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Abstract: In 1984, Wang and Zheng (J. Comput. Math. 1984, 1, 70–76) introduced a new fourth
order iterative method for the simultaneous computation of all zeros of a polynomial. In this paper,
we present new local and semilocal convergence theorems with error estimates for Wang–Zheng’s method.
Our results improve the earlier ones due to Wang and Wu (Computing 1987, 38, 75–87) and Petković,
Petković, and Rančić (J. Comput. Appl. Math. 2007, 205, 32–52).
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1. Introduction

Over the last few decades, we have observed rapid development of the theory of iterative methods
for simultaneously finding all roots of a polynomial (see, e.g., [1–34] and the references given therein).
The present paper deals with a thorough local and semilocal convergence analysis of a well-known iterative
method, which was introduced in [34].

In the paper, (K, | · |) stands for a valued field with absolute value | · | and K[z] stands for the
ring of polynomials over K. We endow the vector space Kn with the norm ‖ · ‖p : Kn → R defined by
‖x‖p = (∑n

i=1 |xi|p)1/p (1 ≤ p ≤ ∞).
Let f ∈ K[z] be a polynomial of degree n ≥ 2. A vector ξ ∈ Kn is said to be a root vector of polynomial

f if: f (z) = a0 ∏n
i=1(z− ξi) for all z ∈ K, where a0 ∈ K.

In 1984, Wang and Zheng [34] introduced the following simultaneous method:

x(k+1) = T(x(k)), k = 0, 1, 2, . . . , (1)

where T : D ⊂ Kn → Kn is defined by T(x) = (T1(x), . . . , Tn(x)) with:

Ti(x) =

{
xi − Zi(x)−1 if f (xi) 6= 0,
xi if f (xi) = 0,

(2)

where:

Zi(x) =
f ′(xi)

f (xi)
− f ′′(xi)

2 f ′(xi)
− f (xi)

2 f ′(xi)

(∑
j 6=i

1
xi − xj

)2

+ ∑
j 6=i

1
(xi − xj)2

 .

Apparently, the domain D of Wang–Zheng’s iteration function T is:

D = {x ∈ D : f ′(xi) 6= 0 and Zi(x) 6= 0 whenever f (xi) 6= 0}. (3)
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In the paper, we denote by D the set of the vectors in Kn with pairwise distinct coordinates, i.e.,

D = {x ∈ Kn : xi 6= xj for all i 6= j}. (4)

In 1987, Wang and Wu [32] gave the following local convergence theorem for Wang–Zheng’s method:

Theorem 1 ([32]). Suppose f ∈ C[z] is a polynomial of degree n ≥ 2 with simple zeros. Let x(0) ∈ Cn be an initial
approximation with pairwise distinct coordinates satisfying:

‖x(0) − ξ‖∞ < min
{

δ(ξ)

2n
,

δ(ξ)2

(n + 2)∆(ξ)

}
, (5)

where δ(ξ) = mini 6=j |ξi − ξ j| and ∆(ξ) = maxi 6=j |ξi − ξ j|. Then, Wang–Zheng’s iteration (1) is convergent to
a root vector of f with convergence order four and with error estimate:

‖x(k+1) − ξ‖∞ ≤ 13.6 n2 ∆(ξ) δ(ξ)−4 ‖x(k) − ξ‖4
∞ for all k ≥ 0. (6)

In order to formulate the semilocal convergence results, we need the function W f : D ⊂ Kn → Kn

(Weierstrass correction) defined by:

W f (x) = (W1(x), . . . , Wn(x)) with Wi(x) =
f (xi)

a0 ∏j 6=i (xi − xj)
, (7)

where a0 is the leading coefficient of polynomial f with degree n.

In 2007, Petković, Petković, and Rančić [13] gave a semilocal convergence result for Wang–Zheng’s
method (1), improving the previous result due to Petković and Herceg [12].

Theorem 2 ([13]). Suppose f ∈ C[z] is a polynomial of degree n ≥ 2 with simple zeros. Let x(0) ∈ Cn be an initial
approximation with pairwise distinct coordinates satisfying:

‖W f (x(0))‖∞ < cn δ(x(0)), where cn =

{
1/(3n + 2.4), 3 ≤ n ≤ 20,
1/(3n), n ≥ 21,

(8)

where δ(x(0)) = mini 6=j |x
(0)
i − x(0)j |, then Wang–Zheng’s iteration (1) is convergent to a root vector of f with

convergence order four.

The purpose of our study is to give a comprehensive convergence analysis for Wang–Zheng’s
method (1). We present two local convergence theorems (Theorem 5 and Theorem 6) and a semilocal
convergence theorem (Theorem 9). Our first local convergence theorem improves the result of Wang
and Wu (Theorem 1), and our semilocal convergence result improves the result of Petković, Petković,
and Rančić (Theorem 2).

2. Preliminaries

Recently, Proinov [16–18,35,36] developed a general convergence theory for iterative methods of the
type (1), where T : D ⊂ X → X is an iteration function in metric, cone metric, or vector space. On the basis
of this theory lays the notion function of initial conditions of T since the convergence of any iterative method
of the type (1) is studied with respect to some function of initial conditions (see [35,36]). Some applications
of this theory can be found in [1,2,5,7,8,14–29,35–38].
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Let Rn be equipped with coordinate-wise ordering � defined by:

x � y if and only if xi ≤ yi for i = 1, . . . , n.

Furthermore, Kn is equipped with a vector norm ‖ · ‖ : Kn → Rn defined by:

‖x‖ = (|x1|, . . . , |xn|).

For a given p (1 ≤ p ≤ ∞), we always define a number q by:

1 ≤ q ≤ ∞ with 1/p + 1/q = 1.

Furthermore, for given n and p, we use the denotations:

a = (n− 1)1/q, b = 21/q. (9)

We observe that 1 ≤ a ≤ n− 1 and 1 ≤ b ≤ 2. Henceforth, for two vectors x ∈ Kn and y ∈ Rn,
we shall use the denotation x/y for a vector in Rn defined by:

x
y
=

(
|x1|
y1

, · · · ,
|xn|
yn

)
provided that y has only nonzero coordinates. Furthermore, we define 00 = 1, and we denote by Sk(r) the
sum of the first k terms of geometric sequence 1, r, r2, · · ·, i.e.,

Sk(r) = 1 + r + · · ·+ rk−1. (10)

Definition 1 ([36]). A function ϕ : J ⊂ R→ R+ is called quasi-homogeneous of degree r ≥ 0 if it satisfies
ϕ(αt) ≤ αr ϕ(t) for α ∈ [0, 1] and t ∈ J.

We define the function d : Kn → Rn by:

d(x) = (d1(x), . . . , dn(x)) with di(x) = min
j 6=i
|xi − xj| (i = 1, . . . , n). (11)

The following theorem of Proinov [18] deals with local convergence of the Picard iterative sequence
(1) regarding the function E : Kn → R+ defined as follows:

E(x) =
∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
p

(1 ≤ p ≤ ∞). (12)

Theorem 3 ([18]). Let T : D ⊂ Kn → Kn be an iteration function, ξ ∈ Kn be a vector with pairwise distinct
coordinates, and E : Kn → R+ be defined by (12). Suppose there exists a quasi-homogeneous function φ : J → R+

of degree m ≥ 0 such that for each vector x ∈ Kn with E(x) ∈ J, the following conditions hold:

x ∈ D and ‖T(x)− ξ‖ � φ(E(x))‖x− ξ‖. (13)

Let x(0) ∈ Kn be an initial approximation such that:

E(x(0)) ∈ J and φ(E(x(0))) < 1. (14)
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Then, the Picard iteration (1) is well defined and converges to ξ with order r = m + 1 and with error estimates:

‖x(k+1) − ξ‖ � λrk‖x(k) − ξ‖ and ‖x(k) − ξ‖ � λSk(r)‖x(0) − ξ‖ for all k ≥ 0,

where λ = φ(E(x(0))) and Sk(r) is defined by (10).

The next theorem of Proinov [18] deals with local convergence of the Picard iteration (1) with respect
to the function of initial conditions E : D → R+ defined by:

E(x) =
∥∥∥∥ x− ξ

d(x)

∥∥∥∥
p

(1 ≤ p ≤ ∞). (15)

Theorem 4 ([18]). Let T : D ⊂ Kn → Kn be an iteration function, ξ ∈ Kn, and E : D ⊂ Kn → R+ is defined by
(15). Suppose there is a nonzero quasi-homogeneous function β : J → R+ of degree m ≥ 0 such that for any x ∈ D
with E(x) ∈ J, the conditions:

x ∈ D and ‖T(x)− ξ‖ � β(E(x))‖x− ξ‖ (16)

are fulfilled. Let also x(0) ∈ D be an initial approximation such that:

E(x(0)) ∈ J and Ψ(E(x(0))) ≥ 0, (17)

where Ψ(t) = 1− bt− β(t)(1 + bt). Then, the Picard iteration (1) is well defined and converges to ξ with
error estimates:

‖x(k+1) − ξ‖ � θλrk‖x(k) − ξ‖ and ‖x(k) − ξ‖ � θkλSk(r)‖x(0) − ξ‖ for all k ≥ 0,

where r = m + 1, θ = ψ(E(x(0))), λ = φ(E(x(0))), ψ(t) = 1− bt(1 + β(t)), φ(t) = β(t)/ψ(t), and Sk(r) is
defined by (10).

To prove our auxiliary results, we use the following technical lemmas.

Lemma 1 ([17]). Let x, ξ ∈ Kn, vector ξ be with distinct coordinates, and 1 ≤ p ≤ ∞. Then, for i 6= j,

|xi − xj| ≥ (1− bE(x))dj(ξ) and |xi − ξ j| ≥ (1− E(x))di(ξ),

where b is defined by (9) and E : Kn → R+ is defined by (12).

Lemma 2 ([17]). Let x, ξ ∈ Kn, vector x be with distinct coordinates, and 1 ≤ p ≤ ∞. Then, for i 6= j,

|xi − xj| ≥ dj(x) and |xi − ξ j| ≥ (1− E(x))di(x),

where E : D → R+ is defined by (15).

Lemma 3 ([22]). Let f ∈ K[z] be a polynomial of degree n ≥ 2, which splits in K. Suppose ξ ∈ Kn is a root vector
of f and x ∈ Kn is a vector with a coordinate xi, which is not a zero of f and f ′. Then:

f ′(xi)

f (xi)
=

1 + σi
xi − ξi

and
f ′(xi)

f (xi)
− f ′′(xi)

2 f ′(xi)
=

2 + 2σi + σ2
i + τi

2(1 + σi)(xi − ξi)
, (18)
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where σi and τi are defined by:

σi = (xi − ξi)∑
j 6=i

1
xi − ξ j

and τi = (xi − ξi)
2 ∑

j 6=i

1
(xi − ξ j)2 . (19)

3. Local Convergence Analysis of the First Type

In 2016, Proinov [16] categorized into three types the most commonly-used initial conditions in
the convergence analysis of simultaneous methods. The objective of this section is to provide a local
convergence theorem of the first type for Wang–Zheng’s method.

Let f ∈ K[z] be a polynomial of degree n ≥ 2, and let ξ ∈ Kn be a root vector of f .
In the present section, we investigate the convergence of Wang–Zheng’s iteration (1) with respect to

the function of initial conditions E : Kn → R+ defined by (12).
For the sake of simplicity, we introduce the following denotations:

Ai = (xi − ξi)∑
j 6=i

xj − ξ j

(xi − ξ j)(xi − xj)
, (20)

Bi = (xi − ξi)∑
j 6=i

(
1

xi − ξ j
+

1
xi − xj

)
, (21)

Ci = (xi − ξi)
2 ∑

j 6=i

(
xj − ξ j

(xi − ξ j)2(xi − xj)
+

xj − ξ j

(xi − ξ j)(xi − xj)2

)
. (22)

Lemma 4. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2, which splits in K and ξ ∈ Kn is a root vector of f .
If x ∈ D is a vector with f (xi) 6= 0 for some i, then:

Ti(x)− ξi = −
AiBi + Ci

2(1 + σi)− AiBi − Ci
(xi − ξi), (23)

where σi, Ai, Bi, and Ci are defined by (19), (20), (21), and (22), respectively.

Proof. From (2) and Lemma 3, taking into account that f (xi) 6= 0 and that ξ is a root vector of f , we obtain:

Ti(x)− ξi =

= xi − ξi −
(

2 + 2σi + σ2
i + τi

2(1 + σi)(xi − ξi)
− xi − ξi

2(1 + σi)
(S2

i + Gi)

)−1

=

(
1− 2(1 + σi)

2(1 + σi)2 − (σ2
i + 2σi − τi)− µ2

i − νi

)
(xi − ξi)

=

(
1− 2(1 + σi)

2(1 + σi) + (σi − µi)(σi + µi) + τi − νi

)
(xi − ξi),

where τi is defined by (19),

Si = ∑
j 6=i

1
xi − xj

, Gi = ∑
j 6=i

1
(xi − xj)2 , µi = (xi − ξi)Si and νi = (xi − ξi)

2Gi .

Now, taking into account that σi − µi = −Ai, σi + µi = Bi and τi − νi = −Ci, we get (23).
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Define the real functions φ as follows:

φ(t) =
γ(t)t3

g(t)
, (24)

where the functions γ and g are defined by:

γ(t) = an(2− (b + 1)t) and g(t) = 2(1− t)(1− nt)(1− bt)2 − γ(t)t3 (25)

and a, b are defined by (9). We observe that the function g is continuous and decreasing on [0, 1/n],
and g(0) > 0 and g(1/n) < 0. It follows from this that there exists a unique zero µ of g in (0, 1/n).
It is easy to show that the function ω(t) = γ(t)/g(t) is increasing on [0, µ). This yields that φ is
a quasi-homogeneous function of degree m = 3 on [0, µ). In the following lemma, we prove that the
function φ satisfies the assumption (13) of Theorem 3 for the iteration function T : D ⊂ Kn → Kn defined
by (2).

Lemma 5. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2, which splits in K, ξ ∈ Kn is a root vector of f ,
and 1 ≤ p ≤ ∞. Let a vector x ∈ Kn be such that:

E(x) < µ, (26)

where E is defined by (12) and the positive number µ is the unique zero in (0, 1/n) of the function g defined in:
(25). Then:

(i) x ∈ D , where D is defined by (3);
(ii) ‖T(x)− ξ‖ � φ(E(x)) ‖x− ξ‖, where φ is defined by (24).

Proof. (i) First, we note that Lemma 1 and Condition (26) show that x ∈ D. Let f (xi) 6= 0 for some i.
It follows from Lemma 3 that f ′(xi) 6= 0 is equivalent to σi 6= −1. From (19), the triangle inequality,
Lemma 1, and (26), we obtain:

|σi| ≤ |xi − ξi|∑
j 6=i

1
|xi − ξ j|

≤ |xi − ξi|
(1− E(x))di(ξ)

∑
j 6=i

1 ≤ (n− 1)E(x)
1− E(x)

< 1 , (27)

which yields σi 6= −1. Taking into account the definition of D in (3), it remains to prove that Zi(x) 6= 0.
From Lemma 3, we get:

Zi(x) =
2(1 + σi)− AiBi − Ci

2(1 + σi)(xi − ξi)
, (28)

where σi, Ai, Bi, and Ci are defined by (19) (20), (21), and (22). It follows from (28) that Zi(x) 6= 0 is
equivalent to 2(1 + σi) 6= AiBi + Ci. By (20), the triangle inequality, Lemma 1, and Hölder’s inequality,
we obtain:

|Ai| ≤ |xi − ξi|∑
j 6=i

|xj − ξ j|
|xi − ξ j||xi − xj|

≤ |xi − ξi|
(1− E(x))(1− bE(x))di(ξ)

∑
j 6=i

|xj − ξ j|
dj(ξ)

≤ aE(x)2

(1− E(x))(1− bE(x))
. (29)
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From (21) and the triangle inequality, it follows that:

|Bi| ≤ |xi − ξi|
(

∑
j 6=i

1
|xi − ξ j|

+ ∑
j 6=i

1
|xi − xj|

)
. (30)

From (30) and Lemma 1, we obtain the following estimate:

|Bi| ≤
(n− 1)E(x)

1− E(x)
+

(n− 1)E(x)
1− bE(x)

=
(n− 1) (2− (b + 1)E(x)) E(x)

(1− E(x)) (1− bE(x))
. (31)

From (22) and the triangle inequality, it follows that:

|Ci| ≤ |xi − ξi|2
(

∑
j 6=i

|xj − ξ j|
|xi − ξ j|2 |xi − xj|

+ ∑
j 6=i

|xj − ξ j|
|xi − ξ j| |xi − xj|2

)
. (32)

From (32), Lemma 1, and Hölder’s inequality, we get the bound:

|Ci| ≤
aE(x)3

(1− E(x))2 (1− bE(x))
+

aE(x)3

(1− E(x))(1− bE(x))2

=
a(2− (b + 1)E(x)) E(x)3

(1− E(x))2 (1− bE(x))2 . (33)

It follows from Condition (26) and the monotonicity of g that g(E(x)) > g(µ) = 0. Now, using the
triangle inequality and the inequalities (27), (29), (31), and (33), we get:

|2(1 + σi)− AiBi − Ci|
≥ 2(1− |σi|)− |Ai||Bi| − |Ci|

≥ 2(1− E(x))(1− nE(x))(1− bE(x))2 − γ(E(x))E(x)3

(1− E(x))2 (1− bE(x))2

=
g(E(x))

(1− E(x))2 (1− bE(x))2 > 0. (34)

This means that 2(1 + σi) 6= AiBi + Ci. Therefore, x ∈ D .
(ii) We have to prove that:

|Ti(x)− ξi| ≤ φ(E(x)) |xi − ξi| for all i = 1, . . . , n. (35)

If xi = ξi, then Ti(x) = ξi, and so, (35) becomes an equality. Suppose xi 6= ξi. By Lemma 4 and the
triangle inequality, we get:

|Ti(x)− ξi| ≤
|Ai| |Bi|+ |Ci|

|2(1 + σi)− AiBi − Ci|
|xi − ξi|. (36)

Combining (36) and the estimates (29), (31), (33), and (34), we get (35).

Now, we are ready to state the first main theorem of this paper. First, we define a real function Φ
as follows:

Φ(t) = (1− nt)(1− t)(1− bt)2 − a n(2− (b + 1)t)t3, (37)

where a, b are defined by (9).
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Theorem 5. Let f ∈ K[z] be a polynomial of degree n ≥ 2 with n simple zeros in K, ξ ∈ Kn be a root vector of f ,
and 1 ≤ p ≤ ∞. Suppose x(0) ∈ Kn is an initial approximation satisfying the following conditions:

E(x(0)) < 1/n and Φ(E(x(0))) > 0, (38)

where E and Φ are the functions defined by (12) and (37), respectively. Then, Wang–Zheng’s iteration (1) is well
defined and convergent to ξ with fourth order and with error estimates:

‖x(k) − ξ‖ � λ(4k−1)/3‖x(0) − ξ‖, ‖x(k+1) − ξ‖ � λ4k‖x(k) − ξ‖ for all k ≥ 0, (39)

‖x(k+1) − ξ‖p ≤ ω(E(x(0)))δ(ξ)−3‖x(k) − ξ‖4
p for all k ≥ 0, (40)

where λ = φ(E(x(0))), ω(t) = γ(t)/g(t) and the functions φ, γ, g are defined by (24) and (25).

Proof. We will apply Proinov’s Theorem 3 to the function T : D ⊂ Kn → Kn defined by (2). First, we prove
that the initial Condition (39) implies condition:

E(x(0)) < µ and φ(E(x(0))) < 1, (41)

where µ is the unique zero of the function g in (0, 1/n). It is easy to see that Φ is decreasing on [0, 1/n] and
Φ(t) = 1

2 (g(t)− γ(t)). This implies Φ(µ) = − 1
2 γ(µ) < 0. Hence, if 0 ≤ t < 1/n and Φ(t) > 0, then t < µ.

On the other hand, if 0 ≤ t < µ, then φ(t) < 1 if and only if Φ(t) > 0. Consequently, (38) implies (41).
Now, Theorem 3 and Lemma 5 lead to the conclusion that the iterative sequence (1) is well defined and
convergent to ξ with error bounds (39). It remains to prove the estimate (40).

It follows from the first estimate in (39) that E(x(k)) ≤ E(x(0)) for k ≥ 0. We also note the following
simple facts: φ(t) = ω(t) t3 for t ∈ [0, µ); the function ω is increasing on [0, µ); E(x) ≤ ‖x− ξ‖p/δ(ξ) for
x ∈ Kn. Now, applying Lemma 5 (ii) with x = x(k) and taking into account these facts, we obtain:

‖x(k+1) − ξ‖p ≤ φ(E(x(k)))‖x(k) − ξ‖p = ω(E(x(k)))E(x(k))3‖x(k) − ξ‖p ≤ ω(E(x(0)))δ(ξ)−3‖x(k) − ξ‖4
p

which proves (40).

In the case p = ∞, we obtain the following consequence of Theorem 5:

Corollary 1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 possessing n simple zeros in K, and let ξ ∈ Kn be a root
vector of f . Suppose x(0) ∈ Kn is an initial approximation satisfying the following condition:

E(x(0)) =

∥∥∥∥∥ x(0) − ξ

d(ξ)

∥∥∥∥∥
∞

≤ 4
7n

. (42)

Then, the iterative sequence (1) is well defined and convergent to ξ with error bounds (39) and (40) with
p = ∞.

Proof. We prove that x(0) satisfies the conditions (38) of Theorem 5 with the function Φ defined by (37)
with p = ∞. Since Φ is decreasing on [0, 1/n], it is sufficient to prove that Φ(4/(7n)) > 0. The last
inequality is equivalent to 1029n3 − 3836n2 + 4352n− 1536 > 0, which holds for all n ≥ 2. This completes
the proof.

The following corollary is an improvement of Wang–Wu’s result (Theorem 1).
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Corollary 2. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2 possessing n simple zeros in K and ξ ∈ Kn is
a root vector of f . Let a vector x ∈ Kn be with pairwise distinct coordinates and let it satisfy:

‖x(0) − ξ‖∞ ≤
δ(ξ)

2n
, (43)

where δ(ξ) = mini 6=j |ξi − ξ j|. Then, the iterative sequence (1) is well defined and convergent to ξ with error bounds:

‖x(k+1) − ξ‖∞ ≤ 5 n2 δ(ξ)−3 ‖x(k) − ξ‖4
∞ for all k ≥ 0. (44)

Proof. From (43), we get: ∥∥∥∥∥ x(0) − ξ

d(ξ)

∥∥∥∥∥
∞

≤ ‖x
(0) − ξ‖∞

δ(ξ)
≤ 1

2n
<

4
7n

.

Consequently, Corollary 1 guarantees the convergence of the iterative sequence (1) to the root vector
ξ with the error bound (40) for p = ∞. From (43), we get:

ω(E(x(k)) ≤ ω

(
1

2n

)
=

8n3(4n− 3)
16n2 − 28n + 11

< 5n2.

From this and (40), we obtain the estimate (44), which ends the proof.

4. Local Convergence Analysis of the Second Type

Let f ∈ K[z] be a polynomial of degree n ≥ 2, and let ξ ∈ Kn be a root vector of f . The objective of
this section is to provide a local convergence theorem of the second type. More precisely, we study the
convergence of Wang–Zheng’s method (1) with respect to the function of initial conditions E : D → R+

defined by (15).
The main role in this section is played by a real function β defined by:

β(t) =
a n(2− t)t3

2(1− nt)(1− t)− a n(2− t)t3 , (45)

where a is defined by (9). Let us denote by ν the unique zero of the function:

Λ(t) = 2(1− nt)(1− t)− a n(2− t)t3 (46)

in the interval (0, 1/n). It easy to see that the function Λ is decreasing on [0, 1/n) and the function β is
quasi-homogeneous of degree m = 3 on [0, ν). In the next lemma, we prove that the function β satisfies
the assumptions (16) of Theorem 4 for T : D ⊂ Kn → Kn defined by (2).

Lemma 6. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2 with n simple zeros in K, ξ ∈ Kn is a root vector of
f , and 1 ≤ p ≤ ∞. Let a vector x ∈ Kn be with pairwise distinct coordinates and let it satisfy:

E(x) < ν, (47)

where the functions E is defined by (15) and ν is the unique zero in (0, 1/n) of the function Λ defined by (46). Then:

(i) x ∈ D , where D is defined by (3);
(ii) ‖T(x)− ξ‖ � β(E(x)) ‖x− ξ‖, where β is defined by (45).



Symmetry 2019, 11, 736 10 of 16

Proof. The proof is similar to the proof of Lemma 5. We again define the quantities σi, Ai, Bi, and Ci by
(19), (20), (21), and (22). Using Lemma 2, we obtain the following estimates:

|σi| ≤
(n− 1)E(x)

1− E(x)
, |Ai| ≤

aE(x)2

1− E(x)
, |Bi| ≤

(n− 1)(E(x)− 2)E(x)
1− E(x)

, |Ci| ≤
a(E(x)− 2) E(x)3

(1− E(x))2 .

From these estimates, we get:

|2(1 + σi)− AiBi − Ci| ≥
Λ(E(x))

(1− E(x))2 > 0.

The rest of the proof is the same as in Lemma 5.

Now, we are ready to state the second main result of this paper. In the formulation of the theorem we
use the following real functions:

Ψ(t) = 1− bt− β(t)(1 + bt), (48)

ψ(t) = 1− bt(1 + β(t)) and φ(t) = β(t)/ψ(t), (49)

where β is defined by (45) and b is defined in (9).

Theorem 6. Let a polynomial f ∈ K[z] be of degree n ≥ 2 with n simple zeros in K, 1 ≤ p ≤ ∞ and ξ ∈ Kn be
a root vector of f . Suppose x(0) ∈ Kn is an initial approximation with distinct coordinates satisfying:

E(x(0)) < 1/n, Λ(E(x(0))) > 0 and Ψ(E(x(0))) ≥ 0, (50)

where E, Λ, and Ψ are defined by (15), (46) and (48), respectively. Then, the Wang–Zheng’s iterative sequence (1) is
well defined and convergent to ξ with error estimates:

‖x(k+1) − ξ‖ � θλ4k‖x(k) − ξ‖ and ‖x(k) − ξ‖ � θkλ(4k−1)/3‖x(0) − ξ‖ for all k ≥ 0, (51)

where θ = ψ(E(x(0))), λ = φ(E(x(0))), and ψ, φ are defined by (49). Besides, if Ψ(E(x(0))) > 0, then the order
of convergence is at least four.

Proof. Let T : D ⊂ Kn → Kn be defined by (2), and let the real function β be defined by (45). It follows
from the first two inequalities of (50) that E(x(0)) < ν, where ν is the unique zero of the function Λ in
(0, 1/n). Hence, the initial conditions (50) can be written in the form:

E(x(0)) < ν and Ψ(E(x(0))) ≥ 0.

It follows from Lemma 6 that the initial condition (16) holds with J = [0, ν]. Applying Theorem 4 to
the iteration function T, we conclude that the iterative sequence (1) is well defined and convergent to ξ

with order four and with error bounds (51).

Applying Theorem 6 with p = ∞, we get the next result.

Corollary 3. Let a polynomial f ∈ K[z] be of degree n ≥ 2 with n simple zeros in K and ξ ∈ Kn be a root vector of
f . Suppose x(0) ∈ Kn is an initial approximation with distinct coordinates satisfying:

E(x(0)) =

∥∥∥∥∥ x(0) − ξ

d(x(0))

∥∥∥∥∥
∞

≤ 20
33n

. (52)
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Then, the iteration (1) is well defined and convergent to ξ with order four and with error estimates (51),
where the functions ψ and φ are defined by (49) with p = ∞.

Proof. According to Theorem 6, it is sufficient to prove the following two inequalities Λ(20/(33n)) > 0
and Ψ(20/(33n)) > 0, where the real functions Λ and Ψ are defined by (46) and (48) with p = ∞. We prove
only the second inequality since the first one is trivial. It is easy to show that the second inequality can be
written in the form an < bn, where an = β(20/(33n)) and bn = (33n− 40)/(33n + 40). Taking into account
that (an)∞

n=2 is a decreasing sequence and (bn)∞
n=2 is an increasing sequence, we get an ≤ a2 < b2 ≤ bn.

This completes the proof.

5. Semilocal Convergence Analysis

Let f be a polynomial K[z] of degree n ≥ 2. In the present section, we provide two semilocal
convergence theorems for Wang–Zheng’s method (1), which improve the result of Petković, Petković,
and Rančić (Theorem 2). Here, we study the convergence of (1) with respect to the function of initial
conditions E f : D → R+ given by:

E f (x) =

∥∥∥∥∥W f (x)
d(x)

∥∥∥∥∥
p

(1 ≤ p ≤ ∞), (53)

where the function W f : D ⊂ Kn → Kn is defined by (7).
Henceforth, we use a metric ρ on Kn, which was introduced in [23]. First, we define an equivalence

relation ≡ on Kn as follows: x ≡ y if there exists a permutation (i1, . . . , in) of the indexes (1, . . . , n) such
that (x1, . . . , xn) = (yi1 , . . . , yin). Then, the distance ρ(x, y) between two vectors x, y ∈ Kn is defined by:

ρ(x, y) = min
u≡ y
‖x− u‖p . (54)

To prove the results in this section, we need Theorem 6 and Corollary 3, as well as the following two
theorems of Proinov [16].

Theorem 7 ([16]). Let (K, | · |) be an algebraically-closed valued field and f ∈ K[z] be a polynomial of degree
n ≥ 2. Suppose there exists a vector x ∈ Kn with pairwise distinct coordinates such that:

E f (x) =

∥∥∥∥∥W f (x)
d(x)

∥∥∥∥∥
p

< τ =
1

(1 +
√

a)2 (55)

for some 1 ≤ p ≤ ∞, where a is defined by (9). Then, f possesses only simple zeros, and there is a root vector ξ ∈ Kn

of f such that:

ρ(x, ξ) ≤ α(E f (x))‖W f (x)‖p and
∥∥∥∥ x− ξ

d(x)

∥∥∥∥
p
< h(E f (x)), (56)

where α, h : [0, τ]→ R+ are defined by:

α(t) =
2

1− (a− 1)t +
√
(1− (a− 1)t)2 − 4t

and h(t) = tα(t). (57)
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Theorem 8 ([16]). Let (K, | · |) be an algebraically-closed valued field and f ∈ K[z] be a polynomial of degree
n ≥ 2. Suppose there exists a vector x ∈ Kn with pairwise distinct coordinates such that:∥∥∥∥∥W f (x)

d(x)

∥∥∥∥∥
p

<
R(1− R)

1 + (a− 1)R
(58)

for some 1 ≤ p ≤ ∞ and 0 ≤ R ≤ 1/(1 +
√

a), where a is defined by (9). Then, polynomial f possesses only simple
zeros, and there exists a root vector ξ ∈ Kn of f such that:∥∥∥∥ x− ξ

d(x)

∥∥∥∥
p
< R, (59)

where the function α is defined by (57).

Now, we are ready to state the third main theorem of this paper.

Theorem 9. Let (K, | · |) be an algebraically-closed valued field and f ∈ K[z] be a polynomial of degree n ≥ 2 and
1 ≤ p ≤ ∞. Suppose x(0) ∈ Kn is an initial approximation with pairwise distinct coordinates satisfying:

E f (x(0)) ≤ n− 1
n(a + n− 1)

, Λ(h(E f (x(0)))) > 0 and Ψ(h(E f (x(0)))) ≥ 0, (60)

where a is defined in (9), and E f , Λ, Ψ, and h are defined by: (53), (46), (48), and (57), respectively. Then, f possesses
only simple zeroes, and Wang–Zheng’s iteration (1) is well defined and convergent to a root vector ξ of f with order
four and with error estimate:

ρ(x(k), ξ) ≤ α(E f (x(k)))‖W f (x(k))‖p for all k ≥ 0 with E f (x(k)) < τ, (61)

where the function α is defined by (57) and τ is defined in (55).

Proof. Let τn = (n− 1)/(an + n2 − n). It can be proven that τn < τ and h(τn) = 1/n. It follows from
τn < τ and the first inequality in (60) that E f (x(0)) < τ. By Theorem 7, f possesses only simple zeros,
and there is a root vector ξ ∈ Kn of f such that:

E(x(0)) < h(E f (x(0))), (62)

where the function E is defined by (15). On the other hand, it follows from E f (x(0)) < τn that:

h(E f (x(0))) < h(τn) = 1/n. (63)

Combining (62) and (63), we get E(x(0)) < 1/n. From (63) and the second inequality in (60),
we deduce that h(E f (x(0))) < ν, where ν is the unique zero of the function Λ in (0, 1/n). From (62)
and the second inequality in (60), taking into account that Λ is decreasing on [0, ν), we obtain:

Λ(E(x(0))) > Λ(h(E f (x(0)))) > 0.

Analogously, from (62) and the third inequality in (60), taking into account that Ψ is decreasing on
[0, ν), we get:

Ψ(E(x(0))) > Ψ(h(E f (x(0)))) ≥ 0.
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Thus, x(0) satisfies the initial conditions (50). Then, it follows from Theorem 6 that the iterative
sequence (1) is well defined and convergent to ξ with order four. The estimate (61) follows from
Theorem 7.

From Corollary 3 and Theorem 8, we obtain the next theorem, which improves and complements the
result of Petković, Petković, and Rančić (Theorem 2).

Theorem 10. Let (K, | · |) be an algebraically-closed valued field. Let f ∈ K[z] be a polynomial of degree n ≥ 2
and x(0) ∈ Kn be an initial approximation with pairwise distinct coordinates satisfying:

E f (x(0)) =

∥∥∥∥∥W f (x(0))

d(x(0))

∥∥∥∥∥
∞

≤ R′n =
20(33n− 20)

33n(53n− 40)
, (64)

where E f is defined by (53). Then, f has only simple zeros, and Wang–Zheng’s iteration (1) is well defined and
convergent to a root vector ξ of f with order four and with error estimate (61) with p = ∞.

Proof. If we take R = 20/(33n), then we can write (64) in the form:∥∥∥∥∥W f (x(0))

d(x(0))

∥∥∥∥∥
∞

<
R(1− R)

1 + (a− 1)R

with a = n− 1. Then, by Theorem 8, f possesses only simple zeros, and there is a root vector ξ ∈ Kn of f
such that:

E(x(0)) < R,

where E is defined by (15). Then, it follows from Corollary 3 that the iterative sequence (1) is convergent to
ξ with order four. The estimate (61) follows Theorem 7.

6. Conclusions

In 1984, Wang and Zheng [34] derived a family of iterative methods for simultaneously finding all
zeros ξ1, . . . , ξn of a polynomial f of degree n ≥ 2. The present paper deals with the convergence of the
method (1), which is a well-known member of the Wang–Zheng family. We have presented three types of
convergence theorems for Wang–Zheng’s method (1).

In 1987, Wang and Wu [32] established a local convergence result for Wang–Zheng’s method
(Theorem 1), which gives a lower bound for the convergence radius and an a posteriori error estimate.
They proved that the method (1) is convergent under the initial condition of the type:

‖x(0) − ξ‖∞ < Rn ,

where the radius of convergence Rn depends on n and the parameters δ(ξ) = mini 6=j |ξi − ξ j| and
∆(ξ) = maxi 6=j |ξi − ξ j|. Their error estimate has the form:

‖x(k+1) − ξ‖∞ ≤ Cn ‖x(k) − ξ‖4
∞ for all k ≥ 0. (65)

where Cn depends on n, δ(ξ), and ∆(ξ). In Section 3, we have obtained a local convergence result
(Theorem 5), which improves the result of Wang and Wu [32]. The advantages of this result are:

• a larger convergence domain of the method (1);
• a greater convergence radius Rn, which does not depend on ∆(ξ);
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• an error estimate of the form (65) with smaller Cn, which does not depend on ∆(ξ);
• two new error estimates of the form:

‖x(k) − ξ‖ � λ(4k−1)/3‖x(0) − ξ‖ and ‖x(k+1) − ξ‖ � λ4k‖x(k) − ξ‖ for all k ≥ 0,

where 0 ≤ λ < 1.
In Section 4, we have established a local convergence result of the second type (Theorem 6) for

Wang–Zheng’s method (1). The second type of convergence results are closer to the semilocal convergence
results. The first convergence result of the second type were obtained by Wang and Zhao [33] for the
Weierstrass method. Our local convergence result of the second type is the first result of this type for
Wang–Zheng’s method (1). The convergence results of the second type for other simultaneous methods
can be found in [17,22–24,28,29].

In Section 5, we have obtained two semilocal convergence theorems (Theorem 9 and Theorem 10) for
Wang–Zheng’s method (1). In these theorems, we prove the convergence of the method under the initial
conditions of the form: ∥∥∥∥∥W f (x(0))

d(x(0))

∥∥∥∥∥
∞

≤ Rn , (66)

where Rn depends on n and the functions W f and d are defined by (7) and (11), respectively. Initial
conditions of the type (66) were considered for the first time by Proinov [14,15]. Our semilocal convergence
results improved the result of Petković, Petković and Rančić [13] (Theorem 2). The advantages of this
result are:

• weaker convergence conditions of the method (1);
• a verifiable a posteriori error estimate, which can be used as a stop criterion when applying

Wang–Zheng’s method;
• we did not assume either the simplicity, or existence of the zeros of f .

Finally, we refer the reader to some recent papers [2,17,20,22–25,28,29], which investigate initial
conditions of the type (66).
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