
symmetryS S

Article

An Efficient MapReduce-Based Parallel Processing
Framework for User-Based Collaborative Filtering

Hanjo Jeong 1 and Kyung Jin CHA 2,*
1 School of Information Convergence, Kwangwoon University, Seoul 01897, Korea; hanjojeong@kw.ac.kr
2 Department of Business Administration, Kangwon University, Chuncheon 24341, Korea
* Correspondence: kjcha7@kangwon.ac.kr; Tel.: +82-33-250-6134

Received: 16 May 2019; Accepted: 29 May 2019; Published: 3 June 2019
����������
�������

Abstract: User-based collaborative filtering is one of the most-used methods for the recommender
systems. However, it takes time to perform the method because it requires a full scan of the entire
data to find the neighboring users of each active user, who have similar rating patterns. It also
requires time-consuming computations because of the complexity of the algorithms. Furthermore,
the amount of rating data in the recommender systems grows rapidly, as the number of users, items,
and their rating activities tend to increase. Thus, a big data framework with parallel processing,
such as Hadoop, is needed for the recommender systems. There are already many research studies
on the MapReduce-based parallel processing method for collaborative filtering. However, most of
the research studies have not considered the sequential-access restriction for executing MapReduce
jobs and the minimization of the required full scan on the entire data on the Hadoop Distributed
File System (HDFS), because HDFS sequentially access data on the disk. In this paper, we introduce
an efficient MapReduce-based parallel processing framework for collaborative filtering method that
requires only a one-time parallelized full scan, while adhering to the sequential access patterns on
Hadoop data nodes. Our proposed framework contains a novel MapReduce framework, including a
partial computation framework for calculating the predictions and finding the recommended items for
an active user with such a one-way parallelized scan. Lastly, we have used the MovieLens dataset to
show the validity of our proposed method, mainly in terms of the efficiency of the parallelized method.
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1. Introduction

Collaborative filtering is a method for recommender systems, which is a software system that
provides more preferable data items to a user by predicting the user’s preference of data items that
the user has not yet seen [1,2]. The collaborative filtering can be divided into two methods: one
is user-based collaborative filtering [3], and the other is item-based collaborative filtering [4]. This
research is more focused on the user-based collaborative filtering, which requires more complex
processing and computation.

As the amount of users and items are growing fast, the amount of rating data has grown rapidly.
Thus, the recommender systems are used to maintain and manage the large amount of data, and to
process and analyze the data in parallel. The Hadoop framework [5] is introduced to process and
analyze such large data. Hadoop stores and manages large sets of data with the Hadoop framework,
consists of the HDFS (Hadoop Distributed File System) [6] and MapReduce [7] framework. HDFS is a
distributed, scalable, and reliable file system with a simple key-value data structure, and it is optimized
for batch-oriented programming with the sequential read on disks. MapReduce is a parallel processing
programing framework consisting of JobTracker and TaskTracker components, where JobTracker
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co-ordinates job processes and TaskTracker co-ordinates maps and reduces tasks on the data nodes
in HDFS.

There are a number of research studies regarding the parallel processing of collaborative filtering
with Hadoop MapReduce framework [8–12], but none of them have addressed the sequential processing
for performing the MapReduce tasks. Realizing the sequential processing of the MapReduce tasks is
an important aspect for the MapReduce-based parallel processing, since the MapReduce tasks require
disk input/outputs (I/Os) on the data nodes to read input data and write output data. Thus, assuring
sequential access and less full scans on the disks during the MapReduce tasks is critical to preserve the
efficiency of the parallel processing.

In this paper, we proposed a new MapReduce-based collaborative filtering method that can
process and analyze the rating data in parallel for collaborative filtering. We focused on adhering to the
sequential access pattern and minimizing the number of a full scans to develop the method. We also
evaluated the efficiency of our proposed method with MovieLens dataset, which is the benchmark
dataset for the collaborative filtering. The rest of this paper is organized as follows. Section 2 presents
the preliminary study related to this research. Section 3 introduces our proposing method that can
process and analyze the user rating data with the MapReduce parallel processing framework for the
user-based collaborative filtering. Section 4 shows the experiment and performance evaluation of our
proposed method. The conclusion is given in the last section.

2. Preliminaries

2.1. User-Based Collaborative Filtering

The prediction of the user-based collaborative filtering is based on the user rating values,
which have previously been given to items not only by the active user, but also by the other users.
A well-known recommender system based on user-based collaborative filtering is the GroupLens
system [13]. The GroupLens system recommends information items, such as news articles and movies,
to the active user by filtering the items based on the predictions made for the active user regarding the
user’s likeness on the unseen items. The user’s likeness of an unseen item is determined based on the
user ratings of neighboring users on the unseen item. The neighbor users are selected if they have
similar rating patterns with the active users for the commonly-rated items in their profile.

The following equations are used to calculate a prediction for the active user’s rating for an unseen
item based on the Pearson Correlation Coefficient used in GroupLens:

p(ua, du) = rua +

∑
i
(rui,du − rui) ∗w(ua, ui)∑

i
w(ua, ui)

(1)

w(ua, ui) =

∑
ds

(rua,ds − rua) ∗ (rui,ds − rui)

σua ∗ σui

(2)

where p(ua, d) represents a prediction for the active user ua for an unseen (unrated) item, du; ui
represents the other users who have commonly rated items with the active user; w(ua, ui) is the
similarity (correlation) weight between the active user and the other user in terms of rating patterns
as defined by the Pearson Correlation Coefficient; ds is the commonly seen (rated) items between the
active user and the other user; and rua and rui represent arithmetic means for the ratings of data items
obtained from the active user and the other users, respectively.

2.2. MapReduce

MapReduce is an open-source software framework for parallel-data processing based on the
Hadoop Distributed File System (HDFS). In general, HDFS consists of a name node and multiple
numbers of data nodes, and it uses a simple data model consisting of key and value pairs for the
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convenience of horizontal scaling and maximizing the parallelism of the data processing. The simple
key-value data model is also efficient for the sequential processing of data on the disks, as HDFS
basically uses disk I/O-based batch processing, which is more suitable for the large amount of data
processing compared to the memory-based processing.

The MapReduce framework consists of multiple mapping tasks and multiple reduction tasks;
the mapping tasks are performed on the input splits that are horizontally partitioned data of the input
data for the parallel data processing. Also, there are multiple numbers of reduction tasks that are
performed on the data nodes to aggregate the outputs of the map tasks in parallel [14].

3. MapReduce-Based Parallel Processing Method for Collaborative Filtering

This section introduces a new MapReduce-based parallel processing method for the user-based
collaborative filtering described in Section 2.1. Figure 1 represents the whole process of MapReduce,
and is designed to maximize the parallelism for the collaborative filtering method. This example
process is created with an assumption that there are only 100 users and 100 items in the system
for the explanation. However, it works on any numbers of users and items as the processes can be
run record-by-record.Symmetry 2019, 11, x FOR PEER REVIEW 4 of 9 
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Figure 1. MapReduce process of collaborative filtering for an active user.

As shown in Figure 1, each input record is defined to consist of a user-id (key) and the user’s
rating data set (value), and the rating data set consists of an item-id and its rating score pairs. The input
data is split into k numbers of splits, which are simply divided by the user-ids having the same
number of the records in each split. Then, each split is assigned to a map task. This data structure of
the input record and the number of splits can ensure the parallel scan of the entire data to find the
candidates of the neighbor users and the unseen items in the mapping phase, which allows the system
to find all of the unseen items for an active user and simultaneously calculate the necessary partial
computation to calculate the rating prediction of the active user for the unseen items. It also makes the
system sequentially process such data, thereby enhancing the efficiency of the mapping task, which
requires data-read on the disks. After finding the unseen data from each mapper, the final prediction is
computed on the reduction phase by aggregating the outputs from the mapping phase.



Symmetry 2019, 11, 748 4 of 8

Our method is developed based on the user-based collaborative filtering method described in
Section 2.1. Thus, the formulas for the partial computation on the MapReduce tasks are created based
on Equations (1) and (2). In addition, our method defines the entire rating data of each user as a record,
which is the basic unit of the data processing in MapReduce tasks. Therefore, the similarity weight
defined in Equation (2) can be computed completely in the record-based computation. However,
Equation (1) requires multiple users’ rating data, so that it should be partitioned for each formula to
require only one user’s rating data. Equation (3) shows the partitioned formula of Equation (1) that is
simply separated based on each user. More details of the partial computations and procedure of the
MapReduce tasks are described in the following subsections.

p(ua, du) = rua +
((run1,du − rn1) ∗w(ua, un1)) + ((run2,du − run2) ∗w(ua, un2)) + . . .

w(ua, un1) + w(ua, un2) + . . .
(3)

where un1 and un2 represent the first and the second neighbor users, respectively.

3.1. Mapping Phase

In the mapping phase, the neighboring user candidates are found by comparing the active user’s
rating data and the other user’s rating data record-by-record. The candidates are the other users having
more than one commonly-rated item with the active user. If the user of the current record turns out to
be a candidate, the unseen items are found from the candidates’ rating data and the partial prediction
regarding the unseen items is also calculated at the same time. The unseen items are defined as the
items that are not-yet rated by the active user, but rated by the candidates, since the unseen items are
the recommended item candidates for the active user based on the neighboring users’ ratings. Figure 2
represents the pseudo-code for the map task.Symmetry 2019, 11, x FOR PEER REVIEW 5 of 9 
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The input and output key-value pairs are defined as bellows:
INPUT:
< KEY: userID, VALUE: a set of user ratings (itemID: rating) >

OUTPUT:
< KEY: itemID, VALUE: partial computation (rua : w(ua, ui): wd(ui, du)) >

The input key is a user-id and the input value is the entire set of the rating value pairs, which is
the same as the structure of each record in the input splits. The output key represents an item-id that
should be one of the unseen items of the active user, so that each mapper outputs only the unseen items,
which are potential recommendation items for the active user from the result of the final prediction.
The output value is a combined value with the mean of the current user’s ratings, correlation weight
between the active user and the current user, and the partial weighted deviations of commonly-rated
items between the active user and the current user. These output values are aggregated to calculate the
final prediction of the preference of the active user for the unseen items in the reduction phase.

For the details of the map-task process, each input split contains the active user’s rating data in
the first record, so that the first record is assigned to the active user’s rating data. Then, the mean of
the active user’s rating scores is calculated. This mean value is used once to adjust the neighboring
users’ rating scores in the range of the active user’s rating scores, but it is carried out for each record,
since the Hadoop MapReduce process is performed record-by-record to materialize the parallel and
sequential processing of the disks.

From the second record, the map-task process compares the active user’s rating data and the
other user’s rating data user-by-user. At first, it compares the items in the rating data between the
active user and the current user, and it finds the number of commonly-rated items by both of the users.
If the number of the commonly-rated items is more than one, the current user can be determined as
neighboring user candidate, since the correlation weight can be calculated when there is at least two
data points.

If the current user is a candidate of the neighboring users, it calculates the similarity weight
between the active user and the current user, w(ua, ui), as shown in Equation (4), defined by the Pearson
Correlation Coefficient. Note that Equation (4) is identical to the similarity weight computation of the
user-based collaborative filtering, as in Equation (2).

w(ua, ui) =

∑
ds

(rua,ds − rua) ∗ (rui,ds − rui)

σua ∗ σui

(4)

Then, it finds a set of the unseen items for the active user among the rated items of the current user,
and it calculates the weighted deviation of the unseen item using the mean ratings of the current user,
wd(ui, du), as defined in Equation (5). Equation (5) is identical to the partial numerator in Equation (3),
which corresponds to only one candidate of the neighboring users. This partial computation makes
sure that it is able to perform the map task record-by-record.

wd(ui, du) = (rui,du − rui) ∗wua,ui (5)

The unseen item-id and its partial computation values are added to an emitted set, and each
mapper sorts the emitted set in the order of the item-ids. There are multiple partial-computation values
for an unseen item, since it can appear for multiple users. However, the user-ids are not needed to carry
this out, since the partial computation contains all of the necessary partial information to calculate
the final prediction for the corresponding users. Lastly, each mapper emits the sorted outputs with
records consisting of an unseen item-id (key) and its related partial-computation values as a combined
value (value).
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3.2. Reducing Phase

In the reduction phase, the emitted partial-computation data from the mappers are shuffled, sorted,
and reduced in order to calculate the final prediction. As shown in Figure 1, the partial-computation
data is shuffled and sorted by item-id, so that the reducer can sequentially process and aggregate it
with only one disk scan. Finally, it calculates the final prediction of the unseen items based on the
aggregated data and emits the final results. Figure 3 represents the pseudo-code for the reduction task.
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The input and output key-value pairs of the reduction tasks are defined as bellows:
INPUT:
< KEY: itemID, VALUE: partial_computation (rua : w(ua, ui): wd(ui, du)) >

OUTPUT:
< KEY: itemID, VALUE: prediction(ua, du)>

The input keys are the unseen item-ids of the active user, and the input value is a list of the
partial-computation data as it is outputted from the mappers. For each unseen item, the final prediction
of the rating score of the active user is calculated as defined in Equation (6). The final prediction
obtained from this aggregation of the partial-computation values should be identical to the prediction
calculated on the entire data, as in Equation (1)

p(ua, du) = rua +

∑
wd(ui, du)∑
w(ua, ui)

(6)

4. Experiments

For the experiments of this research, we used the MovieLens 20M dataset [15], which has been
created by the GroupLens research group. The MovieLens 20M dataset contains 20 million ratings for
27,000 movies by 138,000 users.

As the goal of this research was to transform the user-based collaborative filtering method to
a MapReduce-based parallel processing method, thus, the accuracy of the proposed method in this
research should be identical to the original collaborative filtering method. Therefore, we mainly
evaluated the proposed method in terms of its efficiency. The speedup measure was used to evaluate
the efficiency of our system, which is a de-facto standard measure for evaluating the performance of
the MapReduce-based collaborative filtering systems [16,17]. The speedup measure represents the
ratio between the execution time of the serial processing by a single processor and the execution time
of the parallel processing by multiple processors [18,19]. In the Hadoop environment, the number of
data nodes can be regarded as the number of processors in the parallel processing.

Figure 4 represents the results of the efficiency evaluation. We evaluated the efficiency with the
different datasets with ratings data from 1000, 10,000, and 100,000 randomly chosen users.
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As shown in Figure 4, the speedup measure is 1 for the time spent with only one node, since it is
identical to the serial processing with a single processor. The result shows that the speedup is a bit
lower than the ideal increment because the MapReduce-based method reads and writes the interim
results on the disk. However, the speedup result is increased exponentially to the number of nodes;
this might prove that the proposed method efficiently provides parallelism on more time-intensive
tasks, such as finding the candidates of the neighboring users that have commonly-rated items and
computing the weighted deviation and the correlation weight for the number of users.

5. Conclusions

There are already many research studies on the MapReduce-based parallel processing method for
collaborative filtering. However, most of research studies have not considered the sequential-access
requirement for executing HDFS-based MapReduce jobs and minimizing required full scans on the
entire data, because HDFS sequentially accesses data on the disk.

In this paper, we presented a novel MapReduce-based parallel processing framework for the
user-based collaborative filtering, mainly focused on minimizing the number of full scans while
adhering to the restriction of the sequential-access pattern. Our proposed framework includes the
partial computation framework and the MapReduce-based parallel data processing framework for
calculating the predictions, not only in parallel, but also with only a one-time scan. Therefore, our
proposed method allows the system to process and analyze the data for the recommendation task with
only a one-time parallelized scan, while satisfying the sequential-access restriction of Hadoop data
nodes. That is, our system does not necessarily re-scan previously scanned data, which is an enormous
time-consuming job for the HDFS. With such strength, the results of the experiments showed that
our proposed method does not sacrifice much of the advantages of the MapReduce-based parallel
processing in terms of efficiency.
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