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Abstract: In this paper, a new hybrid method including simulation optimization and artificial
intelligence based simulation is created to solve the inventory routing problem (IRP) in which three
different routing strategies are evaluated for uneven demand patterns including intermittent, erratic,
and lumpy demand. The proposed method includes two phases. In the first phase, a nondominated
sorting genetic algorithm II based simulation is employed to perform a multi-objective search for the
IRP where the objectives of the method are total supply chain cost minimization and average service
level maximization. In the second phase, artificial neural network based simulation is used to adjust
the reorder point and order-up-to-level by forecasting the customer demand at each replenishment
time. The results of the study demonstrated that the average service level is at least 98.54% in the
supply chain. From this, it can be concluded that the proposed method can provide a tremendous
opportunity to improve the average service level under uncertain environments. In addition, it is
determined that different routing strategies can be selected for different demand patterns according
to the considered performance measures.

Keywords: simulation optimization; artificial intelligence; supply chain; demand forecasting;
routing strategies

1. Introduction

To remain competitive in today’s business world, companies must cope with the increasing
customer expectations and with growing markets. Products must be obtained at the right place, in
the right quantity, and at the right time. Furthermore, companies have to consider risks formed by
the sudden fluctuations in global and local economies. Thus, the success measures of the companies
include many different factors, such as higher quality, lower costs, and shorter lead time. At this point,
supply chain management (SCM) has become an important necessity for companies [1]. Successful
SCM requires many decisions including the flow of information, product, and funds [2]. This paper
focuses on inventory control and routing, which are the core topics in SCM. The performance of
the supply chain is closely linked to the performance of inventory control and routing. In addition,
simultaneous consideration of inventory control and routing offers a tremendous opportunity for
companies to gain competitive advantage in the supply chain. The simultaneous consideration of
inventory control and routing is known as the inventory routing problem (IRP). In IRP, customer
demands are met while satisfying the objectives related to the inventory control and the routing.
In this case, determining customer demand is a challenging task for the supply chain to eliminate
uncertainty and make itself stable. Inaccurate demand forecasting can increase the total supply chain
cost. Therefore, demand forecasting is critical for any supply chain to make correct decisions and to
achieve benefits in regularly changing business scenarios [3]. Accurate forecasting of demand under
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uncertain environments also improves supply chain activities [4]. In literature, many studies are related
to customer demand forecasting based on casual models, such as regression, and time-series methods,
such as moving-average [5]. Although these methods perform well, they have some limitations. For
example, accurate forecasting is generally guaranteed when a large amount of data is used in these
methods. Therefore, there is a need to develop a more efficient and precise method for demand
forecasting. At this point, artificial intelligence (AI) techniques can be employed for demand forecasting.

AI is interested in intelligent behavior in artifacts. At this point, the perception, learning,
reasoning, communicating, and acting in complex environments can be considered intelligent
behaviors [6]. Today’s complex environment needs intelligent behaviors in systems to combine
knowledge, methodologies, and procedures from various sources. AI adapts itself and learns to do
better problem solving in stochastic and dynamic environments. To increase the performance of AI
techniques, many methodologies that find actual and potential uses within simulation environments
were developed [7]. A combination of AI and simulation improves the functionality of the simulation
due to a more realistic perspective. Furthermore, it provides an intelligent and accurate system for
decision-making process in SCM.

In this paper, simulation optimization (SO) and AI based simulation models are developed to
solve the IRP. The main contributions of this paper can be summarized as follows: (i) the application of
a nondominated sorting genetic algorithm II (NSGA-II) to determine the parameters of IRP considering
two objective functions; (ii) the application of a Genetic Algorithm (GA) to determine the de-noising
degree, the number of neurons in hidden layers, and the training algorithm; (iii) the implementation of
de-noising with the Maximal Overlap Discrete Wavelet Transform (MODWT) to improve the customer
demand data; and (iv) the application of a Genetic Algorithm based Artificial Neural Network
(GA-ANN) to forecast uneven customer demand patterns. Integration of NSGA-II based SO and
GA-ANN based simulation is necessary to provide a better coordination level in the supply chain. This
integration directly affects the synchronization and overall supply chain performance.

The remainder of the study is proposed as follows. Section 2 presents the literature review related
to IRP, artificial intelligence techniques for forecasting, and some studies related to hybrid structures
for supply chain. The proposed method is presented in Section 3. In Section 4, an analysis of IRP is
given. Finally, Section 5 presents concluding remarks for the results obtained in this research.

2. Literature Review

Over the years, several computing methods have been used synergistically rather than exclusively
in order to improve supply chain performance. The construction of complementary hybrid methods
provides a powerful solution methodology in real-world problems. In this paper, hybrid inventory
and routing based methods are analyzed. Further, demand forecasting, which has generated an
increasing interest nowadays because of an increase in competition, is considered. Accurate demand
forecasting provides valuable information about local and global markets. Companies can make
informed decisions about the markets’ potential. In addition, demand forecasting gives information
about business growth and pricing strategies. It helps companies reduce risks involved in business
activities and cope with uncontrollable and competitive forces. Therefore, demand forecasting is the
main requirement for the competitive survival of business. It can also provide an insight into the
expansion of decisions and capital investment.

In literature, various methods have been used to model different demand patterns. Traditional
forecasting methods can be successfully used when the demand of an item is smooth and continuous.
However, forecasting is hardly difficult with traditional methods when the demand of item has
changing values [8]. At this point, the artificial neural network (ANN) method is a logical choice
to handle these limitations [9]. ANN can capture interactions between the non-zero demand and
the inter-arrival rate of demand events [10]. We summarized some of the papers associated with
forecasting of different demand patterns using ANN. For erratic demand patterns, Molina et al. [11]
showed the comparison of ANN methods and an autoregressive integrated moving average method
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to forecast the demand medicines. In the paper, the demand of two drugs in a public hospital was
analyzed with an erratic nature. For intermittent demand patterns, Kourentzes [10] proposed the ANN
method, which allows interactions between the interdemand intervals and the demand of intermittent
items. Lolli et al. [12] used the ANN method trained by back-propagation and extreme learning
machines. In addition, different input patterns and architectures were used to compare the forecasting
results of proposed ANN methods for intermittent demand. Kaya and Turkyilmaz [8] employed
the ANN, support vector regressions, and decision tree techniques. In their paper, the intermittent
package of R software was employed to produce artificial demand data. For lumpy demand patterns,
Gutierrez et al. [13] presented a lumpiness factor and a coefficient of skewness as two measures to
characterize the lumpy demand of an electronics distributor. Similarly, Gutierrez et al. [14] applied
the ANN method to forecast lumpy demand. Amin-Naseri and Tabar [9] used the recurrent ANN for
lumpy demand forecasting of spare parts. Croston’s method and Syntetos & Boylan’s approximation
were also used to evaluate the proposed method.

In SCM, demand forecasting is one of the most significant topics for a company’s survival
and sustainability. Unsatisfactory demand forecasting will hurt company profitability and market
competitiveness. Therefore, various methods are proposed to forecast demand in supply chains.
Zhang et al. [15] presented a decomposition-and-ensemble principle for erratic demand forecasting.
Support vector machines were used to model and formulate the erratic demand series. Durmusoglu
and Satoglu [16] presented a complete road map in erratic demand environment for the hybrid
cellular manufacturing systems. Prestwich et al. [17] used several intermittent demand patterns and
proposed several new error measures with almost no infinities, and with correct forecaster ranking.
Ramaekers and Janssens [18] used the SO to develop a framework for intermittent demand. In their
study, the simulation model, developed via Microsoft Excel spreadsheets, aimed to determine the
optimal inventory system. Demand forecasting and an order decision were made at each review-time.
Lei et al. [19] presented a new forecasting algorithm using the material intermittent demand data.
Then, the results were compared with the exponential smoothing method. Jung et al. [20] presented a
new bootstrap method. They deployed a simple experiment that utilizes artificial data to compare
the results of the suggested method and the conventional Markov bootstrap method. Verganti [21]
investigated the demand management mechanisms by means of quantitative analyses. The ability
of order overplanning was also explored to cope with uncertain lumpiness. Bartezzaghi et al. [22]
evaluated the behavior of forecasting techniques, especially an exponentially weighted moving average,
early sales, and order overplanning, under the lumpy demand pattern. Dellino et al. [23] formulated a
multi-objective optimization problem considering key performance indicators in the fresh food supply
chain. The dataset was provided by a set of small- and medium-sized retailers. In their study, the
decision support system focused on order planning and sales forecasting. Li and Lim [24] proposed
a greedy aggregation–decomposition method that includes three parts. In the first part, daily total
demand was forecasted. In the second part, the demand size and interval were forecasted. Finally,
the total demand was allocated at each store considering the forecasting in the first and the second
part. At this point, the first part was for aggregation while the other parts were for decomposition.
Fu et al. [25] used a hybrid of a recurrent neural network and Syntetos-Boylan approximation for
semiconductor product demand forecasting. The proposed method can handle the intermittent demand
occurrence and the deficient downstream information in the supply chain.

The forecasting of demand can be considered the primary revenue source of the company
since all departments establish themselves with respect to the results obtained from demand
forecasting. In addition to this, the integration of inventory control and routing directly influences the
synchronization and overall supply chain performance. In IRP, the supply chain can be managed as an
interdependent and interconnected structure. At this point, simulation ensures the flexibility to model
the supply chain under an interdependent and interconnected structure. Furthermore, it provides an
essential level of realism. Simulation allows the user to change parameters easily within the method.
The outcomes for different alternatives are evaluated in the supply chain via simulation [26–28].
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In addition to simulation, optimization methods allow researchers to determine the best possible
alternatives [29]. Hence, integrating simulation and optimization into the IRP ensures a remarkable
solution method. It also provides a structured approach to the system of design and configuration [30].
SO can be used to cope with uncertainties since it allows us to model and evaluate the uncertainties in
the system. Furthermore, SO can handle the multidimensional natures of the uncertainties. However,
the experience and knowledge of a model developer are important in order to handle the uncertainties
in supply chain successfully. The robustness of the optimal solution is also important in SO. Dellino
and Kleijnen [31] presented a methodology in order to incorporate robustness issues in SO. In their
study, a metamodel was employed to create a robust SO that accounted for uncertainties during the
optimization process. Briefly, managing uncertainties, such as uncertain demand and uncertain lead
time, has always been a major concern in IRP because ignoring uncertainties can cause sub-optimal
or infeasible solutions in the supply chain. Thus, SO is an exciting and fast developing area for both
research and practice in the IRP. For example, Jarugumilli et al. [32] modified the A* algorithm to
determine heuristic solutions and developed a simulation framework to validate heuristic performance
for the IRP. In the study, a single vehicle was used to transport a single product. A periodic review
model was selected to control inventory. In addition, various design factors related to demand, the
shortage cost, the holding cost, and the transportation cost were determined for the experimental
design. Cáceres-Cruz et al. [33] utilized a hybrid algorithm integrating Monte Carlo simulation with a
metaheuristic under stochastic demands with stock-outs. The proposed approach considered diverse
inventory control policies for each customer. In the study, a single-period IRP included multiple
retailers and a single distribution depot. Abdollahi et al. [34] proposed an SO to solve the IRP that
includes one distributor and N retailers. In the study, some risk factors were employed to design
the method under a maximum level inventory policy. Homogeneous vehicles were employed to
distribute one type of product. Unsatisfied demand was backlogged. Juan et al. [35] presented an
algorithm that combines the Monte Carlo simulation and multi-start randomized heuristics to solve
the single-period IRP.

Lately, the advance of information systems and the availability of data have greatly increased.
Therefore, the integration of inventory and routing has been growing constantly, enhanced by the
advances in information technology. In recent years, various IRP methods have been created to
cope with growing competitive markets and to handle the additional constraints. The possibilities
of combining methods are also so vast for the IRP in supply chain. In addition, hybrid methodology
provides a remarkable solution to promptly cope with any changes in supply chain. However, the
design of a hybrid methodology that includes simulation, optimization methods, and an AI based
method can be difficult for a complex supply chain problem. Therefore, a hybrid methodology
including SO and AI-based simulation forms the motivation of our study. In this paper, SO and AI
based simulation are developed to solve the IRP under different demand patterns including intermittent,
erratic, and lumpy. Firstly, the SO is used to conduct a “what-if” scenario analysis considering the
occurrence of unplanned events in the supply chain. Then, AI is employed to forecast the demand and
simulation embraces proposed by the supply chain with their complicated and nonlinear relationships.
In this paper, three issues are mainly considered: What is the effect of integration of NSGA-II based SO
and GA-ANN based simulation on performance of the supply chain members? Which parameters
are widely chosen by GA? Is there a difference among supply chain members when using different
customer demand patterns? Our proposed method adds a new dimension to the supply chain modeling
approaches. It provides an attractive opportunity to represent the ambiguity in the supply chain with
real life uncertainty.

3. Proposed Method

Syntetos et al. [36] presented a categorization scheme in which the average inter-demand interval
(ADI) and the squared coefficient of variation (CV2) of demand are compared with cutoffs of 1.32 for
ADI and 0.49 for CV2. Details about the categorization can be found in Syntetos et al. [36]. The data
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used in this paper is taken from Chen et al. [37], whose dataset is available for one year. Data is adapted
considering three different uneven demand patterns. In erratic demand, ADI is less than 1.32 and CV2

is greater than 0.49. The mean of customer order quantity in erratic demand is 12 units. In intermittent
demand, the ADI is greater than 1.32 and the CV2 is less than 0.49. The mean of the customer order
quantity in intermittent demand is 368 units. In lumpy demand, the ADI is greater than 1.32, the CV2

is greater than 0.49. The mean of customer order quantity in lumpy demand is 368 units.
The proposed system, including Phase 1 and Phase 2, allows the controlling of continuous changes

of the method representing the current state of the inventory and routing system. In Phase 1, SO is
used to optimize the initial inventory, reorder point, and order-up-to level in a two echelon supply
chain. Note that five distribution centers and one supplier are used to minimize the network traffic in
simulation and to prevent network overloading. Integrating optimization and simulation is a highly
demanded method in problem solving due to the need for high computational power, even by today’s
standards. The interactions and uncertainties related to the proposed system can be easily captured by
SO. However, the design of SO is crucial. The possibilities for combining simulation and optimization
are vast, so a good overview of methods is necessary. In this study, NSGA-II is used as the optimization
method. In NSGA-II, the population is initialized considering the problem range and constraint. Then,
non-dominated sorting is applied. Next, the value of crowding distance is calculated and genetic
operators are applied to individuals. Finally, offspring population and current generation population
are combined to create the new generation. Details about the NSGA-II can be found in [38,39]. In our
proposed NSGA-II, population size is 20, crossover probability is 0.08, and mutation probability is
0.05. Note that, the parameters of NSGA-II are specified by a trial and error method. NSGA-II was
coded using C# (Visual Studio Community 2017). The simulation model was developed by using
Simio (Version: 7.121.12363).

In SO methods, the total supply chain cost (TSCC) is minimized while the average service level is
maximized. In the proposed methods, each objective function along the Pareto-front is only improved
by degrading the other objective function. In this case, none of the Pareto-optimal solutions is exactly
better than the other solutions, and, therefore, one of them can be considered an acceptable solution.
We select the lowest cost solution when Pareto-optimal solutions are found. The general structure of
Phase 1 is depicted in Figure 1. Note that the SO method runs during the half year in Phase 1. Then,
the AI and data driven simulation in Phase 2 runs for the next half year.
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In Phase 2, first de-noising with MODWT is done to improve the data quality. The outliers and
systematic noises are identified to improve the demand data. After preprocessing of the data, AI and
data driven simulations are used in the supply chain system. AI is utilized at each replenishment time
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to provide accurate demand forecasting. The forecasted demand is used to calculate the reorder point
and order-up-to-level at each replenishment time (R) for each supply chain member. Note that only R
is considered as a fixed value and assumed to be 5 days. At each replenishment time, the demand
of supply chain members is forecasted by the GA-ANN. In this forecasting process, GA is used for
optimizing the parameters of the ANN. The procedure of GA is initialized by defining chromosome
structure to represent a set of parameters. Then, selection, crossover, and mutation operators are
repeatedly applied to create new chromosomes in the GA. In our proposed GA, the number of iterations
is 50, population size is 20, crossover probability is 0.08, and mutation probability is 0.05. Note that
the parameters of GA are specified by a trial and error method. The general structure of Phase 2 is
depicted in Figure 2.
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The possibilities for combining methods are vast for the supply chain. At this point, one of the
most important points is to have a good overview of the AI and simulation that can be used to realize
the supply chain effectively. For example, Kilmer [40] used the baseline ANN metamodel approach to
develop an (s, S) inventory computer simulation. In addition, the details of the SO and metamodels
can be found in Dellino et al. [31].

In this paper, the ANN is utilized as an AI method. To make forecasts, multilayer feedforward
networks, in which the connection of layers and units within a layer are created in a feedforward
manner, are developed. In the proposed ANN, connections are only available between successive
layers. Thus, no connections exist among neurons. The proposed ANN consists of four layers. The
first layer is the input layer that connects to the input variables. The second and third layer are called
hidden layers that are between the input and output layers. Thus, we used two hidden layers. The
last layer is the output layer that connects to the output variables. Information is transmitted through
the connections between layers. In the ANN, performance directly depends on the configuration of
parameters such as the input variables, the number of neurons, the number of layers, the training
algorithm, the type of the activation function, the number of epochs, and weights. The values of
parameters can vary according to the type of the problems. The determination of ANN architecture is
very crucial to improve the method of performance. In the literature, no certain method is available to
perform well for all types of problems. Therefore, researchers have tried to find a systematic method for
ANN development. In this paper, GA optimized the de-noising degree. In addition, some of the main
parameters of the ANN, including the number of neurons in hidden layers and training algorithm,
are optimized by the GA. The initial pool of the training algorithm is the same as the Dosdoğru [41],
except for bayesian regularization. Note that log-sigmoid is utilized as an activation function in the
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proposed ANN method. For ANN, the overall dataset is divided into three subsets including training
(70%), validation (15%) and testing (15%). In the proposed ANN, the training data is employed to train
the network. Validation data is used to tune and improve the network. Finally, testing data is utilized
to test the accuracy of the network. In the ANN, the mean absolute percent error (MAPE) is utilized to
evaluate the forecasting performance. The MAPE is calculated as follows:

MAPE =
100
n

∑n

i=1

∣∣∣∣∣ ei
ai

∣∣∣∣∣ (1)

where ei = fi − ai, fi is the forecasted demand and ai is the actual demand.

3.1. Inventory Control Policy

In this paper, a periodic (R, s, S) inventory control is considered. The inventory level is controlled
at equal intervals of time R. If the inventory level falls below a reorder point (s), the supply chain
member is replenished up to an order-up-to level (S). If the inventory level is more than the reorder
point at time R, no replenishment order is placed.

In Phase 1, the initial inventory, reorder point and order-up-to level are optimized by the SO
method. In Phase 2, reorder point (sc) and order-up-to level (Sc) are calculated at each replenishment
time for each supply chain member using the output of GA-ANN. Taylor III [42] presented the formula
for the reorder point with variable demand and variable lead time as follows:

s = dL + Z

√
σ2

dL + σ2
Ld

2
(2)

where d denotes the average daily demand, L represents the average lead time,
√
σ2

dL + σ2
Ld

2
denotes

the standard deviation of demand during lead time, and Z is the number of standard deviations
corresponding to the service level probability. This formula is adapted, and the average daily demand
is changed with the forecasted demand (d f , obtained via GA-ANN) as follows. The 95% service level
(Z = 1.645) is used for the reorder point (sc):

sc = d f L + 1.645
√
σ2

dL + σ2
Ld f

2. (3)

Using the calculated reorder point, the order-up-to level (Sc) is computed as follows:

Sc = sc + 5 ∗ d. (4)

3.2. Routing Strategies

Various routing policies are used to achieve a variety of supply chain objectives. At this point,
an incorrect policy can hurt the customer service level while increasing the cost. Therefore, many
different policies have been developed to provide ongoing and consistent customer satisfaction while
increasing profit. In the literature, the strategies are generally represented as simple policies. On the
other hand, strategy based policies enable practical application on the IRP side. Therefore, we used
three different strategies.

Strategy 1 assigns a route for a vehicle considering the TSCC. Under intense competition, marginal
profit is becoming thinner and thinner in recent years, so companies should reduce total cost. The
costs incurred in IRP can play a major role while deciding on which IRP model to use in the supply
chain. Therefore, the largest TSCC is assigned first in Strategy 1.

Strategy 2 assigns a route for the vehicle considering the least inventory first principle. The least
inventory first principle is defined as the policy under which the vehicle goes next to the not-yet-visited
supply chain member with the smallest inventory position. At the beginning of each replenishment
time, the distribution center (DC)s‘ orders are ordered from smallest to largest by considering the DCs’
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inventory levels. This means that the order of DC with the smallest inventory level has the highest
delivery priority.

In Strategy 3, the vehicle starts its route according to the predetermined priority rule. Priority
order, from highest to lowest, in proposed methods is given as DC1, DC2, DC3, DC4, and DC5,
respectively. Note that the vehicle considers the shortest paths when more than one route is available
between these destinations for all strategies considered.

In this study, order splitting is not allowed, and vehicles are loaded and routed considering
same strategy based policies. Thus, each vehicle starts and continues its route according to the
loaded order. The vehicle considers the shortest paths while returning back to the Supplier. We
used a single uncapacitated vehicle and vehicle speed considered to be uniform (80, 90) meters per
hour. In all strategies, each DC is visited at most once in each review period. Vehicle load changes
during transportation. Quantity to be delivered to each DC is determined according to the value of
replenishment order. Routing based cost is calculated using the following equation:

Routing based cost =

number o f total deliveries∑
d=1

τ+ γd +
∑

iεS{d}

(ϑi + αDisti j) (5)

where τ is the capital cost per vehicle, γd is the fixed cost of initiating delivery, and ϑi is the fixed cost
of each customer stop. Transportation cost per unit distance is denoted as α. The supplier to the DCi
round trip distance is represented as Disti j (i denotes the number of DC in the system, i = 1, . . . , I and j
represents the Supplier). Finally, S{d} denotes the set of DCs that is to be delivered at delivery d. Thus,
iεS{d} denotes each DC that is to be delivered at delivery d.

3.3. Performance Measurements

In order to evaluate the performance of the methods, we used various measures including cost
based analysis, quantity based analysis, lead time based analysis, routing based analysis, and average
service level. In cost based analysis, the expected total cost for all supply chain members is the sum of
the inventory based cost and routing based cost.

TSCC = inventory based cost + routing based cost (6)

Inventory based cost =
∑Periods Considered

n=1
{

∑I

i=1
hiX+

in + I{Xin ≤ s}
(
kiX−in + piPi + ci + Oi

)
} (7)

where X−in is the unmet customer order quantity of DCi over period n and X+
in is the remaining inventory

quantity of DCi over period n. hi is the average holding cost rate of DCi for each unit of inventory. ki is
specified as the lost sales cost rate of DCi for each unit of stockout. pi is the processing cost of DCi.
Pi is the processing time of DCi. The order cost per use of DCi is represented as ci which is the cost
charged for any order of DCi irrespective of the time spent in there. The order processing cost of DCi is
represented as Oi. Note that the order processing cost includes cost per use and the order processing
cost rate, which is proportional to the order processing time. The cost parameters in proposed supply
chain are given in Table 1.

Table 1. The cost parameters in the proposed supply chain.

DCs Related Cost Parameters ($) Vehicle Related Cost Parameters ($)

Average Holding Cost: Uniform (2, 5) (hi) Capital Cost per Vehicle: 2000 (τ)
Lost Sales Cost: Uniform (50, 100) (ki) Fixed Cost of Initiating Delivery: 100 (γd)
Processing Cost: Uniform (5, 10) (pi) Fixed Cost of Customer Stop: 100 (ϑi)
Order Cost per Use: Uniform (50, 100) ( ci) Transportation Cost per Unit Distance: 0.05 (α)
Order Processing Cost Rate: Uniform (2, 5)
Cost per Use: Uniform (5, 10)
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In routing based analysis, the space utilization per delivery is calculated using following formula:

Space utilization per delivery =
1
T

∫ T

0
Q(t)dt (8)

where T is the total transportation time of vehicle loaded with orders per each delivery, and Q(t)
denotes the quantity of transporting orders at time t during a delivery.

Finally, the average service level is calculated as follows:

Average service level =

∑Per Arrival
a=0 min

(
1, Current Inventory Level

Incoming Order Quantity

)
Total Number o f Incoming Orders

. (9)

4. Results and Discussion

The determination of ANN parameters is important since performance of the ANN directly
depends on the configuration of parameters in layers. Therefore, GA is used to determine the optimal
parameters including the number of neurons in hidden layers, training algorithm, and de-noising
degree. Note that, at first, pre-analysis is made to determine the upper bound of the number of neurons
in the hidden layer. The model runs with different number of hidden neurons. It is determined that
using more than 20 neurons did not increase performance at all. Therefore, the upper bound of the
number of neurons in the hidden layers is fixed at 20 in GA. The values of the parameters determined
by GA generally change according to the strategy type and supply chain member. The number of
neurons in the first and second hidden layers is between 3 and 20 in erratic demand. The number
of neurons in the first hidden layers is between 2 and 20 in intermittent demand while the number
of neurons in the second hidden layers is between 3 and 20 in intermittent demand. The number of
neurons in the first hidden layers is between 6 and 20 in lumpy demand while the number of neurons
in the second hidden layers is between 3 and 20 in lumpy demand. The minimum (min) and maximum
(max) value of the determined hidden neurons for the ANN is given in Table 2. The de-noising degree
values vary between 2 and 3. Furthermore, the training algorithm is optimized by GA, which generally
selects the conjugate gradient backpropagation with Powell-Beale restarts and one step secant method.

Table 2. The determined number of hidden neurons for the ANN.

Number of Neuron in First Hidden Layer Number of Neuron in Second Hidden Layer

Strategy 1 Strategy 2 Strategy 3 Strategy 1 Strategy 2 Strategy 3

Min Max Min Max Min Max Min Max Min Max Min Max

Erratic
demand

DC1 11 20 3 17 3 15 4 20 13 19 15 20
DC2 3 19 8 15 5 17 18 20 18 20 19 20
DC3 10 19 10 19 5 18 4 17 4 17 3 20
DC4 5 17 6 19 4 14 7 20 5 18 17 19
DC5 6 14 3 13 3 19 5 18 16 20 7 19

Intermittent
demand

DC1 5 17 12 20 11 19 12 19 5 15 3 17
DC2 8 19 3 18 13 20 5 20 6 20 6 19
DC3 9 19 12 18 13 18 5 16 4 8 4 11
DC4 12 20 12 18 11 20 4 15 5 10 4 11
DC5 11 19 2 18 10 20 4 19 6 18 6 20

Lumpy
demand

DC1 6 20 9 17 13 17 7 20 4 20 6 17
DC2 13 19 13 19 13 19 5 18 5 18 5 18
DC3 13 20 8 17 13 18 7 19 3 17 5 14
DC4 9 19 15 20 14 20 5 17 3 10 3 11
DC5 9 19 10 20 9 19 4 20 4 19 7 20

In this section, we only analyzed the results of Phase 2 due to the space limitations. In Phase 2,
the reorder point and order-up-to levels are calculated at each replenishment time using the forecasted
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customer demand. The estimated value of the reorder point in erratic demand varies between 13 units
and 82 units, while the estimated value of the order-up-to level in erratic demand varies between
18 units and 101 units. The estimated value of reorder point in intermittent demand varies between
348 units and 2905 units, while the estimated value of order-up-to level in intermittent demand varies
between 348 units and 3297 units. The estimated value of the reorder point in lumpy demand varies
between 196 units and 2265 units, while the estimated value of the order-up-to level in lumpy demand
varies between 395 units and 2549 units. The minimum (min) and maximum (max) values of the
estimated reorder point and order-up-to levels are given in Table 3.

Table 3. The descriptive statistics of the determined reorder point and order-up-to level.

Reorder Point Order-Up-to Level

Strategy 1 Strategy 2 Strategy 3 Strategy 1 Strategy 2 Strategy 3

Min Max Min Max Min Max Min Max Min Max Min Max

Erratic
demand

DC1 16 40 13 21 14 27 30 54 27 34 28 42
DC2 33 56 34 45 35 45 50 72 51 62 52 61
DC3 24 36 22 32 22 30 40 51 38 47 37 45
DC4 36 82 33 66 37 65 58 101 52 85 56 83
DC5 18 34 32 47 18 32 32 48 18 31 32 47

Intermittent
demand

DC1 711 1762 742 2594 714 1716 1177 2178 1208 3010 1180 2131
DC2 597 2167 572 2636 622 2643 1097 2642 1072 3105 1122 3114
DC3 418 2328 534 2099 529 2905 863 2720 979 2496 974 3297
DC4 358 1400 441 1825 348 1404 660 1706 743 2149 348 1404
DC5 714 2291 825 2271 705 2284 1292 2726 1403 2761 1283 2719

Lumpy
demand

DC1 543 1092 490 1372 543 2265 681 1373 776 1656 841 2549
DC2 644 1172 637 1157 715 1355 918 1448 911 1433 989 1631
DC3 237 1201 227 818 196 1036 436 1429 426 1043 395 1295
DC4 532 1610 401 831 424 1151 840 1926 709 1143 732 1442
DC5 276 767 341 1284 296 742 413 963 478 1484 433 938

In order to draw conclusions and make decisions correctly and efficiently from the AI based
simulation method, we used different analyses. For example, the average service level for each strategy
under different demand patterns is given in Table 4. Taking a glance at the average service levels
of strategies reveals that the proposed method helps properly control the supply chain so that good
customer service is maintained.

Table 4. Average service level for each strategy under different demand patterns.

Strategy 1 Strategy 2 Strategy 3

Erratic demand 1 1 1
Intermittent demand 0.9907 0.9981 0.9854

Lumpy demand 0.9969 0.9874 0.9955

4.1. Cost Based Analysis

In today’s competitive world, the competition is not only between the companies in the local
market but also between companies in the global market. To remain competitive and grow sales,
the supply chain should be controlled considering performance measurements. The criteria for the
supply chain performance measurement can be different for companies since the participants and
the structure of the network can vary according to the view of its own vision. When the TSCC is
considered, Strategy 2 can be selected for lumpy demand patterns (Table 5). Thus, the least inventory
is controlled in supply chain to cope with the fluctuating nature of lumpy demand. Strategy 3 can be
chosen for intermittent demand and erratic demand pattern when the TSCC is taken into account.
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Table 5. The total supply chain cost (TSCC) for each demand pattern and each strategy.

Erratic Demand Intermittent Demand Lumpy Demand

Strategy 1 242081 908945 640675
Strategy 2 240150 986694 632658
Strategy 3 235570 847906 639104

4.2. Quantity Based Analysis

Quantity based analysis includes partially lost order quantity, totally lost order quantity, and
totally met order quantity, as given in Table 6. Note that the values in the table include the sum
of all DCs results for each demand pattern during six months. According to the results of quantity
based analysis, Strategy 2 gives better results in lumpy demand while Strategy 3 provides satisfying
results in erratic demand and intermittent demand. The nature of lumpy demand causes difficulties in
controlling inventory level, and, therefore, focusing on the smallest inventory improves the partially
lost order quantity and totally lost order quantity. On the other hand, giving priority to DCs improves
the lost order quantities in erratic demand and intermittent demand.

Table 6. Quantity based analysis.

Erratic Demand Intermittent Demand Lumpy Demand

Partially Lost
Order Quantity

Strategy 1 56 347 626
Strategy 2 30 677 377
Strategy 3 18 142 829

Totally Lost Order
Quantity

Strategy 1 140 620 1114
Strategy 2 166 1278 822
Strategy 3 92 314 878

Totally Met Order
Quantity

Strategy 1 1282 45353 20529
Strategy 2 1316 43811 20541
Strategy 3 1418 45792 20137

4.3. Routing Based Analysis

In an economic environment of fierce competition, routing is a very challenging problem. Hence,
we paid particular attention to the modeling phase for an accurate capture of supply-chain behavior.
We address the IRP from the perspective of different demand patterns considering strategy based
policies. Various analyses are employed to determine the better routing strategy for each demand
pattern. As a routing based analysis, the ratio of the transported quantity for the DCs is given in
Table 7. To calculate the ratio, the transported quantity from the supplier to each DC is divided by
the total transported quantity from supplier to all DCs. For example, the transported quantity from
supplier to DC1 comprised 19.4 percent of the total transported quantity in Strategy 1 for the erratic
demand pattern.

The minimum (min), mean, and maximum (max) values for space utilization per delivery are
given in Table 8. Note that mean represents the average of the space utilization per delivery for the
DCs. The space utilization per delivery varies between seven units and 1609 units for demand patterns
in Strategy 1. The space utilization per delivery varies between nine units and 2986 units for demand
patterns in Strategy 2. The space utilization per delivery varies between seven units and 1874 units
for demand patterns in Strategy 3. In Table 8, the total number of deliveries in Phase 2 is also given
for each demand pattern. Different routing strategies can be selected for demand patterns according
to the routing based analysis. When the mean space utilization per delivery is taken into account in
erratic demand, Strategy 1 and Strategy 2 give better results than Strategy 3. Strategy 1 can be chosen
in lumpy demand with respect to the mean space utilization per delivery. In intermittent demand,
Strategy 3 can be selected according to the mean space utilization per delivery.
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Table 7. The ratio of transported quantity for distribution center (DC)s.

Strategy 1 Strategy 2 Strategy 3

Erratic demand

DC1 0.194 0.232 0.204
DC2 0.240 0.226 0.237
DC3 0.182 0.298 0.261
DC4 0.273 0.217 0.206
DC5 0.111 0.028 0.092

Intermittent
demand

DC1 0.132 0.142 0.129
DC2 0.242 0.199 0.239
DC3 0.204 0.161 0.204
DC4 0.167 0.168 0.165
DC5 0.254 0.330 0.262

Lumpy demand

DC1 0.224 0.197 0.256
DC2 0.156 0.225 0.147
DC3 0.206 0.226 0.220
DC4 0.279 0.223 0.234
DC5 0.136 0.129 0.142

Table 8. The space utilization per delivery for strategies.

Strategy 1 Strategy 2 Strategy 3

DN * Min Mean Max DN Min Mean Max DN Min Mean Max

Erratic demand 23 7 27 74 22 9 27 128 26 7 24 83
Intermittent demand 34 152 647 1609 30 180 828 2986 29 170 865 1874

Lumpy demand 22 105 486 1393 26 102 408 1130 27 91 431 1528

* DN represents the total number of deliveries in Phase 2.

4.4. Lead Time Based Analysis

The lead time period length ratio to review period length varies with respect to the demand
patterns and supply chain members, and its minimum (min) and its maximum (max) values are
given in Table 9. In Strategy 1, the lead time of the supply chain members comprised a minimum of
10.3 percent of the review period and a maximum of 72.9 percent of the review period. In Strategy 2,
the lead time of supply chain members comprised a minimum of 10.5 percent of the review period
and a maximum of 78.3 percent of the review period. In Strategy 3, the lead time of the supply chain
members comprised a minimum of 9.8 percent of the review period and a maximum of 69.6 percent of
the review period.

In the literature, SO methods (e.g., [32–35]) and AI based methods (e.g., [24,25]) are widely used to
solve the supply chain problems. However, there is still lack of studies that show the integration of the
SO method and AI based methods to solve the IRP. In addition, there is a need to determine the values
of the IRP parameters for each demand pattern. This paper fulfils a part of this gap by integrating
NSGA-II based discrete event simulation and AI based discrete event simulation methods. In this
paper, various analyses are applied to evaluate the SO and AI based methods, since the structure of
the supply chain should be perfectly understood to determine an effective method. In addition, we
provide a comparative analysis related to the demand patterns. Decision makers can select the most
suitable strategy that suits their needs.
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Table 9. The lead time period length ratio to review period length.

Strategy 1 Strategy 2 Strategy 3

Min Max Min Max Min Max

Erratic
demand

DC1 0.103 0.188 0.109 0.197 0.098 0.176
DC2 0.150 0.188 0.153 0.194 0.141 0.191
DC3 0.104 0.224 0.109 0.226 0.113 0.219
DC4 0.110 0.249 0.105 0.188 0.110 0.254
DC5 0.144 0.157 0.172 0.219 0.148 0.162

Intermittent
demand

DC1 0.243 0.537 0.283 0.654 0.301 0.565
DC2 0.265 0.525 0.294 0.580 0.339 0.696
DC3 0.205 0.486 0.318 0.580 0.235 0.663
DC4 0.243 0.400 0.212 0.783 0.207 0.519
DC5 0.329 0.729 0.280 0.607 0.285 0.615

Lumpy
demand

DC1 0.260 0.449 0.198 0.368 0.225 0.603
DC2 0.218 0.340 0.234 0.419 0.228 0.531
DC3 0.181 0.470 0.158 0.525 0.162 0.508
DC4 0.274 0.539 0.195 0.524 0.192 0.450
DC5 0.209 0.375 0.215 0.554 0.194 0.353

5. Conclusions

In today’s world, the importance of SCM is increasing due to the fiercer competition in local and
global economies. Integrating inventory and routing decisions has become an especially important
necessity in SCM. It is very critical for any company to cope with its competitors in a changing business
environment. However, there is no standard method to handle the IRP. A detailed literature review
showed that simulation, optimization methods, or AI based methods play a significant role in the
solving of IRP. Therefore, we developed a new hybrid method to solve stochastic and dynamic IRP.
The proposed method includes two phases. Firstly, the NSGA-II based SO is used to model the supply
chain system under a multi-objective search. Then, the ANN based demand forecasting and simulation
is employed to improve the efficiency of the supply chain system.

Customers are not willing to wait anymore due to the changing competitive environments in the
supply chain, and, therefore, customer demand is generally considered lost sales in many practical
settings. In addition, companies should reduce total cost to cope with today’s management challenges.
For these reasons, the quantity based analysis and cost based analysis can be used to select the strategy
for demand patterns. It became evident from the results that Strategy 2 gives better results for the
lumpy demand pattern when the quantity based analysis and cost based analysis are considered.
Strategy 3 can be chosen for erratic and intermittent demand patterns with respect to the quantity
based analysis and cost based analysis.

In conclusion, this paper presents a new hybrid method for IRP with uneven customer demand
patterns. Combining the respective strengths of SO and AI based simulation provides a competitive
advantage under a dynamic and stochastic environment. In the literature, SO is widely used to solve
problems in the supply chain [32–35]. In addition to this, we demonstrated that integration of SO and
AI based simulation also provides satisfying results in the supply chain. The proposed method can
encourage further development of the hybrid SO and AI based simulations. In future work, parameters
of the ANN can be determined by integrating other AI methods, such as particle swarm optimization.
In addition, big data can be integrated with the proposed method to improve the performance of the
supply chain members. Sentiment analysis can be used especially to improve the accuracy of demand
forecasting. For future work, the proposed method can be also applied to other problems, such as the
dynamic vehicle routing problem [43] and dual-channel supply chain [44].
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