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Abstract: In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed
for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities,

⨍1
−1

f (x) log(x−α)eikx

x−t dx, t ∉ (−1, 1), α ∈ [−1, 1] for a smooth function f (x). This method consists of evaluation
of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent
method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis
and high accuracy of the method is illustrated by some examples.

Keywords: Clenshaw-Curtis quadrature; steepest descent method; logarithmic singularities; Cauchy
singularity; highly oscillatory integrals

1. Introduction

Boundary element method and finite element method are intensively eminent numerical approaches
to evaluate partial differential equations (PDEs), which appear in variety of disciplines from engineering
to astronomy and quantum mechanics [1–5]. Although these methods lead PDEs to Fredholm integral
equations or Voltera integral equations, but these kind of integral equations posses integrals of oscillatory,
Cauchy-singular, logarithmic singular, weak singular kernel functions. However, these classical
methods are failed to approximate the integrals constitute kernel functions of highly oscillation and
logarithmic singularity.

This paper aims at approximation of the integral

Iα[ f ] = ⨍
1

−1

f (x) log(x − α)eikx

x − t dx, (1)

where t ∈ (−1, 1), k ≫ 1, α ∈ [−1, 1], f (x) is relatively smooth function. For integral (1) the developed
strategy for logarithmic singularity log(x − α) is valid for α ∈ [−1, 1]. In particular, the highly oscillatory
integral, ∫ 1

−1 f (x)eikxdx has been computed by many methods such as asymptotic expansion, Filon method,
Levin collocation method and numerical steepest descent method [6–10]. For instant, Dominguez et al. [11]
for function f (x) with integrable singularities have proposed an error bound, calculated in Sobolev spaces
Hm, for composite Filon-Clenshaw-Curtis quadrature. Error bound depends on the derivative of f (x)
and length of the interval M, for some C1( f ) defined as EN ≤ C1( f )( 1+∣ log(k)∣

k1+β )r(log M)1+β−r( 1
M )N+1−r for

β ∈ (−1, 0), r ∈ [0, 1 + β].
On the other hand, one methodology for numerical evaluation of integral ⨍1

−1
f (x)eikx

x−t dx is replacing
f (x) by different kind of polynomials [12,13]. Another technique is based on analytic continuation of the
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integral if the integrand f (x) is analytic in the complex region [14]. As far as for k = 0 solution methods and
properties of the solution for relative non-homogenous integrals have been discussed by using Brestain
polynomials and Chebyshev polynoimals of all four kinds in [3,15].

For integral ∫ 1
−1 f (x) log((x − α)2)eikxdx Clenshaw-Curtise rule is applied for numerical calculation.

Wherein the convergence rate is independent of k but depends on the number of nodes of quadrature
rule and function f (x) [16]. Furthermore, Piessense and Branders [17] established the Clenshaw-Curtis
quadrature rule, relies on the recurrence relation for ∫ 1

−1 f (x)eikx(x + 1)α log(x + 1)dx. They replaced the
nonoscillatory and nonsingular part of the integrand by Chebyshev series. Chen [18] presented the

numerical approximation of the integral I[ f ] = ⨍1
−1

f (x)eikx

(x+1)α(x−1)β ∏n
m=1(x−τm)γm dx, with α, β < 1, a < γm < b

and γm ≤ 1. For analytic function f (x) the integral was rewritten in the form of sum of line integrals,
wherein the integrands do not oscillate and decay exponentially. Moreover, Fang [19] established the

Clenshaw-Curtis quadrature for ⨍1
−1

(x+1)α(x−1)β f (x) log(x+1)eikx

x−t dx for general function f (x) where steepest
descent method is illustrated for analytic function f (x). Recently, John [20] introduced the algorithm for
integral approximation of Cauchy-singular, logarithmic-singular, Hadamard type and nearly singular
integrals having integrable endpoints singularities i.e., (1 − x)α(1 + x)β, (α, β > −1). Composed Gauss-Jacobi
quadrature consists of approximating the function f (x) by Jacobi polynomials {Pα,β

n }N−1
n=0 of degree N − 1.

However, all these proposed method are inadequate to apply directly on integral (1) in the presence
of oscillation and other singularities. This work presents Clenshaw-Curtis quadrature to get recurrence
relation to compute the modified moments, that takes just O(N log N) operations. The initial Cauchy
singular values for recurrence relation are obtained by the steepest descent method, as it prominently
renowned to evaluate highly oscillatory integrals when the integrands are analytic in sufficiently
large region.

The rest of the paper is organized as follows. Section 2 delineates the quadrature algorithm for
integral (1). Numerical calculation of the modified moments with recurrence relation by using some
Chebyshev properties is defined. Also steepest descent method is established for Cauchy singularity
where later the obtained line integrals are further approximated by generalized Gauss quadrature.
Section 3 alludes some error bounds derived in terms of Clenshaw-Curtis points and the rate of oscillation
k. In Section 4, numerical examples are provided to demonstrate the efficiency and accuracy of the
presented method.

2. Numerical Methods

In the computation of integral Iα[ f ], the Clenshaw-Curtis quadrature approach is extensively
adopted. The scheme is postulated on interpolating the function f (x) at Clenshaw-Curtis points set
XN+1 = {xj = cos jπ

N }N
j=0. Writing the interpolation polynomial as basis of Chebyshev series

f (x) ≈ PN(x) =
N

∑
n=0

′′anTn(x), (2)

where Tn(x) is the Chebyshev polynomial of first kind of degree N and double prime denotes a sum whose
first and last terms are halved, the coefficients

an =
2
N

N

∑
j=0

′′ f (xj)Tn(xj) (3)
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can be computed efficiently by FFT in O(N log N) operations [8,9]. This paper appertains to
Clenshaw-Curtis quadrature, which depends on Hermite interpolating polynomial that allow us to
get higher order accuracy

P̃(xj) = f (xj), j = 0,⋯N; P̃(t) = f (t). (4)

For any fixed t, we can elect felicitous N such that t /∈ {xj}N
j=0 and rewrite Hermite interpolating

polynomial of degree N + 1 in terms of Chebyshev series

P̃N+1(x) =
N+1

∑
n=0

cnTn(x) (5)

cn can be calculated in O(N) operations once if an are known [13,21]. Finally Clenshaw-Curtis quadrature
for integral Iα[ f ] is defined as

Iα
N+1[ f ] =

N+1

∑
n=0

cn ⨍
1

−1

Tn(x) log(x − α)eikx

x − t dx

=

N+1

∑
n=0

cnDα
n(k, t)

(6)

where

Dα
n(k, t) = ⨍

1

−1

Tn(x) log(x − α)eikx

x − t dx (7)

more specifically Dα
n(k, t) are called the modified moments. Efficiency of the Clenshaw-Curtis quadrature

depends on the fast computation of the moments. In ensuing sub-section, we deduce the recurrence
relation for Dα

n(k, t).

Computation of the Dα
n(k, t) Moments

A reputed property of Chebyshev polynomial [22]

Tn(x) =
1
2
(Un(x) −Un−2(x)), (8)

leads the modified moments Dα
n(k, t) = ⨍1

−1
Tn(x) log(x−α)eikx

x−t dx to

⨍
1

−1

Tn(x) log(x − α)eikx

x − t dx =
1
2
(⨍

1

−1

Un(x) log(x − α)eikx

x − t dx − ⨍
1

−1

Un−2(x) log(x − α)eikx

x − t dx)

Dα
n(k, t) = 1

2
(Qα

n(k, t) −Qα
n−2(k, t)).

(9)

Forthcoming theorem defines the procedure to calculate the moments Qα
n(k, t) = ⨍1

−1
Un(x) log(x−α)eikx

x−t dx.

Proposition 1. The sequence Qα
n(k, t) = ⨍1

−1
Un(x) log(x−α)eikx

x−t dx satisfies the recurrence relation

Qα
n+1(k, t) = 2Qα

n(k) + 2tQα
n(k, t) −Qα

n−1(k, t), n ≥ 1

Qα
1(k, t) = 2Qα

0(k) + 2tQα
0(k, t).

(10)
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where

Qα
n(k) = ∫

1

−1
Un(x) log(x − α)eikxdx, Qα

0(k) = ∫
1

−1
log(x − α)eikxdx. (11)

Proof. Using Chebyshev recurrence relation

Un+1(x) = 2xUn(x) −Un−1(x),

Qα
n+1(k, t) = ⨍

1

−1

2(x − t + t)Un(x) log(x − α)eikx

x − t dx − ⨍
1

−1

Un−1(x) log(x − α)eikx

x − t dx,

= ⨍
1

−1
2Un(x) log(x − α)eikxdx + ⨍

1

−1

2tUn(x) log(x − α)eikx

x − t dx

− ⨍
1

−1

Un−1(x) log(x − α)eikx

x − t dx,

Qα
n+1(k, t) = 2Qα

n(k) + 2tQα
n(k, t) −Qα

n−1(k, t).

The proof completes with the initial values U0(x) = 1, U1(x) = 2x. The starting values Qα
0(k, t) and

Qα
0(k) of recurrence relation can be calculated by steepest descent method.

Proposition 2. Suppose that f (x) is an analytic function in the half-strip of the complex plan, a ≤ R(x) ≤ b and
I(x) ≥ 0, and satisfies the condition for constant M and 0 ≤ k0 < k

∫
1

−1
∣ f (x + iR)∣dx ≤ Mek0R,

then the integral (1) for α ∈ [−1, 1] can be transformed into

I±1[ f ] = M±1
1 + M±1

2 + iπeikt f (t) log(t − (±1)),
Iα[ f ] = N1 + N2 + iπeikt f (t) log(t − α),

(12)

where

N1 =
i
k

e−ik ∫
kR

kr

f (−1 + i
k x) log(−1 + i

k x − α)e−x

−1 + i
k x − t

dx,

N2 = −
i
k

eik ∫
kR

kr

f (1 + i
k x) log(1 + i

k x − α)e−x

1 + i
k x − t

dx,

M±1
1 = ±

i
k

e∓ik ∫
kR

kr

f (∓1 + i
k x) log(∓2 + i

k x)e−x

∓1 + i
k x − t

dx,

M±1
2 = ∓

i
k

e±ik ∫
kR

kr

f (±1 + i
k x) log( i

k x)e−x

±1 + i
k x − t

dx.

(13)
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Proof. Following proof asserts the results for case α = 1, and for α ∈ [−1, 1) the same technique can be used

as well. Since the integrand f (x) log(x−1)eikx

x−t is analytic in the half strip of the complex plane, by Cauchy’s
Theorem, we have

∫
Γ1+Γ2+Γ3+Γ4−Γ5−Γ6−Γ7

f (x) log(x − 1)eikx

x − t dx = 0, (14)

with all the contours taken in clockwise direction (Figure 1).

Figure 1. Illustration of integration path of I+1[ f ].

Setting Îi = ∫Γi

f (x) log(x−1)eikx

x−t dx, i = 1, 2,⋯7, we obtain that

Î1 + Î2 + Î3 + Î4 = Î5 + Î6 + Î7. (15)

Î1 = ∫
R

r

f (−1 + ip) log(−1 + ip − 1)eik(−1+ip)

−1 + ip − t
idp

=
i
k

e−ik ∫
kR

kr

f (−1 + i
k x) log(−2 + i

k x)e−x

−1 + i
k x − t

dx.

Similarly for Î3, we get

Î3 = −∫
R

r

f (1 + ip) log(1 + ip − 1)eik(1+ip)

1 + ip − t
idp

= −
i
k

eik ∫
kR

kr

f (1 + i
k x) log( i

k x)e−x

1 + i
k x − t

dx.

From the statement of the theorem, ∫ 1
−1 ∣ f (x + iR)∣ ≤ Mew0R,

Î2 = ∫
1

−1

f (x + iR) log(x + iR − 1)eik(x+iR)

x + iR − t
dx

=
1
R
∫

1

−1
f (x + iR) log(x + iR − 1)eik(x+iR)dx

→ 0 asR →∞.
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Let x − 1 = reiθ , then

Î4 = ∫
π
2

0

f (reiθ + 1) log(reiθ)eik(reiθ+1)

1 + reiθ − t
ireiθdθ

= ir ∫
π
2

0

f (reiθ + 1) log(reiθ)eik(reiθ+1)

1 + reiθ − t
eiθdθ

→ 0 asr → 0.

In addition

Î6 = ∫
π

0

f (reiθ + t) log(t + reiθ − 1)eik(reiθ+t)

reiθ
ireiθdθ

r → 0

= iπeikt f (t) log(t − 1).

Thus, we complete the proof with

I+1[ f ] = lim
r→0,R→∞

( Î1 + Î2 + Î3 + Î4 − Î6)

= M+1
1 + M+1

2 + iπeikt f (t) log(t − 1).
(16)

From Proposition 2.2 numerical scheme for the line integrals M±1
1 , M±1

2 can be evaluated by

generalized Gauss-Laguerre quadrature rule, using command lagpts in Chebfun [23]. Let {x(β)
j , w(β)

j }N
j=1 be

the nodes and weights of the weight function xβe−x and let {x(β,l)
j , w(β,l)

j }N
j=1 be the nodes and weights of

the weight function xβ(x − 1 − ln(x))e−x. The line integrals M±1
1 and M±1

2 can be approximated by

M±1
1 ≈ R±1

{1,N} = ±
i
k

e∓ik
N

∑
j=1

w(β)
j f (∓1 + i

k x(β)
j ) log(∓2 + i

k x(β)
j )

∓1 + i
k x(β)

j − t
dx,

M±1
2 ≈ R±1

{2,N} = ∓
i
k

eik[ log( i
k
) − 1)

N

∑
j=1

w(β)
j

f (±1 + i
k x(β)

j )

±1 + i
k xβ

j − t
dx

+
N

∑
j=1

w(β+1)
j

f (±1 + i
k x(β+1)

j )

±1 + i
k x(β+1)

j − t
dx −

N

∑
j=1

w(β,l)
j

f (±1 + i
k x(β,l)

j )

±1 + i
k x(β,l)

j − t
dx].

(17)

For simplicity
I±1[ f ] = R±1

{1,N} + R±1
{2,N} + iπ f (t) log(t − (±1)). (18)

By the same argument N1 and N2 can also be approximated with generalized Gauss-Laguerre
quadrature rule. Aforementioned theorem enlightens the another interesting fact that Iα[ f ] can also be
computed by it if f (x) is an analytic function.
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Computation of the moments Qα
n(k) is derived as, by using Chebyshev property (8)

1
2
(Qα

n(k) −Qα
n−2(k)) = Dα

n(k)

= ∫
1

−1
(Tn(x) − Tn(α)) log(x − α)eikxdx + Tn(α)∫

1

−1
log(x − α)eikxdx.

(19)

For α ≠ ±1, integrating by parts, we derive

∫
1

−1
(Tn(x) − Tn(α)) log(x − α)eikxdx =

1
ik

[(Tn(x) − Tn(α)) log(x − α)eikx∣1−1

− ∫
1

−1
T′n(x) log(x − α)eikxdx − ⨍

1

−1

(Tn(x) − Tn(α))
(x − α) eikxdx]

=
1
ik

[(1 − Tn(α)) log(1 − α)eikx
+ ((−1)n+1

+ Tn(α)) log(−1 − α)e−ik

− n∫
1

−1
Un−1(x) log(x − α)eikxdx − 2∫

1

−1
Un−1(x)eikxdx − 2

n−2

∑
j=0

Tn−1−j(α)∫
1

−1
Uj(x)eikxdx].

(20)

We deduce the following recurrence relation by inserting (20) in (19)

Qα
n(k) −

2n
ik

Qα
n−1(k) +Qα

n−2(k) = δ
α
n(k) (21)

where

δ
α
n(k) =

2
ik

[(1 − Tn(α)) log(1 − α)eikx
+ ((−1)n+1

+ Tn(α)) log(−1 − α)e−ik]

−
2
ik

[2
n−2

∑
j=0

Tn−1−j(α)Bj(k) + Bn−1(k)] + 2Tn(α)Qα
0(k),

(22)

and

Bj(k) = ∫
1

−1
Uj(x)eikxdx, j = 0,⋯, n − 1. (23)

It is worth to mention that (Bj(k))N
j=0 can be computed in O(N) operations [12]. For α = ±1 we obtain

the δ
±1
n (k) as

δ
±1
n (k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 log(∓2)e∓ik n = odd

0 n = even.
(24)

Unfortunately, practical experiments demonstrate that the recurrence relation for Qα
n(k) is numerically

unstable in the forward direction for n > k, in this sense so-called Oliver’s algorithm is stable and used to
rewrite the recurrence relation in the tridiagonal form [24].
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3. Error Analysis

Lemma 1. ([9,13,14]) Suppose f ∈ Cm+1[−1, 1], for a non-negative integer m with f (t) = 0, then

»»»»»»»»»»
(

f (x)
x − t )

(m)»»»»»»»»»»
≤

2m+1 − 1
m + 1

∥ f (m+1)∥∞. (25)

Lemma 2. ([9,14]) Let f (x) be a Lipschitz continous function on [−1,1] and let PN[ f ] be the interpolation polynomial
of f (t) at N + 1 Clenshaw-Curtis points. Then it follows that

lim
N→+∞

∥ f − PN[ f ]∥∞ = 0. (26)

In particular, if f (x) is analytic with ∣ f (t)∣ ≤ M in an Bernstein ellipse ερ with foci ±1 and major and minor
semiaxis lengths summing to ρ > 1, then

∣∣ f − PN[ f ]∣∣∞ ≤
4M

ρN(ρ − 1)
. (27)

if f (x) has an absolutely continuous (κ0 − 1)st derivative and f (κ0) of bounded variation Vκ0 on [-1,1] for some κ0 ≥ 1,
then for N ≥ κ0 + 1

∣∣ f − PN[ f ]∣∣∞ ≤
4Vκ0

κ0πN(N − 1)⋯(N − κ0 + 1) . (28)

Lemma 3. (van der Corput Lemma [25]) Suppose that f ∈ C1[0, b], then for each β > −1, it follows

»»»»»»∫
b

0
xβeikxdx

»»»»»» ≤ W1(k) (∣ f (b)∣ + ∫
b

0
∣ f ′(x)∣dx) ,

»»»»»»∫
b

0
xβ log(x)eikxdx

»»»»»» ≤ W2(k) (∣ f (b)∣ + ∫
b

0
∣ f ′(x)∣dx) , (29)

where

W1(k) = { O (∣k∣−1−β) , −1 < β ≤ 0
O(∣k∣−1), β > 0

, W2(k) = { O (∣k∣−1−β(1 + ∣ log(k)∣)) , −1 < β ≤ 0
O(∣k∣−1), β > 0

.

Moreover, for some special cases we have

Lemma 4. Suppose that f ∈ C1[0, 1], then it follows for all k that

∫
1

0
x(1 − x) log(x)eikxdx = O(∣k∣−2(1 + log ∣k∣)),∫

1

0
x(1 − x) log(x − 1)eikxdx = O(∣k∣−2(1 + log ∣k∣)). (30)

Proof. For simplicity, here we prove the first identity in (3.29). Similar proof can be directly applied to the
second identity in (3.29).

Since

∫
1

0
x(1 − x) log(x)eikxdx =

1
ik

∫
1

0
x(1 − x) log(x)deikx

= −
1
ik

∫
1

0
eikx[(1 − x) log(x) − x log(x) + (1 − x)]dx,

it leads to the desired result by Lemma 3.3.
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Suppose that t ∉ XN+1, f ∈ C2[−1, 1] and define

φ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (x)− f (t)
(x−t) , x ≠ t

f ′(t), x = t.

From Lemma 2.1, we see that φ ∈ C1[−1, 1] and ∥φ
′∥∞ ≤

3
2∥ f ′′∥∞, in addition, g(x) = P̃N+1(x)− f (t)

x−t
is a polynomial of degree at most N with g(xj) = φ(xj) for j = 0, 1, . . . , N [21]. Then the error on the
Clenshaw-Curtis quadrature (6) can be estimated by

∣EN+1∣ = ∣Iα[ f ] − Iα
N+1[ f ]∣ = ∣ ∫ 1

−1(φ(x) − g(x)) log(x − α)eikxdx∣
≤ ∥φ(x) − g(x)∥∞∣ ∫ 1

−1 log(x − α)dx∣
= O(∥φ(x) − g(x)∥∞).

Corollary 1. Suppose that t ∉ XN+1 and f ′′ is bounded on [−1, 1], then the Clenshaw-Curtis quadrature (6)
is convergent

lim
N→+∞

∣EN+1∣ = lim
N→+∞

∣Iα[ f ] − Iα
N+1[ f ]∣ = 0. (31)

In particular, if f (x) is analytic and ∣ f ′(x)∣ ≤ M in a Bernstein ellipse ερ, ρ > 1, then the error term satisfies

EN+1 = O ( 1
ρN

) . (32)

If f (x) has an absolutely continuous (κ0 − 1)st derivative and f (κ0) of bounded variation Vκ0 on [−1,1] for some
κ0 ≥ 1, then for N ≥ κ0 + 1 (κ0 ≥ 2)

EN+1 = O ( 1
N−κ0+1

) . (33)

Theorem 1. The error bound for Iα
N+1[ f ] for integral Iα[ f ] can be estimated as

EN+1 = {
O (k−1(1 + ∣ log(k)∣)ρ−N) , f (x) analytic in the Bernstein ellipse ερ

O (k−1(1 + ∣ log(k)∣)N−κ0+2) , f (κ0+1) of bounded variation
. (34)

In addition, for α = ±1, it follows

EN+1 = O (k−2(1 + ∣ log(k)∣)) f ∈ C2[−1, 1]. (35)

Proof. Since

EN+1 = ∫ 1
−1(φ(x) − PN(x)) log(x − α)eikxdx = ∫ α

−1(φ(x) − PN(x)) log(x − α)eikxdx
+ ∫ 1

α (φ(x) − PN(x)) log(x − α)eikxdx,

by Lemma 3.3, it implies

EN+1 = O (k−1(1 + ∣ log(k)∣)(∥φ − PN∥∞ + ∥φ
′
− P′N∥∞)) ,

which yields (3.33) together with the estimate on ∥φ
′ − P′N∥∞ in [14].

The identity (3.34) follows from Lemma 3.4 due to that ∥φ(x) − PN(x)∥ = (1 + x)(1 − x)h(x) for some
h ∈ C1[−1, 1].
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Remark 1. From the convergence rates Corollary 3.1 and Theorem 3.1, compared with that in [19], the new scheme
is of much fast convergence rate. It is also illustrated by the numerical results (see Section 4).

4. Numerical Results

In this section, we will present several examples to illustrate the efficiency and accuracy of the
proposed method. The exact values of an integral (36) are computed through Mathematica 11. Unless
otherwise specifically stated, all the tested numerical examples are executed by using Matlab R2016a on a
4 GHz personal laptop with 8 GB of RAM.

Example 1. Let us consider the integral

I[ f ] = ⨍
1

−1

sin(x) log(x − α)eikx

x − t dx, (36)

for α = −1, t = 0.3, Table 1 shows the results for relative error compared with results of integral (30) [19] in Table 2.

Table 1. The relative error of Clenshaw-Curtis quadrature rule for integral (36).

k N = 4 N = 7 N = 11 N = 16

20 5.642 × 10−6 1.432 × 10−8 1.299 × 10−13 1.795 × 10−14

100 1.819 × 10−7 8.954 × 10−10 4.693 × 10−15 1.051 × 10−15

500 1.223 × 10−8 5.462 × 10−11 5.586 × 10−15 5.276 × 10−15

10,000 4.469 × 10−11 1.054 × 10−13 1.114 × 10−13 1.115 × 10−13

Table 2. The relative error of Clenshaw-Curtis quadrature rule for integral (30) [19].

k N = 4 N = 7 N = 11 N = 16

20 3.710 × 10−3 2.126 × 10−8 2.846 × 10−13 1.781 × 10−14

100 3.016 × 10−3 2.221 × 10−8 1.473 × 10−13 8.427 × 10−16

500 2.924 × 10−3 2.094 × 10−8 1.408 × 10−13 5.351 × 10−15

10,000 3.047 × 10−3 2.181 × 10−8 1.836 × 10−13 1.115 × 10−13

Example 2. Let integral

⨍
1

−1

ex log(x − α)eikx

x − t dx (37)

Tables 3–5 represent results for relative error computed by Clenshaw-Curtis quadrature. As exact value we just have
used that returned by the rule when a huge number of points is used.

Table 3. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = −1, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 1.360346130460585 − 1.837213701909973i 3.505 × 10−6 1.356 × 10−10 1.744 × 10−13 1.744 × 10−13

100 0.528568077016834 + 2.007019282199925i 3.418 × 10−7 8.530 × 10−12 1.983 × 10−14 0.00
500 2.032501926854849 + 0.510184343854610i 1.619 × 10−8 3.974 × 10−13 7.640 × 10−16 5.297 × 10−17

10,000 2.074653919328735 + 0.324969073545833i 6.131 × 10−11 1.418 × 10−15 2.114 × 10−16 4.237 × 10−16
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Table 4. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = 1, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 11.034821521905808 + 12.628898944623328i 1.144 × 10−6 2.364 × 10−11 1.232 × 10−13 2.118 × 10−16

100 −16.418938229588949 + 1.005287081095468i 3.020 × 10−8 1.064 × 10−12 3.356 × 10−15 2.620 × 10−16

500 −7.387722497395380 + 14.855177327546180i 3.485 × 10−9 8.256 × 10−14 2.394 × 10−16 1.197 × 10−16

10,000 −6.063084167285699 +15.515830521473685i 1.132 × 10−11 2.871 × 10−16 1.192 × 10−16 1.192 × 10−16

Table 5. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = 0, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 −1.928049736402945 + 2.990487262985703i 3.066 × 10−6 8.567 × 10−11 2.780 × 10−13 1.248 × 10−16

100 −0.934970743093483 − 3.460743549362822i 1.163 × 10−7 2.942 × 10−12 6.977 × 10−15 2.770 × 10−16

500 −3.485804022702049 − 0.864498281620865i 4.687 × 10−9 1.177 × 10−13 2.764 × 10−16 9.274 × 10−17

10,000 −3.547102638652960 − 0.555272021948841i 1.174 × 10−11 2.473 × 10−16 1.274 × 10−16 3.092 × 10−17

Example 3. Let the integral be

⨍
1

−1

cos(x) log(x − α)eikx

x − t dx (38)

Tables 6–8 represent results for relative error computed by Clenshaw-Curtis quadrature. As exact value is calculated
by using the rule for large number of points.

Table 6. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = −1, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 0.498125821203593 − 1.281802863555419i 6.031 × 10−6 2.150 × 10−10 3.026 × 10−13 9.449 × 10−16

100 1.264215353181015 − 0.141780191524840i 5.295 × 10−7 1.348 × 10−11 3.197 × 10−14 3.728 × 10−16

500 1.090289998226562 − 0.675652244977728i 2.584 × 10−8 6.432 × 10−13 1.596 × 10−15 1.935 × 10−16

10,000 −1.283945795748914 + 0.084367340279936i 9.738 × 10−11 2.749 × 10−15 3.649 × 10−16 1.186 × 10−16

Table 7. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = 1, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 5.342145332192533 + 5.729353825896764i 2.057 × 10−6 4.505 × 10−11 2.427 × 10−13 9.620 × 10−16

100 −2.621138174403697 + 7.318981197518284i 4.131 × 10−8 1.918 × 10−12 6.183 × 10−15 3.657 × 10−16

500 0.622301278817091 + 7.666316541113909i 6.007 × 10−9 1.558 × 10−13 4.418 × 10−16 1.291 × 10−16

10,000 3.064017684660896 − 7.095233976390074i 1.886 × 10−11 4.632 × 10−16 1.284 × 10−16 1.284 × 10−16

Table 8. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = 0, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 −0.112551138814753 + 0.430514461423602i 2.401 × 10−5 6.824 × 10−10 2.176 × 10−12 3.111 × 10−15

100 −0.477210698149339 + 0.058677959322354i 8.618 × 10−7 2.188 × 10−11 5.266 × 10−14 4.883 × 10−16

500 −0.417276484590423 + 0.257429625049396i 3.407 × 10−8 8.609 × 10−13 7.249 × 10−16 1.382 × 10−15

10,000 0.487266314746835 − 0.032032920039315i 8.567 × 10−11 2.205 × 10−15 6.556 × 10−16 4.626 × 10−16
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5. Conclusions

Clearly, Tables 1–8 illustrate the relative error of the Clenshaw-Curtis quadrature taken as
∣Iα

N+1[ f ]−Iα[ f ]∣
∣Iα[ f ]∣ .

We can see that for proposed Clenshaw-Curtis quadrature based on Hermite interpolation polynomial,
with small value of points higher precision of the numerical results of integrals is obtained in O(N log N)
operations. Furthermore these tables show that more accurate results can be obtained as k increases with
fixed value of N. Conversely, more accurate approximation can be achieved as N increases but k is fixed.
Moreover, Tables demonstrate that results successfully satisfy the analysis derived in Section 3.
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