracy.
The template matching method was used to produce a binary segmented image and then binary image
contours were reconstructed to match the image characteristics with the manually annotated contours
in the training dataset. Eventually, low contrast thin vessels were extracted using a large dataset.
All these mathematical morphology-based methods are reported as being less satisfactory based on the
following reasons: (i) A large number of pre-/post-processing steps were utilized to extract the vessel
tree; (ii) methods were tested on a small set of retinal images and had limited cover of the varied-sized
locations of an image; and (iii) reported a much higher running time during the detection of vessel
patterns, which, in practice, are less reliable in screening programs.

Kar and Maity [62] proposed a vessel extraction system based on the matched filter followed
by curvelet and fuzzy c-mean algorithms. Initially, a curvelet transformation was applied to detect
an object’s edges and lines. Further, a fuzzy c-mean algorithm was incorporated for vessel tree
extraction, yielding an accuracy of 96.75%. Their method was unable to achieve a higher true positive
rate. Zhao et al. [63] suggested a level set and region growing method for the segmentation of retinal
vessels. They achieved an accuracy of 94.93%. A hardware-based portable application was proposed
by Koukounis et al.
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In [64], for the accurate segmentation of blood vessels., a proposed tool was used to segment
vessels in three steps: First, a green channel of an RGB image was selected in the preprocessing step to
improve the image quality; second, a matched filter was utilized on the normalized image to highlight
the vessel points; and finally, different thresholds were applied for accurate vessel segmentation.
However, the scheme was expensive regarding the capturing and loading of images. Imani et al. [65]
presented a morphological component analysis (MCA) model for vessel segmentation, which showed
a 95% accuracy. Contrast improvement of vessels was first completed and then MCA was employed
for vessel and lesion segmentation. However, the approach was limited to the detection of complex
components of an image, like large lesions and vessel tortuosity. A summary of the blood vessel
detection algorithms is shown in Table 3, highlighting the utilized methods and databases and their size.

2.3. DR-Related Lesion Detection Methods

MA and HM localization and extraction is a challenging job due to varied size, color, and textural
features on the fundus angiography. Therefore, the development of fast and reliable automated DR
lesion detection tools is still a hot research area. Few recent studies regarding accurate MA and HM
detection were encountered in the literature. MA assessment methods are divided into mathematical
morphology, supervised-, and unsupervised-based methods, while HM segmentation methods are
based on mathematical morphology, image processing, and machine learning-based methods, as
described in the following subsections.

Habib et al. in [66] developed an intelligent MA detection application using color fundus images.
They extracted MA features using the Gaussian matched filter and fed these to a tree ensemble classifier
to classify true MA points from false MA pixels. The authors achieved a receiver operating curve score
(ROC) of 0.415. The disadvantage of their proposed method is that it does not avoid the overfitting
problem and is unable to define a standard feature selection principle. Kumar et al. in [67] also
considered a Gaussian filter to extract MA features from images. A green channel was selected for
further processing, i.e., the removal of vessels and the optic disc using a watershed transformation
method to localize the MA region. Finally, microaneurysms were segmented using a Gaussian matched
filter with an accuracy of 93.41%. Similarly, canny edge and maximum entropy-based methods were
utilized by Sreng et al. in [68] to detect MAs in fundus images. After the removal of vessels and
the disc area in the image normalization step, MA patterns were segmented using canny edge and
entropy methods. To obtain prominent MA marks within the image, a morphological operation
followed by erosion was employed to identify MA patterns, obtaining an accuracy of 90%. Both these
methods [67,68] were unsuccessful in overcoming spurious signals during micro-aneurysm detection.
The authors in [69] applied Gaussian, median, and kirsch filters to the green component of an RGB
image to extract MA features. Those MA features were then fed to a multi-agent model to discriminate
true MA pixels from non-MA pixels, yielding an ROC of 0.24. They did not evaluate all possible image
locations for optimum MA detection.
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Table 3. Performance comparison of retinal vessel extraction techniques.

12 of 34

Classification Method Image-Processing Database Color Space  Accuracy (%) Data
Geometrical features [42] Un-sharp mas.kmg to enhance image quality, matched DRIVE, STARE, ARIA, 24 bit 95.45 785
filter to model vascular map HRF
Noise removal using a Gaussian filter on a green
Local coarse segmentation [43] channel, enhanced vessel pixels using a morphological DRIVE, STARE 8 bit 87 60
top-hat operator
Classification [44] Uniform grid applied to set patches MESSIDOR, HREF. STARE, 24 bit AUC:92.2 779
local dataset
Segmentation [48] Gabor filter for vessel feature extraction DRIVE 24 bit 95.05 40
CNN [49] RGB conversion into an LUV model, luminance DRIVE 24 bit 94.54 40
channel, L, for vessel pixel contrast enhancement
CNN and RF [50] Histogram equalization and Gapsman filter for image DRIVE, STARE 8 bit 975 60
enhancement and noise removal
. Morphological opening operation for background DRIVE, STARE, HRF, .
Phase-preserving method [51] subtraction and noise reduction CHASE_DB1 8 bit % 133
Green channel extraction, morphological opening
Fuzzy conditional entropy [52] operation for vessel central light reflex removal, curve DRIVE, STARE 8 bit - 60
let transform for image de-noise
Saliency and contour model [53] Green channel extraction, retinex for image DRIVE, STARE 8 bit 97 60
homogeneity
Gabor filter [55] Parameter optimization using ICA for a Gabor filter DRIVE 24 bit 94 40
Template matching [56] ROI extraction using a global threshold mechanism DRIVE, STARE 8 bit 96 60
Hybrid feature and forest classifier [57] Green channel extraction, CLAHE for image DRIVE, STARE 8 bit 96.22 60
enhancement
e Green channel selected and converted into grayscale, . )
Gumbel probability distribution [58] CLAHE for contrast enhancement DRIVE, STARE 8 bit AUC: 0.9287 60
Mathematical morphology, k-means [60] Morphological operations for smoothmg and DRIVE 8 bit 93 40
background suppression
Fuzzy classification [61] CLAHE for image er?hancemegt, Gaussian filter for DRIVE 24 bit 9% 40
noise reduction
. Green channel extraction, image de-noising, and edge DRIVE, STARE, .
Matched filter and fuzzy c-means [62] enhancement using curvelet transformation DIARETDB1 8 bit 96.75 149
Level set and region growing [63] CLAHE and Gabor wavelefc transformation applied to DRIVE, STARE 8 bit 94.93 60
a green channel for image enhancement
Otsu threshold and median filter applied to a green
Morphological component analysis [65] component for ROI extraction and illumination DRIVE, STARE 8 bit 95 60

enhancement
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In a previous study [70], a series of image processing techniques, such as contrast enhancement and
feature extraction, were used to present some novel hypotheses for improved MA detection software.
Wu et al. in [71] considered some local and profile features for MA detection. First, images were
processed to reduce noise and other image artifacts to enhance the MA region. Further, a K-mean-based
neural network classifier was utilized on the image features to classify MA pixels from non-MA
pixels. The authors obtained an ROC of 0.202. Nevertheless, use of the approach on the very noisy
images failed to localize MA pixels. Romero et al. in [72] recommended bottom-hat and hit-or-miss
transform methods for MA extraction after normalization of the gray contents of an image. To obtain
an intact reddish region with a brighter part, a bottom-hat transformation was applied on the gray
scale image. Blood vessel elimination was done using a hit/miss transformation application and
finally, principal component analysis (PCA) and radon transform (RT) were applied to detect true
MA points. They achieved a classification accuracy of 95.93%. Similarly, a top-hat transformation
and an average-based filter was applied in [73] for the elimination of retinal anatomic components
with a 100% specificity. Afterwards, a Radon transform (RT) and multi-overlapping window were
utilized for the cleavage of an optic nerve head (ONH) and MAs. The authors achieved an SE of 94%.
However, the methods in [72,73] were computationally expensive and could not locate MA points
in the low contrast MA pixels. For the segmentation of tiny and poor contrast MA features, a naive
Bayes classifier and location-based contrast enhancement were implemented in [74,75], with significant
MA results.

The authors in [74] considered a coarse segmentation method to initially localize the MA candidate
region. Further, a naive Bayes classifier was applied to extracted MA pixels and discriminated true
MA points from non-MA points, yielding a classification accuracy of 99.99% and an SE of 82.64%.
However, their classifier, i.e., naive Bayes, was computationally expensive during training and was
also limited on faint and blur MA pixels. To solve this problem, a contrast limited adaptive histogram
equalization (CLAHE) technique was implemented in [75] to detect poor contrast and blurry MA pixels.
They divided input images into small and contextual tiles in order to detect tiny and low contrast MA
pixels. They obtained an SE of 85.68%. However, their approach was only tested on 47 images, which
limits its generalizability to other medical ailments. A sparse representation classifier (SRC) was applied
in [76] followed by dictionary learning (DL) to detect MA pixels. Initially, a Gaussian correlation filter
was incorporated to localize the MA region. Further, those MA features were given to the SRC to
classify true MA points from non-MA pixels. The authors achieved an SE of a 0.8% increase rate.
However, their proposed dictionaries were generated artificially, thus lacking discriminative power
in MA detection. Akram et al. in [77] implemented a system to grade whether retina images belong
to MA or non-MA regions. The authors obtained an accuracy of 99.40%. However, the method was
computationally expensive, but presented better features for improving the discriminative performance
of the classifier. In that line, sparse principal component analysis (SPCA) and ensemble-based adaptive
over-sampling approaches also reduced false positives in MA detection and eliminated the class
imbalance problem in color fundus images with an average 0.90 AUC score [78,79]. Javidi et al.
in [80] considered morphological analysis and two dictionaries for MA detection using fundus images.
The MA candidate region was initially localized using the morelet-based wavelet algorithm. The MA
extracted features were then evaluated by binary dictionaries to classify the true MA region from
non-MA pixels. The authors obtained an ROC of 0.267. Their proposed MA detection results are
shown in Figure 6.
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(b)

(©)
Figure 6. (a) Input image; (b) manual annotated MAs; (c) proposed MA detection by [80].

Nevertheless, the method was expensive in terms of the execution time and was unable to detect
MA pixels on faint and poor contrast images. A deep learning strategy called stacked sparse auto
encoder (SSAE) was applied by Shan et al. in [81] for MA detection. Initially, images were cropped
into small patches. These patches were then processed by the SSAE model to learn high-level features
from patches. Finally, a soft max classifier was used in the output layer to give a patch probability
of being a true MA or false MA. They reported an AUC of 96.2%. Another study in [82] proposed
a two-layer approach called multiple kernel filtering for MA and HM segmentation. Small patches
were used instead of the whole image to deal with the varied size of lesions, and finally, a support
vector machine (SVM) was applied on selected candidates to distinguish true MA and HM patterns
from other parts of an image. They achieved an AUC of 0.97. Adal et al. in [83] presented a machine
learning algorithm for MA detection. Input image was first normalized and then different scale-based
descriptors were applied for feature extraction. Finally, a semi-supervised algorithm was trained on
the extracted candidate features to classify MA points from non-MA intensities, obtaining an AUC of
0.36. The methods in [81-83] were found to be unable to address the over fitting problem for much
larger datasets and contained low discriminative power. A summary of MA detection methods is
given in Table 4. It describes the respective methods with their utilized dataset and size.
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Table 4. MA detection methods in the literature.

15 of 34

Classification Method Image Processing Database Color Space  Accuracy (%)  Data
Median filter, CLAHE, and Gaussian filter applied on a green component for MESSIDOR, . )
Tree ensemble [66] noise reduction, contrast enhancement, and noise removal DIARETDBI1 v2.1 8 bit ROC: 0415 256
Green part extracted from colored image, median filter and CLAHE applied for
Gaussian filtering [67] noise reduction and image enhancement, blood vessels removed using a DIARETDB1 8 bit 93.41 89
matched filter
Images resized, noise removal and image enhancement using median filter and .
Canny edge, threshold [68] . DIARETDB1 24 bit 90 89
2D wavelet transformation
Median filter applied on the green part to estimate the background image,
Multi-agent model [69] Gaussian and modified kirsch filters applied to more visible dark lesions and to LaTIM 8 bit - 36
enhance the edges and thickness of pixels
Background ROI image generated using a median filter, CLAHE applied on the
Local & profile features [71] green component for contrast enhancement, a Gaussian filter applied to smooth ROC & e-optha 8 bit - 198
the image
Green channel ratio divided by the red channel to eliminate non-uniform
PCA and RT [72] 1lllum1nat'10n, image normalization us1ng the statistical properhes ofa gray§cale DIARETDB1, ROC 16 bit 95.93 189
image, i.e., an average gray value and its standard deviation, morphological
opening operation for ROI extraction
RT [73] Top-hat transformation and an average filter applied to separate features from Mashhad, local, ROC 8 bit ) 192
the background, improve contrast, and remove noise
Naive Bayes classifier [74] Median filter applied on the green component to remove poor image artifacts, Private 8 bit 99.99 80
CLAHE used to improve image contrast
Green layer for image contextual division, CLAHE applied on each image . .
Contrast enhancement [75] division for contrast enhancement, median filter applied to smooth the image Private 8 bit ) &7
SRC [76] Gaussian function and a matched filter .apphefi to extract ROI extraction and for ROC 8 bit B 100
vessel elimination
Hybrid classifiers [77] Morphological opening .used on the green channel to smooth the disc and bright DIARETDBO&1 8 bit 99.40 219
area, Gabor filter applied for lesion contrast enhancement
SPCA [78] CLAHE used on the green chann.el for more visible image contrast, Gaussian ROC 8 bit _ 100
filter applied to attenuate noise
. Top-hat transformation applied on the green channel to separate the vascular . .
Ensemble learning [79] and lesion region from the background, Gaussian filter used to smooth the image e-optha 8 bit AUC: 0844 148
Otsu-based mask applied on the green layer to extract the ROI region, an
Sparse and dictionary learning [80] adaptive histogram equalization used to eliminate intensity variations in the ROC 8 bit - 100
ROI area
SSAE [81] - DIARETDB 24 aﬁég bits  AuC: 962 89
. . Green layer passed to the grid process for image patches, patches processed by a DIARETDBI, . .
Multiple kernel learning [52] Gaussian filter for smoothness, CLAHE for patch contrast enhancement MESSIDOR 8 bit ROC:0.97 143
Statistical observations of grayscale image values ROC, Private 8 bit - 400

Semi-supervised learning [83]
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Kaur et al. in [84] implemented a supervised model for hemorrhage detection using 50 retinal
images. A morphological closing operation was initially applied for the removal of anatomic
components, such as fovea and vessels. HM points were then extracted using an adaption of Otsu’s
thresholding-based method. These features were fed to a random forest classifier to distinguish HM
and non-HM candidates with an SE of 90.40% and an SP of 93.53%. Their visual HM detection results
are shown in Figure 7. Another study in [85] also used Otsu’s approach to suppress the vascular
structure before hemorrhage extraction. The authors achieved an SE of 92.6% and an SP of 94% using
219 fundus images. However, hemorrhages near the border of the image aperture were not detected
in [84,85], with some bifurcation of vessels present after vascular tree extraction. The detection of HM
patterns that are very close to the vascular structure is observed to be a time consuming and difficult
task for clinical practitioners. To deal with this issue, rule-based mask detection [86], splat-based
segmentation algorithms [87-89], and basic knowledge of inter-/intra-retinal structures [90] have
produced impressive quantitative results.

@) (b)
Figure 7. (a) Input image; (b) hemorrhage identified [84].

In a previous study [86], an image normalization step was applied to remove the normal features,
i.e., blood vessels, disc, and fovea, and to improve the contrast of an input image. To localize the
HM region, three Gaussian templates were employed, yielding an SE of 93.3% and an SP of 88%.
The authors in [87-89] considered splat-based HM segmentation methods with different configurations.
Despite the better visual HM detection results, they did not present numerical measures when using a
large number of tested images. The authors in [90] utilized mathematical morphology and template
matching methods to detect HMs in images, obtaining an accuracy of 97.70%. Some machine learning
and pixel-based approaches for the detection of HMs were highlighted in [91-94]. In a previous
study [91], a number of the automated DR screening and monitoring methods for HM detection were
discussed regarding their basic framework, problems, datasets, and solutions. This review facilitated
the authors” understanding of the role of automated screening tools in DR grading. The automated HM
detection tools in [92,93] utilized an illumination equalization method on the green channel to localize
white and HM pixels. Support vector machine (SVM) was then applied onto the localized region and
HM features were classified from normal pixels. Another image processing based software for HM
detection using 89 retinal images was reported in [94], where dynamic thresholding with morphological
operations were employed to estimate the HM region in the retinal image. Their application obtained
an accuracy of 90%. Nevertheless, the methods [92-94] are computationally expensive and are limited
to covering all possible locations of an image. Similarly, in a previous study [95], a three steps-based
HM detection system using 108 images was proposed. Brightest features were initially localized based
on the varied intensities of fundus components. Four texture forms were then extracted from the bright



Symmetry 2019, 11, 749 17 of 34

pixels and eventually, a classifier was trained using the textural descriptors to separate HM pixels from
non-HM pixels. The authors achieved an accuracy of 100%.

2.4. Exudate Detection Methods

Exudate is a prime sign of DR, appearing as a bright white/yellowish blob shape on the retinal
surface. In the literature, EX extraction techniques are categorized into three parts: Pixel-based,
mathematical morphology, and machine learning. The following section discusses these EX
detection methods.

Anatomic retinal landmarks, such as an elongated vascular system and optic disc, lead to the
production of false positives in the automated detection of exudates. Therefore, a morphological
matched filter and saliency methods were employed by Liu et al. in [96] to eliminate vessels and the
optic disc before EX detection. Initially, an input RGB image was preprocessed to visualize retinal
anatomic features and to enhance image contrast. Next, vessel and disc components were removed
using a matched filter and saliency techniques to localize the EX area in the image. Finally, the random
forest classifier was applied on the extracted features, i.e., size, color, and contrast of exudates, and an
SE of 83% and an accuracy of 79% was reported using 136 fundus images. Imani et al. [97] considered
a morphological component analysis (MCA) model to separate retinal vessels from the exudate region
using 340 images. Afterwards, mathematical morphology and dynamic thresholding methods were
incorporated for the distinguishing of EXs from normal features, yielding AUC of 0.961 score.

In a previous study [98], a multiprocessing scheme was introduced for EX detection using 83
retinal images. First, an exudate candidate region was extracted by applying grey morphology and
then the boundaries of these candidates were segmented using an ACM model. Lastly, the features
computed by the ACM were fed to the naive Bayes classifier, and classified exudate features with
an SE of 86% and an accuracy of 85%. Zhang et al. in [99] developed an EX segmentation method
based on mathematical morphology using 47 images. After image normalization, classical and textural
features were employed using mathematical morphology and then EX features were segmented with
an AUC score of 0.95. The authors in [100] also applied mathematical morphology for EX extraction
using 149 images. The final EX classification was performed using the SVM classifier, obtaining an
accuracy of 90.54%. Akram et al. in [101] recommended a mean-variance approach for vessel and
disc removal using 1410 images. Bank filters were utilized for the selection of EX points and finally;,
images were classified into EX and non-EX pixels by utilizing a Gaussian mixture with an integration
of the m-mediods model, achieving a 0.97 AUC score. Region-based local binary pattern features were
suggested by Omar et al.

In [102], using 130 images, the image quality was enhanced for EX detection, with a 96.73%
accuracy. Morphological operations, like mean shift, normalized cut, and cannys, have presented better
performance in EX extraction [103]. Several machine learning principles have shown better sensitivity
results for EX segmentation [104-111]. Fraz et al. in [104] applied morphological reconstruction and
a Gabor filter for EX candidate extraction using 498 images. Initially, false positives were reduced
in selected candidates using contextual cues. Region-based features, computed from the candidate
area, were then fed to an ensemble classifier for the detection of true and false EXs, yielding a 0.99
ROC score. Prentasic et al. in [105] proposed a deep CNN for exudate segmentation using 50 images.
The optic disc was segmented based on the probability maps of different algorithms. The Frangi
filter was then implemented for vessel segmentation. Finally, the performance of the DCNN was
combined with the disc and vessel results to segment true EX pixels, obtaining a 0.78 F-score. Similarly,
SVM classifiers with sparse coded features, K-means, scale invariant feature transform, and visual
dictionaries were exploited in [22,106,107] to distinguish non-EX from EX points. Logistic regression
followed by multilayer perceptron and radial basis function classifiers successfully classified hard
exudates using 130 images with a 96% sensitivity [108]. Ground truth data usually have an inaccuracy
problem that directly affects the final classification output of an algorithm. Therefore, in a previous
study [109], image features were evaluated for the elimination of inaccuracy in clinical data and the
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segmentation of exudates. Pereira et al. in [110] utilized an ant colony optimization (ACO) technique
to extract EX edges using 169 low contrast images. The green channel was selected because of its
higher intensity of EX lesions compared to the background part of an image. Next, a median filter with
kernel size of 50 x 50 was utilized to normalize and balance the intensity space. A double threshold
was applied to extract EX points and then ACO was employed to detect the borders of bright lesions,
yielding a 97% accuracy. Figueiredo et al. in [111] applied wavelet band analysis on the green channel
to learn the whole image’s features. Hybrid approaches, like Hessian multiscale analysis, variation,
and cartoon with texture decomposition, were then applied on the learned features to discriminate EXs
from other bright lesions. They achieved an SE of 90% and an SP of 97% using 45,770 fundus images.
Their EX segmentation results are shown in Figure 8.

(c) (d)

Figure 8. (a) Input image; (b) wavelet output; (c) cartoon result; (d) EX detection [111].

Despite the highly significant results of the EX detection methods in [96-111], some weaknesses
exist that need to be addressed in the future to provide the best possible EX detection systems: (I) Most
methods were evaluated on small datasets, which limit theirs performance ability to detect other
pathological features, e.g., dark lesions; (II) only bright lesions, i.e., EXs were detected followed by
preprocessing steps, which is expensive in terms of processing; (III) high accuracy was achieved at the
cost of a low SE rate; and (IV) it is difficult to detect EXs in low contrast areas.
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2.5. Diabetic Retinopathy Detection Systems

CAD tools have been successfully applied to identify the five stages of DR and produce similar
results to human experts. The fundamental goal of CAD systems in DR is to distinguish retinal
anatomic components from DR-related lesions. To address this, some recent DR-based CAD studies
are highlighted in the subsequent paragraph with their results and challenges.

Kauretal. [112] proposed a DR screening tool to detect exudates using 1307 images. Their algorithm
segmented exudates with a mean accuracy of 93.46%. Bander et al. [113] developed a computer-aided
diagnosis (CAD) system to segment OD and fovea using 11,200 retinal images acquired from the
MESSIDOR and Kaggle datasets. The OD and fovea were detected by employing a multiscale deep
learning model with an accuracy of 97% and 96.7% on the MESSIDOR and 96.6% and 95.6% on the
kaggle databases, respectively. Gargeya et al. [114] also proposed a deep learning model for the
grading of DR and no-DR cases. Their model evaluated the color features of 75,137 images obtained
from the MESSIDOR2 and e-OPTHA datasets and achieved an AUC of 0.94 and 0.95, respectively.
Silva et al. [115] evaluated 126 images from 69 patients for the early screening of DR. Their application
detected MA and HM features with a kappa value of a 0.10 ratio. Dash et al. [116] developed a DR
screening tool based on the segmentation of vascular structures. Their software used 58 images obtained
from the DRIVE and CHASE_DBI1 datasets and achieved a 0.955 and 0.954 accuracy, respectively.

Leontidis [117] presented a DR-CAD system to detect vessels. Vessels were classified based on
geometric vessel features with a classification accuracy of 0.821 and 0.968, respectively. Koh et al. [118]
presented an automated DR tool to identify normal and pathological images based on energy and
entropies with a sensitivity and specificity of 89.37% and 95.58%, respectively. A comprehensive
study about the causes and automated screening of different retinal pathologies, like DR, cataract, and
glaucoma, in a younger and adult population were discussed in [119]. Their review may be useful
in finding a novel hypothesis for the screening of retinopathies. Barua et al. [120] developed a DR
screening tool to extract retinal vessels using 45 images acquired from the HRF database. Image features
were classified by applying ANN with classification accuracy of 97%. R et al. [121] presented a machine
learning algorithm for DR screening to locate EXs and HMs using 767 patches with an accuracy of 96%
and 85%, respectively. Several deep learning, machine learning, and data mining approaches were
discussed in [122,123] for the the segmentation and classification of anatomic and DR lesions, image
quality assessment, and registration. Devarakonda et al. [124] also applied ANN and SVM classifiers
to extracted features for the identification of normal and DR parts. Their system achieved an accuracy
of 99% using 338 images acquired from a local dataset.

Voetal. [125] developed a deep learning model for DR screening using 91,402 images obtained from
the EyePACS and MESSIDOR datasets. Their software utilized two deep networks and hybrid color
space features and achieved ROC values of 0.891 and 0.887, respectively. Lahiri et al. [126] also proposed
deep neural networks for DR screening to detect blood vessels using 40 images obtained from the DRIVE
dataset. Their model achieved an average accuracy of 95.33%. In [127], a two-step deep convolutional
neural network was presented for lesion detection and DR grading using 23,595 images from the Kaggle
dataset. Their proposed architecture obtained an AUC of 0.9687. Wang et al. [128] utilized a deep
convolutional neural network to detect lesions and screen DR severity stages using 90,200 images from
the EyePACS and MESSIDOR data sources with specialists” labels. Their system identified the severity
levels of DR with AUC values of 0.865 and 0.957, respectively. Another deep learning-based study,
termed the AlexNet deep convolutional neural network, was employed by [129] to classify the five
classes of DR using 35,126 images selected from the Kaggle dataset. Their method achieved a diabetic
retinopathy classification accuracy of 97.93%. Lachure et al. [130] utilized morphological operations
and SVM classifiers to detect MA and EX lesions using color fundus angiographies. Their application
successfully detected MA and EX regions with a specificity of 100% and a sensitivity of 90%.

Nijalingappa et al. [131] applied a machine learning model to detect EX features using 85 images
from the MESSIDOR and DIARETDBO datasets. Initially, image preprocessing followed by RGB to
green plane conversion and contrast enhancement were performed. The K-nn classifier was used
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on extracted features to classify EX regions with an accuracy of 95% on MESSIDOR and 87% on
DIARETDBO0. Kunwar et al. [132] proposed a CAD tool for the recognition of the severity level of DR
using 60 subjects acquired from the MESSIDOR dataset. Textural features of MAs and EXs with the
SVM classifier were applied to classify DR and normal lesions with a sensitivity of 91%. A real time,
web-based platform was introduced by [133] for the recognition of DR levels. Their system achieved a
sensitivity and specificity of 91.9% and 65.2% in the detection of NPDR lesions. However, the DR-based
CAD methods in [112-133] mainly focused on the detection of DR-related lesions and were limited
by the severity category of DR. The DR severity level, i.e., PDR, has been addressed rarely by the
CAD systems. They only produced a contribution to differentiate between NPDR and PDR. Moreover,
these CAD studies were found to be less applicable to the classification of the five stages of DR.

3. Latest Trends

Deep learning (DL) is a novel approach to machine learning and is applied in a diverse range of
computer vision and biomedical imaging analysis tasks, such as image classification, face recognition,
semantic segmentation, and many more, with remarkable results. It can be thought of as a multilayered
hierarchical architecture that attempts to learn high level abstractions in the data. There are three main
reasons for the popularity of deep learning: (I) A rapid degree of improvement in the chip processing
power, e.g., graphical processing units (GPUs); (II) lowered cost of computing hardware availability;
and (III) considerable innovations in the machine learning methods [134,135].

To date, standard organizations, i.e., Google and Microsoft, use deep learning-based schemes to
solve challenging problems, e.g., object detection, speech recognition, etc. Moreover, deep learning
methods contain a significant number of advantages, such as they can learn low level features from
data using minimal processing, an ability to work with unlabeled data, high cardinality with class
memberships, ability to identify interactions among features, and can jointly learn feature extraction
with discriminative power. The learning mechanism of deep learning models is usually operated in
a multilayered fashion. It uses multiple techniques to process input data and automatically convert
it into decent representations. Initially, the first layer extracts pixels from the input image. Next,
these pixels are grouped into the second layer to identify edges within an image. These edges are
then divided by the third layer into small segments. Finally, some other layers convert these segments
into the classification/recognition of images. All these layers learn features from the input data using
learning procedures and without expert intervention [135-138].

It is evident that deep learning is a powerful tool in today’s artificial intelligence-based tasks.
Recently, one deep learning method, i.e., convolutional neural network (CNN), has produced
impressive results in biomedical imaging and CAD systems, e.g., cancer, brain tumor, and retinopathy
detection [139,140]. Since DR is a life-threatening disease and requires early diagnosis to control
its prevalence in patients, computerized tools have proven to be effective in early DR assessment,
however, a gap remains regarding fast and real time solutions for DR prediction. To overcome this
gap, deep learning algorithms have been recently employed in DR-telemedicine programs and have
outperformed human observations. The most important deep learning algorithms are described in
Table 5.

To date, the convolutional neural network (CNN) is a leading deep learning scheme that mainly
contains convolutional, pooling, and fully connected layers. These layers are often trained in a robust
manner and play different roles. CNN is a feed forward neural network type and has been found to be
effective in the classification of DR stages using fundus images. Each layer of the CNN has a collection
of neurons that process input data into parts called centripetal areas. Each neuron outcome is then
mixed to maintain overlapping among input areas to better represent the original image information.
This procedure is pursued for all layers until desirable results are achieved [135-142].
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Table 5. State-of-the-art deep-learning algorithms for automatic extraction of features.

Cited Approach Features Dataset Accuracy
[136] 2-State CNN Detect Severity-level of DR Kfﬁﬁi}f AUC: 0.9687
[137] SVM and 3-layers CNN Detect Normal and DR Messidor AUC: 0.957
[139] CNN Model Detection of Diabetes - -
. . KAGGLE
[140] CNN and GMM models Detection of Diabetes fundus AC: 97.93%
[141] CNN and M-SVM Classify the retinal disease - -
. KAGGLE and

[143] CNN and ResNet Detection of DR EyePACS -

[144] NN and CNN Detection of DR EyePACS AC: 83.68%
[145] CNN model Detection of exudates - -

[113] Multiscale and CNN Detection of fovea and OD - AC:97%

Usually, a convolutional layer consists of filters, F, with K channels and a size, C X D, against
a small set of L images with K channels and a size, A X B. To present filter components as E 1 1, 1 o,
and image factors as Gy, j,, p + 1, 4 + o, the output of a single convolution layer, Z ,, ¢ , 4, w.r.t time £ is
calculated by Equation (1):

K c D f
Zm, fpq = [Zk:l Zo:l Zizl v G pit, o B 0] M

Equation (2) represents the entire output of an image in 2D structure as follows:
K
Zy, = Zk:l G, n*Ef, 1 2)
where * indicates a 2D association. The typical CNN pipeline is given in Figure 9.

Input Layer Convolutional Layers Fully Connected Output Layer

512x512 256x256  128x128  64x64 32x32

Figure 9. A basic taxonomy of the CNN model [135].

CNN is widely adopted by researchers due to its enormous potential, such as it employs a shared
weight mechanism in the convolution layer to locate each pixel using a single filter. The CNN model
requires a small number of preprocessing steps because it can learn features by itself. During the
training of the CNN model, human intervention and previous knowledge is not required to design the
model features. The CNN can represent an image in two-dimensional form followed by shared weights
and the relationship among neurons. The convolution layer output is found as being invariance
to the object location. CNN is observed to be more computationally efficient than fully connected
networks, because it uses fewer parameters with the same number of hidden layers to run multiple
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experiments. Moreover, it represent neurons in the three-dimensional form, namely weight, height,
and depth. Back propagation and gradient descent methods are commonly applied to train CNNs
and to make them faster at learning and convergence. The main demerit of CNNSs is that it needs
a large amount of memory to store the results of the convolutional layer that finally forwards to
the back propagation layer to compute gradients [143-149]. Some of the other variants of CNN
networks, like Alexnet (https://github.com/BVLC/caffe/tree/master/models/bvicalexnet), Lenet (http:
//deeplearning.net/tutorial/lenet.html), faster R-CNN (https://github.com/ShaoqingRen/fasterrcnn),
googlenet (https://github.com/BVLC/caffe/tree/master/models/bvicgooglenet), Resnet (https:/github.
com/gcr/torch-residual-networks), and VGGnet (http://www.robots.ox.ac.uk/vgg/research/verydeep/),
were recently implemented by the authors and found to be highly effective in traditional artificial
intelligence applications with competitive results [24].

Besides the success of CNN in DR assessment, Prentasic [150] reports a study on the
handcrafted-based image classification methods used to automatically detect DR in retinal images.
These methods only rely on the preprocessing, localization, and segmentation of basic and DR
pathological retinal feature steps to grade DR. Likewise, [151] proposed a DR screening system
where features, like the area of vessels and MAs, were initially extracted from the fundus image.
Those selected features were then fed to a naive Bayes classifier to recognize the three severity levels of
DR, such as normal, NPDR, and PDR. Moreover, in the study of [152], a color normalization and image
segmentation method was applied to detect blood vessels, EXs, and MAs for DR diagnosis. To gain
more insight into the handcrafted-based DR screening methods, an extensive literature is given in
Section 2, respectively.

4. Discussion

Digital fundus photography is a screening tool for diabetic retinopathy. Most clinical principles
recommend this examination throughout the lives of diabetic patients especially those with mild and
moderate retinopathy. It is noticed that per annum, 50% of diabetic patients in the US and 30% in
France are recommended for DR screening. Due to this factor, the proper checkup of patients has
become an exhaustive and polemic job for clinical experts. However, computerized screening programs
have the ability to perform fast classification of DR stages using fundus images.

This review presents the significance of various computational deep learning, image processing,
and machine learning algorithms in CAD systems to identify DR stages using fundus images.
Those CAD systems are based on the correct segmentation of DR-related lesions, such as
microaneurysms, hemorrhages, and exudates, within the fundus images. All these computational
methods were published from 2013 to 2019, and collected from the most prestigious and popular
databases, such as the Institute of Electrical and Electronics Engineers (IEEE), the association of
computing machinery (ACM), Mendeley, Elsevier, and PubMed.

From the development view of DR-based CAD methods, few facts are highlighted. The efficiency
of DR-CAD systems relies on the direct segmentation of certain DR-related structures within color
fundus images, something that is prone to error and is computationally expensive. This step can make
the complete system less reliable. Some other methods have used outdated machine learning and
image processing techniques without quantitative measurements using an adequate amount of images.
Regarding DR diagnosis, most DR screening tools are based on the identification of DR and non-DR
classes, which in practice are not acceptable in the real-time detection of the five stages of the DR
severity level. Some CAD studies are devoted to the five stages of DR assessment. Still, those CAD
systems are dependent on the domain expert knowledge to observe inter/intra variations of retinal
features. Most machine learning methods have been recognized in DR grading, but do not cover all
symptoms of DR.

In future, the performance of the reviewed DR-CAD methods can be improved by incorporating
the following solutions: (I) Provide a much larger dataset of high resolution images, collected from a
diverse range of ethnicities; (I) utilize a combination of dynamic features, such as hand-engineered
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and non-hand engineered, with robust classifiers to get a higher classification performance, especially
in the national criteria of DR severity levels; (III) employ some novel color space/appearance models
need to provide better characterization of image complex patterns, (IV) overcome the four levels of the
DR database issue with five DR levels; and (V) identify severe DR in four quadrants using a larger
dataset. Moreover, the assessment of diabetic macular edema (DME) should be examined in the future
because it damages the vision of diabetic patients at a rapid rate, and thus requires an immediate
treatment of patients. Recently, ophthalmologists have introduced two diagnosis parameters, i.e.,
DRRI and standard index (STARD), extracted from the clinical features. It is a numeric value consisting
of different thresholds used to detect disease levels. Therefore, it can be a useful option for clinicians to
employ them in the measurement of DR classification results [153-156].

4.1. Deep Learning-Based Methods

Deep learning has achieved promising performances in various computer vision and healthcare
tasks especially in the detection of diabetic retinopathy (DR). However, there are some significant
challenges and underlying trends of deep learning, as covered in the following paragraphs.

Deep learning has proven to be a revolutionary scheme in addressing computer vision applications,
however, the theoretical background behind the DL remains to be determined. For example, how many
layers should be convolutional and pooling/recurrent, how many nodes per layer to perform certain
task, and which structure should be better than another? The human vision system (HVS) has
performed remarkably in computer vision tasks, even in the presence of geometric transformations,
occlusion, and background variation problems. Due to this reason, HVS is considered a more powerful
choice than deep learning methods. To overcome this gap, human brain studies should be incorporated
into deep learning methods to improve their performance. Moreover, the number of layers should be
increased for the selection of middle/high-level features to understand human brain structure.

Deep learning models demonstrate a significant potential capacity, once trained on a large datasets.
It is noticed that the shortage of datasets limits and harshly affects the training and learning accuracy
of DL networks. In the reviewed studies, two commonly used solutions are proposed to maximize the
training data: The first remedy is to generalize data from the available data using the data augmentation
method (e.g., rotation, cropping, scaling, and mirroring) in a horizontal or vertical way. The second
remedy is data collection using weakly supervised learning methods.

4.2. Comparisons Between Deep Learning and Traditional Methods

Table 6 describe the state-of-the-art comparisons between retinal feature and lesion detection
methods on the same dataset based on hand-crafted and deep features. This table indicates that the deep
features-based classification methods outperform conventional algorithms in terms of the extraction of
features. In past systems, the authors mainly utilized CNN variants of deep-learning algorithms.

Moreover, in Table 7, a performance comparison between traditional methods and deep learning
approaches is shown in order to endorse the superiority of deep learning-based methods over
traditional methods in retinal feature detection. These methods are reported in [122] for optic
disc and MA segmentation and localization, based on hand-engineered features and CNN-based
methods. The discussed methods were tested on the same datasets and statistical metrics. As seen
in Table 7, on the MESSIDOR dataset, the deep learning-based method provided a higher accuracy
(96.40%) than the hand-crafted-based method (86%) for OD segmentation whereas on the DRIVE
dataset, the traditional-based method achieved a smaller accuracy (75.56%) than a variant of deep
learning-based methods, i.e., CNN, yielding 92.68%. For OD localization, deep learning-based
methods [122] obtained less accuracy then hand-engineered-based arts. While in MA detection,
deep learning-based methods yielded a higher accuracy than traditional methods.
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Table 6. Performance comparison between retinal feature and lesion detection methods.

Retinal Feature Research Study Dataset Accuracy (%)
.. Hough transform [28] 99.6
ticd
Optic disc FIR filter [23] DRIVE, DIARETDB1 98.95
. CNN [37] . 94.1
Optic cup An adaptive threshold [41] DRISHTL-GS, Private 92
CNN and random forest [50] 97.5
Blood vessel Saliency and contour model [53] DRIVE, STARE 97
Microaneurysms Naive Bayes classifier [74] Private 99.99
y Hybrid classifiers [77] DIARETDBO and 1 99.40
Hemorrhage Variation mode decomposition [95] Private 100
8 SVM [93] STARE 97
Exudat Morphological operations [103] DIARETDBO and 1 98.65
xucate ACO[110] HEI-MED 97

Table 7. Performance comparison between traditional hand-crafted and deep learning methods.

Retinal o
Feature Approach Research Study Dataset Accuracy (%)
Traditional Morphological features 86
Optic disc Deep learning CNN MESSIDOR 96.40
segmentation Traditional Active contour DRIVE 75.56
Deep learning Single state-CNN 92.68
Traditional Morphological features 99
Deep learning R-CNN MESSIDOR 99.9
Optic disc Traditional Vessel distribution DRIVE 100
localization Deep learning CNN 100
Traditional ONE-ONE minimization 100
Deep learning CNN DIARETDBI 98.88
. Traditional Ensemble method 90
Micro-aneurysms Deep learning DCNN MESSIDOR 95.4

Earlier versions of CNNs were observed to be less applicable in real-time due to the requirement
of more computational resources. Now, deep learning methods have been improved, leading towards
real-time applications. For instance, He et al. [157] presented a real-time applicable DL architecture by
reducing the filter size and running time. They also proposed a flexible activation function to increase
the computational power of DL models. Similarly, Li et al. [158] minimized computational efforts
between forward and backward propagation in DL models, which made the CNN performance more
efficient for crucial problems. The DL efficiency can be further enhanced by fixing the time complexity
and implementation through GPUs.

4.3. Future Directions

Although deep learning algorithms have proven to be important in today’s image and video
processing applications, some possible directions remain that should be addressed for the development
of powerful DL networks. In fact, deep learning (DL)-based methods are also utilized for the
development of an automatic diagnosis system for DR. There are many variants of DL methods, but,
in the past, studies have mostly utilized CNN models to design deep multi-layer architectures for
the detection of DR from retinal fundus images. However, the annotation of these images requires
ophthalmologists, which is a very expensive and time consuming job. Therefore, the design of DL-based
methods that can learn from a limited dataset of fundus images is necessary. Also, in general, there is
another class imbalance problem that can occur in the case of developing an automatic solution for DR
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retinal fundus images. It is important to explore the class imbalance problem for the development of
DL-based methods in the case of learning biases for a specific class.

The development of deep learning-based strategies compared to traditional methods requires the
following important steps.

i Enhancing the generalization ability of the DL networks by increasing their size, e.g., by adding
the number of levels and units in each layer. One such type of DL model called GoogleNet
contains 22 layers.

ii. Establishing a layer-wise feature learning mechanism in the network. Each layer can learn their
successive layer features and vice versa. DeepIndex [159] is one of these types of models that
learns features in a hierarchical learning fashion.

iii. Incorporating/combining hand-designed and non-hand-designed features to obtain better
generalized models.

iv. The current DL models rely only on shared weights to make their choices, which may not be
adequate. There is a need for application-based deep networks that do not depend on the
existing models. Ouyang et al. [160] developed an object detection model, verifying that object
level notions are more viable than image level notions.

Moreover, the existing DL models’ performance could be enhanced by integrating the dynamic size
of deep learning architectures with their results in the cascaded mode. Thus, this can eliminate the larger
computational costs, requiring the training of individual DL networks to execute tasks independently.
For instance, Ouyang et al. [160] utilized a two-stage training procedure, in which previous stage
classifiers were integrated with the current stage classifier to correctly classify misclassified images.
Sun et al. [161] designed a three-class CNN model for face recognition. The initial facial points were
estimated by the first class CNN and then the remaining two class CNNs were applied to fine-tune
the initial predictions. Wang et al. [162] proposed a hybrid network for object recognition. The first
network was used to locate objects while the second network was utilized on the previous network
output for the estimation of object coordinates.

5. Conclusions

This article conducted a comprehensive survey into automated DR screening algorithms from
over 162 research papers, outlining their challenges and results in the detection of structural variations
of fundus salient features using digital fundus images. Initially, the role of fundus images in an
image acquisition step for the development of DR-based CAD systems was described as well as
recorded as being more robust than other retinal modalities. In addition to the significance of fundus
modality, the objective of common statistical parameters used in the evaluation of CAD systems was
also briefly discussed. Next, state-of-the-art computerized methods were discussed in detail to gain an
understanding of their framework for the segmentation and classification of fundus features using
publicly and non-publicly available retinal benchmarks. Finally, the main challenges of the automated
DR methods along with their possible solutions were demonstrated in the discussion. The current
automated DR screening methods were noted as being promising. In the future, these methods should
be evaluated on much larger datasets of high resolution images for the recognition of the five severity
levels of DR and a fine-tuning of their internal structure should be performed for the production of
highly reliable, fast, and real-time diagnosis settings of diabetic retinopathy.
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