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Abstract: The bearing system of an alternating current (AC) motor is a nonlinear dynamics system. 

The working state of rolling bearings directly determines whether the machine is in reliable 

operation. Therefore, it is very meaningful to study the fault diagnosis and prediction of rolling 

bearings. In this paper, a new fault diagnosis method based on variational mode decomposition 

(VMD), Hilbert transform (HT), and broad learning model (BLM), called VHBLFD is proposed for 

rolling bearings. In the VHBLFD method, the VMD is used to decompose the vibration signals to 

obtain intrinsic mode functions (IMFs). The HT is used to process the IMFs to obtain Hilbert 

envelope spectra, which are transformed into the mapped features and the enhancement nodes of 

BLM according to the complexity of the modeling tasks, and the nonlinear transformation mean 

according to the characteristics of input data. The BLM is used to classify faults of the rolling 

bearings of the AC motor. Next, the pseudo-inverse operation is used to obtain the fault diagnosis 

results. Finally, the VHBLFD is validated by actual vibration data. The experiment results show that 

the BLM can quickly and accurately be trained. The VHBLFD method can achieve higher 

identification accuracy for multi-states of rolling bearings and takes on fast operation speed and 

strong generalization ability. 

Keywords: rolling bearings; fault diagnosis; broad learning model; variational mode 

decomposition; Hilbert transform 

 

1. Introduction 

The working state of rolling bearings directly determines the reliable operation of a machine 

[1,2]. However, the occurrence probability of fault is always higher due to the influences of the load 

of rolling bearings of AC motor [3–6]. Thus, it is very important to improve the operation reliability 

and accurately diagnose faults for rolling bearings in time [7–9]. 

Fault diagnosis methods of rolling bearings are used to essentially recognize the working states 

[10–13]. To effectively recognize the working state of rolling bearings, many signal processing 

methods have been proposed in recent years, such as short time Fourier transform (STFT) [14,15], 

wavelet transform (WT) [16], Hilbert–Huang transform (HHT) [17–19], empirical mode 

decomposition (EMD) [20–22], entropy [23–25], support vector machine (SVM) [26], artificial 

intelligence methods [27–29], and other processing methods [30,31]. In addition, some new methods 

have also been applied in the field of signal analysis and fault diagnosis [32,33]. Gao et al. [34] 

proposed a fault identification method based on time-frequency distribution (TFD) for rolling 

bearings. Zhang et al. [35] proposed a flexible wavelet transform to obtain weak fault feature. Kabla 



Symmetry 2019, 11, 747 2 of 19 

 

et al. [36] applied HHT and marginal spectrum to analyze the signals of the stator current. Yuan et 

al. [37] proposed an ensemble noise-reconstructed EMD method. The SVM is widely applied for fault 

diagnosis. Du et al. [38] proposed a stochastic fault diagnosis method using EMD and principal 

component analysis (PCA). To solve the classification ability of SVM, Fei et al. [39] proposed a power 

transformer fault diagnosis model using a rough set and SVM. Gao et al. [40] proposed a matrix 

factorization method to represent and identify the bearing faults. Cheng et al. [41] proposed a fault 

diagnosis model using a band decomposition method. Huang et al. proposed a fault diagnosis 

method for rolling bearings [42,43]. 

Deep learning is a new area of machine learning research that uses multilayer artificial neural 

networks to provide the most advanced accuracy in speech recognition, object detection, and so on. 

It can automatically study representations from text, images, or video data. The flexible structure can 

directly study from more raw data and improve forecasting accuracy. Due to these advantages of 

deep learning, it has been applied in fault diagnosis. In recent years, a lot of fault diagnosis methods 

based on deep learning have been proposed, and good diagnostic results have been obtained. Van 

Tung et al. [44] proposed a deep belief networks (DBN)-fault diagnosis method in reciprocating 

compressors. Guo et al. [45] proposed an adaptive deep convolutional neural networks (DCNN) to 

classify and diagnose mechanical faults. Qi et al. [46] proposed a stacked sparse auto-encoder-fault 

diagnosis method. Shao et al. [47] proposed an adaptive DBN to identify the faults. Li et al. [48] 

proposed a novel new fault diagnosis model for rolling bearings. Shao et al. [49] proposed an 

improved convolutional deep belief networks (CDBN) for rolling bearing fault diagnosis. Sun et al. 

[50] proposed a sparse deep learning method. Zhang et al. [51] proposed a DCNN for bearing fault 

diagnosis under different loads and noisy environments. Shao et al. [52] proposed a fault diagnosis 

model for electric locomotive bearings. Wang et al. [53] proposed a fault diagnosis method for rolling 

bearings. Wang et al. [54] proposed a DBN with RBM based on a data indicator for multiple faults. 

Liu et al. [55] proposed a deep neural networks(DNN)-unsupervised fault diagnosis model. Zhao 

and Jia [56] proposed a deep fuzzy clustering neural network to realize the fault recognition of 

rotating machinery. Hu and Jiang [57] proposed a new fault diagnosis model using modified DNN 

with incremental imbalance. 

However, the structure of a deep learning network is complex and has many parameters, which 

results in an extremely time consuming training process. In order to obtain higher diagnosis accuracy, 

the deep learning network has to continuously increase the number of network layers or adjust the 

parameters using optimization algorithms. The fault diagnosis requires the rapidity and high 

accuracy to ensure safe and smooth operation. Therefore, it is necessary to use a new deep network 

model and further study a corresponding combination with other methods. The broad learning 

model (BLM) is an effective incremental learning system model. It could realize competitive results 

in various applications. At the same time, if the network needs to be extended, the model can be 

efficiently reconstructed through incremental learning. Therefore, it is significant to deeply research 

the new fault diagnosis model for rolling bearings. 

The key of fault diagnosis is to choose proper methods to diagnose the fault type, the position 

and the severity. It is easier to diagnose the fault type, but the fault development is a gradual process. 

When the fault degree is different, the vibration signal also shows different features. To effectively 

diagnose the fault and reveal the development and evolution of faults, VMD, HT and BLM are 

introduced into the fault diagnosis to deeply study new fault diagnosis model for AC motor rolling 

bearings. 

2. Basic method 

2.1. VMD 

The VMD is a completely non-recursive signal decomposition method. Its essence is multiple 

Wiener filter banks. The VMD can decompose a signal into a number of discrete sparse sub-signals. 

Therefore, the VMD is applied in fault diagnosis. Li et al. [58] proposed an independence-oriented 

VMD via correlation analysis to adaptively obtain weak fault features. Jiang et al. [59] proposed an 
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initial center frequency-guided VMD to accurately extract weak damage features. Li et al. [60] 

proposed an adaptive VMD for extracting periodic impulses. Wang et al. [61] proposed an adaptive 

parameter optimized VMD. The other signal decomposition methods have also been proposed in 

recent years [62–76]. 

Assuming that each mode ��  has a center frequency �(�)  and a limited bandwidth, the 

constraint condition is that the sum of each mode is equal to the input signal, and the sum of the 

estimated mode bandwidth is the minimum. The �(�) and the bandwidth of each mode are updated 

continuously during the iterative process of solving the variational model. Finally, the adaptive 

decomposition for signal is realized. 

The signal is decomposed at scale K and the variational problem is constructed with the 

minimum of the sum of the estimated bandwidths of the IMF components. 

min
{��},{��}
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where {��} = {��, ��, … , ��} represents each modal function and {��} = {��, ��, … , ��} represents 

the central frequencies of each modal function. �(�)	is the Dirichlet distribution function; * is the 

convolution. 

The quadratic penalty factor is used to guarantee the fidelity of the reconstructed signal, and the 

Lagrange multiplier is used to guarantee the strictness of the constraint. The extended Lagrange 

expression is as follows: 
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where, α represents a penalty factor; λ represents a Lagrangian multiplier. 

In the VMD, the multiplicative operator alternating direction method is used to solve thee 

variational problems. By alternately updating ��
���, ��

��� and λ, we seek the "saddle point" of the 

extended Lagrangian expression. The component �� and the center frequency �� are described as 

follows. 
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where ���
���(�) is equivalent to the Wiener filtering of the current residual ��(�) − ∑ ���(�)���  and 

the real part of ���(�) after inverse Fourier transform is ��(�). 

2.2. Deep belief network 

Deep learning can learn the discriminative features from data [77]. The basic models of deep 

learning can be divided into a multi-layer model, a deep neural network model and a recursive neural 

network model. The Deep belief network (DBN) is a generating graphical model, composed of 

multilayer hidden units. The DBN can generate training data according to the maximum probability 

in the whole neural network by training the weights of its neurons. The Deep Boltzmann machine 

(DBM) can learn input data probability distributions by latent or hidden variables. The RBM is an 

undirected graphical model  0,1
F

v  and hidden units  0,1
D

h  . The structure of RBM is shown 

in Figure 1.  
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Figure 1. Structure of RBM. 

For a given set ( ,v h ), it can be defined as follows: 

,
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The joint distribution over v  and h  is defined as follows: 

1
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Z
   (6) 

The unbiased sample can be obtained: 

( 1| ) ( )i i j ij
j
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( 1| ) ( )j j i ij
i

p h v b v w    (8) 

where	���  is the connection weight, 	��  and ��  are bias coefficients of the ith neuron and the jth 

neuron, v is the input vector and the h is output vector. 

2.3 Broad Learning Model 

The Broad learning model (BLM) is an effective incremental learning system [78]. It is essentially 

designed for various applications. The mapping feature nodes can efficiently extract features. At the 

same time, the random connection from mapping features to enhancing nodes can compensate for 

the non-linearity of mapping feature nodes and improve the speed of the model. The BLM can 

achieve competitive results with state-of-art methods on various applications. The BLM is 

represented in Figure 2. 
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Figure 2. The broad learning model. 
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Assume that input data X and project data are presented using i
( )

ei ei
XW  in order to obtain 

the ith mapping features iZ . 1[ ,..., ]i
iZ Z Z is the concatenation of all mapping features of the first 

i groups. Likely, the enhancement nodes of the jth group is ( )j i hj hjZW  , which can be regarded 

as jH . 1[ ,..., ]j

jH H H is concatenation of all enhancement node of the first j groups. In addition,

i and k are different functions when there is i ≠k. Likely, j  and r  are also different functions 

when there is j≠r. 

In the BLM, the linear inverse problem is used, and the initial eiW is fine tuned in order to obtain 

better features. Next, the BLM is described in detail. Assume the input data set X with N samples, 

each sample is M dimensions. The output matrix is Y.  

( ), 1,...,i ei eiZ XW i n   
 

(9) 

where eiW and ei are generated randomly, and 1[ ,..., ]n
nZ Z Z . The enhancement nodes of mth 

group are described. 

( )n
m hm hmH Z W    (10) 

Hence, the BLM can be represented. 

1 1 1[ ,..., | ( ),..., ( )]n n m
n h h hm hmY Z Z Z W Z W W       
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where the [ | ]m n mW Z H Y . 

Wm are the connecting weights of BLM. 

2
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3. A new fault diagnosis method based on VMD, HT and BLM 

3.1. The idea of the VHBLFD method 

Many researchers have deeply researched fault bearing diagnosis; some results have been 

achieved, and some signal analysis methods have been proposed successively in recent years. The 

time domain features are easy to be calculated, but the anti-jamming ability for fault vibration data 

is poor. The frequency domain features are based on the global transformation of signals, which 

cannot effectively analyze non-stationary signals. The VMD has the advantages of effectively 

reducing pseudo components and modal aliasing. Hilbert transform (HT) is applied to obtain 

accurate time-frequency distributions of signal energy and further construct the corresponding 

marginal spectrum. The Hilbert marginal spectrum can accurately reflect the change rule of signal 

amplitude with frequency. Compared with the existing signal feature extraction methods, HT has 

better noise robustness. The deep learning can better solve the problems of feature learning, feature 

extraction, and deep network training, but there exists many parameters to be optimized, which 

usually requires a great deal of time and machine resources. The BLM provides an alternative 

method. It wadesigned by expanding the broad features nd enhancement nodes. Therefore, the BLM 

with fast calculation speed and strong generalization ability could be used to a new fault diagnosis 

(VHBLFD) method. The VHBLFD determines the numbers of enhancement nodes and mapped 

features and according to the complexity of the modeling tasks, as well as the nonlinear 

transformation mean according to the features of input data. Then, the vibration signals are 

decomposed using the VMD, and the HT is used to process the IMFs to obtain Hilbert envelope 
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spectra, which are transformed into the mapped features and enhancement nodes. The BLM is used 

to realize the fault diagnosis, and the pseudo-inverse operation is used to obtain the fault diagnosis 

results. 

3.2 The fault diagnosis model and steps 

The model of the proposed the VHBLFD method using the VMD, HT and BLM is shown in Figure 

3. 

Obtain vibration signals of rolling bearings (Step 1)

Initialize the parameters of all methods (Step 2)

Training model

Decompose vibration signals by VMD (Step3)

Obtain 4 IMF components (Step 4)

Obtain Hilbert envelope spectrum (Step 5)

Construct the fault feature matrix (Step 6,7)

Obtain the parameters of the BLM (Step 8,9)

Test vibration signal of rolling bearings (Step 1)

Normalize the test data (Step 1)

Obtain trained BLM (Step 10)

Output fault diagnosis results (Step 11)

Test process

 

Figure 3. The flow of fault diagnosis method. 

3.3 The steps of the fault diagnosis method 

The steps of the proposed VHBLFD method for rolling bearings of the AC motor are described 

in detail. 

Step 1：The acceleration sensors are used to collect vibration acceleration signals of rolling 

bearings of the AC motor. 

Step 2: Initialize these parameters of the proposed VHBLFD method using VMD, HT and BLM. 

These parameters mainly include the number of decompositions of VMD, the number of feature 

nodes per window, the windows and the enhancement nodes of BLM, and so on.  

Step 3: The VMD is used to decompose the vibration acceleration signals into a series of IMFs.  

Step 4: According to the number of decompositions of the VMD method, four IMF components 

are determined. 

Step 5: The HT is used to process the four IMF components to obtain the Hilbert envelope 

spectrum for obtaining fault features.  

Step 6:  The Hilbert envelope spectrums of four IMF components are connected by the 

beginning and the end to construct the feature matrix.  

Step 7：The fault features are proportionally divided into the training feature samples and the 

test feature samples.  

Step 8：Calculate the feature nodes of the BLM according to Formula (8) and the enhancement 

nodes of the BLM according to Formula (9). 

Step 9：Calculate the output of the BLM based on the feature nodes and the enhancement nodes 

using the pseudo inverse operation. 

Step 10：Input the training feature samples to train BLM in order to obtain the trained BLM for 

realizing the fault diagnosis. 
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Step 11：Test feature samples are used to validate the effectiveness of the proposed VHBLFD to 

obtain diagnosis results. Analyze and verify the effectiveness and the rapidity of the VHBLFD 

method.  

4. Validation and analysis of the VHBLFD method 

4.1. Experiment data and environment 

The vibration data are selected to validate the VHBLFD method here in [79]. The platform is 

shown in Figure 4. The vibration data are obtained under 0 HP at 1730 r/min. The different faults of 

outer race, inner race and rolling element are given. These fault diameters are 0.1778 mm, 0.3556 mm, 

and 0.5334 mm. There are 10 kinds of vibration data. The vibration data is sampled at 12,000 Hz 

frequency. Each sample consists of 2048 data points in Table 1.  

 

Figure 4. The experiment platform. 

Table 1. The sample data. 

No. Inner race Outer race Rolling element 

1 -0.0830 0.0085 -0.0028 

2 -0.1957 0.4235 -0.0963 

3 0.2334 0.0130 0.1137 

4 0.1040 -0.2652 0.2573 

5 -0.1811 0.2372 -0.0583 

6 0.0556 0.5909 -0.1260 

7 0.1738 -0.0930 0.2074 

8 -0.0469 -0.4069 0.1727 

9 -0.1119 0.2794 -0.2199 

10 0.0596 0.4370 -0.1561 

11 0 -0.3529 0.2240 

… … … … 

2041 0.2305 0.0309 0.2375 

2042 0.0461 0.1186 -0.0271 

2043 -0.5122 -0.0061 -0.1327 

2044 0.1481 -0.0979 0.0929 

2045 0.6280 0.0914 0.1106 

2046 -0.2043 0.1494 -0.1499 

2047 -0.2640 -0.2355 -0.1108 

2048 0.4662 -0.3224 0.1467 

The experiment scheme is divided into two schemes. The first experiment scheme is to determine 

the fault types. The second experiment scheme not only determines the fault types, but also 

determines the severity of the fault. Each experiment scheme contains four data sets under four 
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different working loads; 2072 data under no-load (0HP) are taken as training sets and 540 data sets 

under other working loads are taken as test sets. 

4.2. Feature extraction 

The mode number of VMD decomposition is selected as four according to the empirical value. 

The VMD is applied to decompose the inner race vibration signal into four IMF components (fault 

diameter is 0.3556 mm) in Figure 4. 

 

Figure 4. Decomposition of inner race fault signal. 

The instantaneous frequency and the amplitude of the vibration signal can be obtained from 

each IMF, and the Hilbert envelope spectra are also obtained. The four Hilbert envelope spectra are 

connected from the head to the end in order to arrange a row. The length of the connected data is 

4096, that is, the input dimensions are 4096. The VMD-Hilbert envelope spectra of normal data, inner 

race fault data (the fault diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm), outer race fault data 

(the fault diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm) and rolling element fault data (the 

fault diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm) are shown in Figure 5. 
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Figure 5. The VMD-Hilbert envelope spectra for different fault data. 

4.3. Fault diagnosis results 

The VHBLFD method is used to recognize the fault of rolling bearings. The parameters of the 

BLM mainly include the number of feature nodes, the window number of the feature nodes, the 

number of enhancement nodes, the regularization parameter C, and the reduction rate s of the 

enhancement node. Because the parameters of the VHBLFD method are critical to classify, it is very 

important to select reasonable values of parameters. The size and the characteristics of experiment 

data are analyzed, and the selecting methods of parameters of BLS in the original paper are studied 
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herein. The values of the parameters are determined. The training times are 80. The learning rate is 

0.01. The weight penalty coefficient is 0.0002. The initial momentums are 0.5 and 0.9. For the 

VHBLFD1 method, the feature nodes are 100, the window number is five, and the enhanced nodes 

are 1000. For the VHBLFD2 method, the feature nodes are 100, the window number is 15, and the 

enhanced nodes are 17,000. 

The 4096-dimension Hilbert envelope spectra of 10 kinds of state data are applied to construct 

the feature matrix for an input of the BLM. The 5300 data sets are regarded as training sets, and 1300 

data sets are regarded as test sets in the experiment. The diagnosis results and the test times of the 

proposed VHBLFD method are shown in Table 2. 

Table 2. The diagnosis results and test times of the proposed VHBLFD method. 

Fault diagnosis method Diagnostic accuracy (%) Test time (s) 

VHBLFD1 (100,5,1000) 95.99 6.45 

VHBLFD2 (100,15,17000) 97.74 22.29 

As can be seen from Table 2, the diagnosis accuracy and the test time of the VHBLFD1 

(100,5,1000) are 95.99% and 6.45 s. The diagnostic accuracy and test time of the VHBLFD2 

(100,15,17000) are 97.74% and 22.29 s. The experimental results show that the BLM can construct a 

fault diagnosis model with better diagnosis efficiency and faster diagnosis speed. The proposed 

VHBLFD method can obtain higher diagnostic accuracy and takes less test time.  

4.4. Comparision and analysis for diagnosis results 

In order to test and verify the effectiveness of the proposed VHSMFD method for rolling 

bearings of the AC motor, the VHSMFD method based on VMD, HT, and SVM, the EHDNFD method 

based on EMD, HT, and DBN, the EEHDNFD based on EEMD, HT and DBN, the VHDNFD method 

based on VMD, HT and DBN are compared with the proposed VHSMFD method. The four limited 

Boltzmann machines are used in this paper according to many experiments, that is, the five layer 

DBN, which allows for the shorter training time and obtain good diagnosis results. The number of 

nodes of the DBN (50-50-200) and the BLM (100-15-17,000) are set in this experiment. The initial 

values of parameters for SVM are described as c = 380, g = 0.4710, and p = 0.010375. The values of 

other parameters are the same as those in Section 4.3. The diagnosis results and the test times of 

different methods are shown in Table 3, Figure 6, and Figure 7. 

Table 3. Comparison of diagnosis results and test time. 

Diagnosis methods Diagnostic accuracy (%) Test time (s) 

VHSMFD 40.46 274.71 

EHDNFD 95.02 664.57 

EEHDNFD 96.55 630.37 

VHDNFD 97.68 459.21 

VHBLFD 97.74 22.29 
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Figure 6. The comparison results of diagnostic accuracy. 

 

Figure 7. The comparison results of test time. 

From Table 3, Figure 6, and Figure 7, the diagnosis accuracies of VHSMFD, EHDNFD, 

EEHDNFD, VHDNFD, and VHBLFD are 40.46%, 95.02%, 96.55%, 97.68%, and 97.74%, respectively. 

For the VHSMFD method based on VMD, HT and SVM, the fault diagnosis accuracy is only 40.46%, 

and the diagnosis effect is the worst of the five diagnosis methods. The results show that the SVM 

cannot construct a fault diagnosis model with strong generalization ability for difference data. For 

the VHBLFD method, the diagnosis accuracy is 97.74%, and the diagnosis effect is better than that of 

the VHSMFD, EHDNFD, EEHDNFD and VHDNFD methods. The results show that the BLM can 

construct a fault diagnosis model with strong generalization ability and the higher accuracy for 

difference data. The test time of the VHSMFD, EHDNFD, EEHDNFD, VHDNFD and VHBLFD are 

274.71 s, 664.57 s, 630.37, 459.21 s, and 22.29 s, respectively. The test times of EEHDNFD method is 

664.57 s, and he fault diagnosis efficiency is the lowest of these diagnosis methods. The test time of 

the VHBLFD is 22.29 s, and the fault diagnosis efficiency is the highest of these fault diagnosis 

methods. The results show that the BLM can construct a fault diagnosis model with better diagnosis 

efficiency and faster diagnosis speed. Therefore, the VHBLFD takes on the higher diagnosis accuracy 

and better diagnosis efficiency.  

4.5 The influences of parameters in BLM for diagnosis accuracy 

4.5.1 The influences of the number of feature nodes for diagnosis accuracy 
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In this section, when the number of feature node windows and the number of enhancement 

nodes are unchanged, the number of feature nodes is changed, and ten different states of the rolling 

bearings are identified. The experiment under each parameter is carried out ten times, and the test 

results and the running times are averaged for 10 times. The test results and running time are shown 

in Table 4, Figure 8, and Figure 9. The regularization parameter C is 2×10-30, and the enhance node 

reduction ratio s is 0.8 in Table 1. N11 is the number of feature nodes. N2 is the number of feature 

node windows. N33 is the number of enhancement nodes. 

Table 4. Test results for different feature nodes. (.N11 is the number of feature nodes, N2 is the 

number of feature node windows, and N33 is the number of enhancement nodes). 

(N11, N2, N33) Test accuracy (%) Total average time (s) 

40, 15, 3000 96.9902 4.8618 

50, 15, 3000 96.9601 5.2248 

60, 15, 3000 96.3506 5.6163 

70, 15, 3000 96.2904 6.0630 

80, 15, 3000 96.2302 6.5115 

90, 15, 3000 95.8239 7.0634 

100, 15, 3000 95.5982 7.5683 

200, 15, 3000 92.0692 15.0772 

300, 15, 3000 89.7968 21.7082 

 

 

Figure 8. The test accuracy of different numbers of nodes (N11). 
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Figure 9. The total average times of different numbers of nodes (N11). 

From Table 4, Figure 8 and Figure 9, the total test time increases from 4.8618 s to 21.7082 s in the 

process of increasing feature nodes from 40 to 300, but the test accuracy takes on a decreasing trend 

from 96.9902% to 89.7968%. The experiment results show that the number of feature nodes can be 

reasonably selected according to the size of the input data in order to obtain the best diagnosis result 

in practical applications. 

4.5.2 The influences of the number of feature node windows for diagnosis accuracy 

In this section, when the number of enhancement nodes and feature nodes is unchanged, the 

number of feature node windows is changed, and ten different states of the rolling bearings are 

identified. The experiment under each parameter is carried out ten times, and the test results and are 

running times are averaged for 10 times. The results and the running times are shown in Table 4, 

Figure 10, and Figure 11. The regularization parameter C is 2×10-30, and the enhance node reduction 

ratio s is 0.8 in Table 5. 

Table 5. Test results for different feature node windows. 

Number of nodes(N11, N2, N33) Test accuracy (%) Total average time (s) 

100, 5, 1000 95.8239 3.4090  
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100, 25, 1000 95.9142 9.4303 
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100, 75, 1000 95.6659 35.2004 
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100, 90, 1000 95.6358 30.5728 
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Figure 12. The test accuracy of different numbers of nodes (N33). 

 

 

Figure 13. The total average times of different numbers of nodes (N33). 
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competitive results of the state-of-art method. The BLM with fast calculation speed and strong 

generalization ability is used to realize the fault classification. The actual vibration data are used to 

validate the effectiveness of the VHBLFD. The fault diagnosis accuracy of the VHBLFD is 97.74%, 

and the test time of the VHBLFD is 22.29s. The results show that the BLM can construct the VHBLFD 

model with a higher diagnosis accuracy and a better diagnosis efficiency. Compared with the DBN 

and the SVM, the BLM is more sensitive for fault features and has faster diagnosis speed and better 

robustness. Therefore, the VHBLFD method provides higher diagnosis accuracy and better diagnosis 

efficiency. 

In order to solve the practical engineering problem, we plan to design a new experiment 

platform to obtain a new dataset containing much more data. We will use the new dataset to study 

the fault diagnosis method in future work.  
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