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Abstract: Imprecise constrained matrix games (such as fuzzy constrained matrix games, interval-
valued constrained matrix games, and rough constrained matrix games) have attracted considerable 
research interest. This article is concerned with developing an effective fuzzy multi-objective 
programming algorithm to solve constraint matrix games with payoffs of fuzzy rough numbers 
(FRNs). For simplicity, we refer to this problem as fuzzy rough constrained matrix games. To the 
best of our knowledge, there are no previous studies that solve the fuzzy rough constrained matrix 
games. In the proposed algorithm, it is proven that a constrained matrix game with fuzzy rough 
payoffs has a fuzzy rough-type game value. Moreover, this article constructs four multi-objective 
linear programming problems. These problems are used to obtain the lower and upper bounds of 
the fuzzy rough game value and the corresponding optimal strategies of each player in any fuzzy 
rough constrained matrix games. Finally, a real example of the market share game problem 
demonstrates the effectiveness and reasonableness of the proposed algorithm. Additionally, the 
results of the numerical example are compared with the GAMS software results. The significant 
contribution of this article is that it deals with constraint matrix games using two types of 
uncertainties, and, thus, the process of decision-making is more flexible. 
Keywords: fuzzy rough number; rough interval arithmetic; constraint matrix games; fuzzy multi-
objective programming; game theory 

 

1. Introduction 

Different types of uncertainty (such as fuzziness, randomness, ambiguity, roughness) are 
common in many real-life decision-making problems, including matrix games. Determining how to 
represent uncertain information is one of the most critical issues among other uncertainty-related 
problems. However, decision-makers might face hybrid uncertain scenarios where roughness and 
fuzziness exist simultaneously. In such scenarios, fuzzy rough numbers (FRNs) are used to model 
the decision-making problem. Roughness and fuzziness play a significant role among types of 
uncertainty problems. Dubois and Prade [1] discussed the fuzzification of rough sets. Moreover, 
Morsi and Yakout [2] defined the lower and upper approximations of the fuzzy rough sets. Rough 
programming and fuzzy programming have been proposed for decision-making problems under 
uncertainty. In these decision-making problems, fuzziness and roughness are considered separate 
aspects. Several researchers have studied the issue of combining roughness and fuzziness in a general 
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framework for the study of fuzzy rough sets. Recently, the fuzzy rough set has been considered in 
several practical problems. As an illustration, Wang [3] studied the mining of stock price by using a 
fuzzy rough set system. Shen et al. [4] adopted a fuzzy rough estimator to study algae populations 
models, given specific water characteristics. Additionally, the false-negative and false-positive effects 
on network attacks have been examined by Yilun Shang [5]. Bhatt et al. [6] proposed a fuzzy rough 
set algorithm for feature selection. Furthermore, Liu et al. [7] introduced some properties and 
definitions of fuzzy rough numbers. Liu et al. [8] studied a fuzzy rough set for the task of scheduling 
models. Finally, Yilun Shang [9] studied the robustness of scale-free networks under attack with 
tunable grey information. 

Game theory is a mathematical tool to study the conflict and cooperation among intelligent, 
rational decision-makers. It has many applications in specialized fields such as finance, strategic 
welfares, management problems, political voting systems, economic auctions, social problems, and 
military issues [10–13]. Because of the imprecision or lack of the available information in real game 
theory, the players can only estimate the payoff value with some imprecise degree. In order to make 
the constrained matrix game more applicable to real competitive decision-making problems, fuzzy 
rough numbers [1] have been applied to describe uncertain and imprecise information appearing in 
the constrained matrix game. The fuzzy rough game theory provides an efficient framework which 
solves real-life cooperative and conflict problems with fuzzy rough information. It is an interesting 
research field not only for mathematicians but also for biologists, behavioral scientists, economists, 
medical doctors, environmentalists, and pattern recognizers. 

In recent years, many research articles examined imprecise matrix games; for example, linear 
programming has been adopted to solve the zero-sum two-person game with payoffs of grey 
numbers [14]. Ammar et al. [15] studied constraint matrix games with rough interval payoffs. Bector 
et al. [16] studied the duality fuzzy linear programming for matrix games with fuzzy payoffs and 
fuzzy goals. Takahashi [17] analyzed the zero-sum two-person matrix game under random 
environment. Chunqiao Tan et al. [18] studied Bertrand game in a fuzzy number environment. Jana 
et. al. [19] examined the solution of matrix games with generalized trapezoidal fuzzy payoffs. 
Prasanta Mula et al. [20] proposed a bi-rough programming algorithm for solving bi-matrix games 
with bi-rough payoffs. Li and Nan [21] studied imprecise matrix games in a triangular intuitionistic 
fuzzy environment. Jiang-Xia Nan et al. [22] studied constraint matrix games with interval payoffs. 
Deng-Feng Li et al. [23] analyzed an alfa-cut linear programming algorithm for solving fuzzy 
constrained matrix games. Also, Roy [24] discussed the game theory with the fuzzy set theory and 
multi-criteria decision-making. Jana et. al.  [25] considered dual hesitant fuzzy matrix games based 
on a new similarity measure. Aggarwal et al. [26] discussed the solution of matrix game with I-fuzzy 
payoffs. Bhaumik et al. [27] developed a robust ranking algorithm to solve matrix game with 
Atanassov’s intuitionistic fuzzy payoffs. Roy et. al. [28] studied intelligent water management with a 
triangular type-2 intuitionistic fuzzy matrix games approach. 

In this article, we propose a novel algorithm for solving fuzzy rough constrained matrix games. 
The lower and upper bounds of the fuzzy rough game value of any fuzzy rough constrained matrix 
games can be determined by solving the four multi-objective linear programming models as shown 
in Equations (13–16). These multi-objective models can be solved using any of the known multi-
objective optimization algorithms, such as goal programming, interactive approaches, fuzzy 
programming, and utility theory [29,30]. However, in this article, we develop a fuzzy multi-objective 
programming algorithm using Zimmermann’s fuzzy programming algorithm [31]. 

The main contributions of this article are summarized as follows: 

• Developing a new type of constraint matrix games with payoffs of fuzzy rough numbers. 
• Constructing fuzzy models from the proposed fuzzy rough models. 
• Solving the derived multi-objective models using Zimmermann’s programming approach [31]. 
• Solving the reduced crisp models using LINGO-14.0 (Lindo Systems, Chicago, IL, USA). 
• Demonstrating the models and algorithm with the help of a real example of the market share 

game problem [32], obtaining optimal strategies. 
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The remainder of this article is organized as follows: Section 2 introduces some essential 
definitions such as triangular fuzzy variables, rough variables, and fuzzy rough variables. Section 3 
presents the classical constrained matrix games and their properties. Constrained matrix game with 
payoffs of FRNs and Zimmermann method for solving fuzzy multi-objective programming models 
are introduced in Section 4. Section 5 presents a numerical experiment of the market share problem 
that demonstrates the applicability and validity of the proposed algorithm and models. Finally, 
Section 6 presents the conclusions of this work. 

2. Preliminaries 

Here, we include some properties and concepts of fuzzy variables, rough variables, and fuzzy 
rough variables, which are applied in the following sections. 

2.1. Triangular Fuzzy Number TFNs 

Definition 1 [31] (p. 11): A fuzzy set 𝐵෨ , defined on the universal set Y is the family 𝐵෨ = ሼ(𝑦, 𝜇஻෨ (𝑦)): 𝑦 ∈ 𝑌ሽ, 
where 𝜇஻෨ : 𝑌 →  [0, 1]  is the membership function such that 𝜇஻෨ (𝑦) = 0 if y does not belong to 𝐵෨ , 𝜇஻෨ (𝑦) =1 if y strictly belongs to 𝐵෨ .  

Definition 2 [31] (p. 14): The support of 𝐵෨ , represented by 𝑠𝑢𝑝𝑝(𝐵෨), is the set of points 𝑦 ∈ 𝑌 at which 𝜇஻෨  
is positive. 

Definition 3 [31] (p. 14): 𝐵෨  is normal if there is 𝑦 ∈ 𝑌 such that 𝜇஻෨ (𝑦) = 1.  

Definition 4 [33] (p. 23): Let R be the real numbers set, the fuzzy number 𝐵෨  is a mapping 𝜇஻෨ : 𝑅 → [0,1], 
with the following properties. 

(1) 𝜇஻෨  is the upper semi continuous membership function,  

(2) 𝐵෨  is the convex fuzzy set, i.e.,  𝜇஻෨ (𝜆𝑦 + (1 − 𝜆)𝑧) ≥ 𝑚𝑖𝑛[𝜇஻෨ (𝑦), 𝜇஻෨ (𝑧)] for all 𝑦, 𝑧 ∈ 𝑅, 𝜆 ∈ [0,1], 
(3) 𝐵෨  is normal,  

(4) 𝑠𝑢𝑝𝑝𝐵෨ = ሼ𝑦 ∈ 𝑅: 𝜇஻෨ (𝑦) > 0ሽ is a support of 𝐵෨ . 

Definition 5 [33] (p. 24): A fuzzy number 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) is said to be a triangular fuzzy number if its 
membership function is defined as follows: 

𝜇௘̃(𝑦) =
⎩⎪⎨
⎪⎧ 𝑦 − 𝑒𝑒 − 𝑒            𝑖𝑓 𝑒 ≤ 𝑦 < 𝑒1                     𝑖𝑓 𝑦 =   𝑒         𝑒 − 𝑦𝑒 − 𝑒           𝑖𝑓 𝑒 < 𝑦 ≤ 𝑒0                    𝑒𝑙𝑠𝑒,               

  

 
where 𝑒 is the mean of 𝑒̃, and 𝑒 and 𝑒 are the upper and lower limits of 𝑒̃, respectively. If 𝑒 = 𝑒 = 𝑒 then 
TFN 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) is reduced to a real number. 

Definition 6 [33] (p. 24): The 𝛼-cut set of the triangular fuzzy number 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) is defined as 𝑒̃(𝛼) =ሼ𝑦|𝜇௘̃(𝑦) ≥ 𝛼ሽ, where 𝛼 ∈ [0,1]. Thus, for any 𝛼 ∈ [0,1], we can obtain an 𝛼-cut set of the triangular fuzzy 
number 𝑒̃, which is an interval, denoted by 𝑒̃(𝛼) = [𝑒௅(𝛼), 𝑒ோ(𝛼)] = [𝛼𝑒 + (1 − 𝛼)𝑒 , 𝛼𝑒 + (1 − 𝛼)𝑒].  

Corollary 1 [34] (p. 374): Let 𝑑ሚ = ( 𝑑, 𝑑, 𝑑 ) and 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) be any two triangular fuzzy numbers. Then, 
their arithmetical operations can be represented as follows: 
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(1)𝑑ሚ + 𝑒̃ = ൫ 𝑑 + 𝑒, 𝑑 + 𝑒, 𝑑 + 𝑒 ൯  (2)𝑑ሚ − 𝑒̃ = ൫ 𝑑 − 𝑒, 𝑑 − 𝑒, 𝑑 − 𝑒 ൯  (3)𝛽𝑒̃ = ቊ ( 𝛽𝑒, 𝛽𝑒, 𝛽𝑒 ) 𝑖𝑓 𝛽 ≥ 0( 𝛽𝑒, 𝛽𝑒, 𝛽𝑒 )  𝑖𝑓 𝛽 < 0  

where 𝛽 ≠ 0 is any real number. 

Definition 7 [34] (p. 374): Let 𝑑ሚ = ( 𝑑, 𝑑, 𝑑 ) and 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) be two triangular fuzzy numbers. Then, 𝑑ሚ ≤ 𝑒̃ if, and only if, 𝑑 ≤ 𝑒, 𝑑 ≤ 𝑒, and 𝑑 ≤ 𝑒. Similarly, 𝑑ሚ ≥ 𝑒̃ if, and only if, 𝑑 ≥ 𝑒, 𝑑 ≥ 𝑒, and 𝑑 ≥ 𝑒. 

Definition 8 [34] (p. 375): Let 𝑒̃ = ( 𝑒, 𝑒, 𝑒 ) be any triangular fuzzy number. The maximization triangular 
fuzzy numbers problem is represented as follows: 𝑚𝑎𝑥ሼ𝑒̃ሽ𝑠. 𝑡.  𝑒̃ ∈ 𝜂ଵ ∩ 𝑇𝐹𝑁(𝑅)  

which is equivalent to the multi-objective mathematical programming problem as follows: 𝑚𝑎𝑥൛ 𝑒 ൟ𝑚𝑎𝑥ሼ 𝑒 ሽ𝑚𝑎𝑥ሼ 𝑒 ሽ𝑠. 𝑡. ቐ 𝑒̃ ∈ 𝜂ଵ𝑒 ≤ 𝑒 ≤ 𝑒𝑒, 𝑒 𝑎𝑛𝑑 𝑒 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛,
  

where 𝑇𝐹𝑁(𝑅) is the triangular fuzzy numbers set, and 𝜂ଵ is the constraints set. 

Definition 9 [34] (p. 375): Let 𝑒̃ = ( 𝑒, 𝑒 , 𝑒 ) be any triangular fuzzy number. The minimization triangular 
fuzzy numbers problem is represented as follows: 𝑚𝑖𝑛ሼ𝑒̃ሽ𝑠. 𝑡.  𝑒̃ ∈ 𝜂ଶ ∩ 𝑇𝐹𝑁(𝑅)  

which is equivalent to the multi-objective mathematical programming model, as follows: 𝑚𝑖𝑛൛ 𝑒 ൟ𝑚𝑖𝑛ሼ 𝑒ሽ𝑚𝑖𝑛ሼ 𝑒ሽ𝑠. 𝑡. ቐ 𝑒̃ ∈ 𝜂ଶ𝑒 ≤ 𝑒 ≤ 𝑒𝑒, 𝑒 𝑎𝑛𝑑 𝑒 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛,
  

where 𝜂ଶ is the constraints set. 

2.2. Rough Interval 

Definition 10 [35] (p. 342): Let 𝝈 be the universal set, 𝑹 be the equivalence relation on 𝝈, [𝜎]ோ be the 
equivalence class set of 𝑹, and 𝜰 be a nonempty subset of 𝝈. The lower and upper approximations of the set 𝜰 are defined as  𝑹𝜰 = ሼ𝜎 ∈ 𝝈: [𝜎]ோ ⊆ 𝜰ሽ  𝑹𝜰തതതത = ሼ𝜎 ∈ 𝝈: [𝜎]ோ ∩ 𝜰 ≠ 𝜙ሽ ℵ𝜰 = 𝑹𝜰തതതത-𝑹𝜰 
If  ℵ𝜰 ≠ 𝜙, then set 𝜰 is called rough set. 

Definition 11 [36] (p. 487): The qualitative value 𝐵ோ is called a rough interval (RI) when one can assign two 
closed intervals 𝐵௅ and 𝐵௎ on a real number set ℛ to it, where 𝐵௅ ⊆ 𝐵௎. Moreover, 
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(i) If 𝑦 ∈ 𝐵௅, then 𝐵ோ surely takes y (denoted by 𝑦 ∈ 𝐵ோ). 

(ii) If 𝑦 ∈ 𝐵௎, then 𝐵ோ possibly takes y. 

(iii) If 𝑦 ∉ 𝐵௎, then 𝐵ோ surely does not take y (denoted by 𝑦 ∉ 𝐵ோ). 𝐵௎ and 𝐵௅  are called the upper approximation interval and lower approximation interval of 𝐵ோ , 
respectively. Further, 𝐵ோ is denoted by 𝐵ோ = [𝐵௅: 𝐵௎]. 
Definition 12 [37] (p. 677): Let *∈ ሼ+, −, ., /ሽ be a binary operation on rough intervals. For two rough 
intervals number 𝜁ோ and 𝜔ோ, when 𝜁ோ ≥ 0 and 𝜔ோ ≥ 0, we have: (1)𝜁ோ + 𝜔ோ = [(𝜁௎ + 𝜔௎): (𝜁௅ + 𝜔௅)],  (2)𝜁ோ − 𝜔ோ = [(𝜁௎ − 𝜔௎): (𝜁௅ − 𝜔௅)],  (3)𝜁ோ. 𝜔ோ = [(𝜁௎. 𝜔௎): (𝜁௅. 𝜔௅)],  (4)𝜁ோ/ 𝜔ோ = [(𝜁௎/𝜔௎): (𝜁௅/𝜔௅)],  

If 𝜁௎ = ቂ𝜁௎, 𝜁௎ቃ,    𝜁௅ = ቂ𝜁௅, 𝜁௅ቃ , 𝜔௎ = ൣ𝜔௎, 𝜔௎൧, 𝑎𝑛𝑑 𝜔௅ = ൣ𝜔௅, 𝜔௅൧ 
Then  (1)𝜁ோ + 𝜔ோ = ቈቂ𝜁௎ + 𝜔௎, 𝜁௎ + 𝜔௎ቃ : ቂ𝜁௅ + 𝜔௅, 𝜁௅ + 𝜔௅ቃ቉,  

(2)𝜁ோ − 𝜔ோ = ቈቂ𝜁௎ − 𝜔௎, 𝜁௎ − 𝜔௎ቃ : ቂ𝜁௅ − 𝜔௅, 𝜁௅ − 𝜔௅ቃ቉,  

(3)𝜁ோ. 𝜔ோ = ቈቂ𝜁௎. 𝜔௎, 𝜁௎. 𝜔௎ቃ : ቂ𝜁௅. 𝜔௅, 𝜁௅. 𝜔௅ቃ቉,  

(4)𝜁ோ/ 𝜔ோ = ቈቂ𝜁௎/𝜔௎, 𝜁௎/𝜔௎ቃ : ቂ𝜁௅/𝜔௅, 𝜁௅/𝜔௅ቃ቉.  

Definition 13 [38] (p. 1700):  Let 𝜁ோ = [𝜁௅: 𝜁௎] be a rough value. Then, the lower trust measure of the rough 

event 𝜁ோ ≤ 𝑎  is defined by 𝑇𝑟௅ሼ𝜁ோ ≤ 𝑎ሽ = ஼௔௥ௗ൫௭∈఍ಽ∶௭ஸ௔൯஼௔௥ௗ൫఍ಽ൯ , where Card () represents the cardinal number. 

Similarly, the upper trust measure is defined by 𝑇𝑟௎ሼ𝜁ோ ≤ 𝑎ሽ = 𝐶𝑎𝑟𝑑(𝑧 ∈ 𝜁௎ ∶ 𝑧 ≤ 𝑎)𝐶𝑎𝑟𝑑(𝜁௎)   

The trust measure of the rough event is defined by 𝑇𝑟ሼ𝜁ோ ≤ 𝑎ሽ = ଵଶ ൛𝑇𝑟௅ሼ𝜁ோ ≤ 𝑎ሽ + 𝑇𝑟௎ሼ𝜁ோ ≤ 𝑎ሽൟ. 
Definition 14 [38] (p. 1700): Let 𝜁 = ([𝑒, 𝑓], [𝑔, ℎ]) be a rough interval (RI) such that g≤e≤f≤h, then the 
trust measure of a rough event 𝜁 ≤ 𝑎 is defined as 

𝑇𝑟ሼ𝜁 ≤ 𝑎ሽ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 0,                                𝑖𝑓 𝑎 ≤ 𝑔 12 ൬𝑔 − 𝑎𝑔 − ℎ൰ ,                      𝑖𝑓 𝑔 ≤ 𝑎 ≤ 𝑒12 ൬𝑔 − 𝑎𝑔 − ℎ + 𝑒 − 𝑎𝑒 − 𝑓൰ ,      𝑖𝑓 𝑒 ≤ 𝑎 ≤ 𝑓12 ൬𝑔 − 𝑎𝑔 − ℎ + 1൰ ,              𝑖𝑓 𝑓 ≤ 𝑎 ≤ ℎ1,                             𝑖𝑓 𝑎 ≥ ℎ

  

and the 𝛽- pessimistic value of 𝜁 is  
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𝜁௜௡௙(𝛽) = 𝑖𝑛𝑓ሼ𝑎: 𝑇𝑟ሼ𝜁 ≤ 𝑎ሽ ≥ 𝛽ሽ =
⎩⎪⎪⎨
⎪⎪⎧ (1 − 2𝛽)𝑔 + 2𝛽ℎ,                                                           𝑖𝑓 𝛽 ≤ 𝑒 − 𝑔2(ℎ − 𝑔)  2(1 − 𝛼)𝑔 + (2𝛽 − 1)ℎ,                                              𝑖𝑓 𝛽 ≥ 𝑓 + ℎ − 2𝑔2(ℎ − 𝑔)𝑔(𝑓 − 𝑒) + 𝑒(ℎ − 𝑔) + 2𝛽(𝑓 − 𝑒)(ℎ − 𝑔)(𝑓 − 𝑒) + (ℎ − 𝑔) ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Theorem 1 [7] (p. 95): Let 𝜁 = ([𝑒, 𝑓] ∶ [𝑔, ℎ]), where (𝑔 ≤ 𝑒 ≤ 𝑓 ≤ ℎ) is a RI. Then the expected value of 𝜁 is 𝐸(𝜁) = ଵଶ [𝛼(𝑒 + 𝑓) + (1 − 𝛼) (𝑔 + ℎ)].  

2.3. Fuzzy Rough Number 

Definition 15 [39] (p. 2102): Let Z denote a compact real numbers set. A fuzzy rough variable 𝑍෨ோ is defined 
as 𝑍෨ோ = [𝑍෨௅: 𝑍෨௎], where 𝑍෨௅ and 𝑍෨௎ are fuzzy numbers called lower and upper approximation fuzzy numbers 
of 𝑍෨ோ  with 𝑍෨௅ ⊑ 𝑍෨௎ . Supposing 𝐷෩ோ, 𝐸෨ோ ∈ 𝐼ሚோ , we can write 𝐷෩ோ = [𝐷෩௅: 𝐷෩௎] , 𝐸෨ோ = [𝐸෨௅: 𝐸෨௎] , where 𝐷෩௅, 𝐷෩௎, 𝐸෨௅, 𝑎𝑛𝑑 𝐸෨௎ are triangular fuzzy numbers defined as: 𝐷෩௅ = (𝑑௅, 𝑑௅, 𝑑௅), 𝐷෩௎ = (𝑑௎, 𝑑௅, 𝑑௎), 𝐸෨௅ = (𝑒௅, 𝑒௅, 𝑒௅), and 𝐸෨௎ = (𝑒௎, 𝑒௅, 𝑒௎) 
where 𝑑௎ ≤ 𝑑௅ ≤ 𝑑௅ ≤ 𝑑௅ ≤ 𝑑௎

 and 𝑒௎ ≤ 𝑒௅ ≤ 𝑒௅ ≤ 𝑒௅ ≤ 𝑒௎. 
Definition 16 [39] (p. 2103): For the fuzzy rough 𝑍෨ோ, the following holds: 
i. 𝑍෨ோ ≥ 0෨ோ, iff 𝑍෨௅ ≥ 0෨  and 𝑍෨௎ ≥ 0෨  
ii. 𝑍෨ோ ≤ 0෨ோ, iff 𝑍෨௅ ≤ 0෨  and 𝑍෨௎ ≤ 0෨ . 

Definition 17 [39] (p. 2103): A fuzzy rough interval 𝐷෩ோ = ൣ𝐷෩௅: 𝐷෩௎൧ is said to be normalized if 𝐷෩௅ and 𝐷෩௎ 
are normal.  

Definition 18 [39] (p. 2103): Let 𝐷෩ோ = [𝐷෩௅: 𝐷෩௎] and 𝐸෨ோ = [𝐸෨௅: 𝐸෨௎] be two fuzzy rough intervals in R. We 
write 𝐷෩ோ = 𝐸෨ோ if, and only if, 𝐷෩௅ ≅ 𝐸෨௅ and 𝐷෩௎ ≅ 𝐸෨௎.  

Definition 19 [39] (p. 2104): The 𝛼 -cut set of a fuzzy rough interval 𝐷෩ோ  is defined as: ൫𝐷෩ோ൯ఈ =ൣ𝐷෩௅ఈ: 𝐷෩௎ఈ൧ = ቂ(𝑑௅(𝛼), 𝑑௅(𝛼)): (𝑑௎(𝛼), 𝑑௎(𝛼))ቃ, where 𝐷෩௅ఈ 𝑎𝑛𝑑 𝐷෩௎ఈ are intervals with 𝐷෩௅ఈ ⊑ 𝐷෩௎ఈ. 

Definition 20 [39] (p. 2104): For any two fuzzy rough intervals 𝐷෩ோ = ൣ𝐷෩௅: 𝐷෩௎൧ and 𝐸෨ோ = [𝐸෨௅: 𝐸෨௎], when 𝐷෩ோ ≥ 0෨ோ and 𝐸෨ோ ≥ 0෨ோ, the operation for fuzzy rough numbers can be written as follows: (1)𝐷෩ோ + 𝐸෨ோ = ൣ(𝐷෩௅ + 𝐸෨௅): (𝐷෩௎ + 𝐸෨௎)൧,  (2) 𝐷෩ோ −  𝐸෨ோ = ൣ(𝐷෩௅ − 𝐸෨௅): (𝐷෩௎ − 𝐸෨௎)൧,  (3) 𝐷෩ோ ×  𝐸෨ோ = ൣ(𝐷෩௅ × 𝐸෨௅): (𝐷෩௎ × 𝐸෨௎)൧,  (4)𝐷෩ோ ÷ 𝐸෨ோ = ൣ(𝐷෩௅ ÷ 𝐸෨௅): (𝐷෩௎ ÷ 𝐸෨௎)൧.  

3. The Classical Constraint Matrix Games 

In this Section, a review of the classical constraint matrix games [40] is presented. Let Sଵ =ሼ𝛾ଵ, 𝛾ଶ, … . , 𝛾௠ሽ and Sଶ = ሼ𝜌ଵ, 𝜌ଶ, … . , 𝜌௡ሽ be sets of pure strategies for each player. The player I’s payoff 
matrix can be represented as 𝐀 = ൫𝑎௜௝൯௠×௡ . The mixed strategies vectors are expressed as 𝐩 =(pଵ, pଶ, … . , p୫)୘  and 𝐪 = (qଵ, qଶ, … . , q୬)୘ . Players I and II respectively must select their mixed 
strategies 𝐩 and 𝐪 from convex polyhedrons, which are defined as constrained sets determined by 
some inequalities and equations. Let 𝐏 = ሼ𝐩: 𝐃୘𝐩 ≤ 𝐡, 𝐩 ≥ 0ሽ be player I’s strategy constrained set, 
where h = (hଵ, hଶ, … . , hୡ)୘, 𝐃 = (𝑑௜௟)௠×௖, and c is a positive integer. Let 𝐐 = ሼ𝐪: 𝐅୘𝐪 ≥ 𝐫, 𝐪 ≥ 0ሽ be 
player II’s strategy constrained set, where r = (rଵ, rଶ, … . , rୢ)୘ , 𝐅 = ൫f୩୨൯ௗ×௡ , and d is a positive 
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integer. Note that 𝐃୘𝐩 ≤ 𝐡 includes ∑ p௜ = 1௠௜ୀଵ , since ∑ p௜ = 1௠௜ୀଵ  is equivalent to both ∑ p௜ ≤ 1௠௜ୀଵ  
and − ∑ p௜ ≥ −1௠௜ୀଵ . Similarly, 𝐅୘𝐪 ≤ 𝐫 includes ∑ q௜ = 1௠௜ୀଵ .  

Thus, a constrained matrix game A means that player I’s payoff matrix is A, and player II’s 
payoff matrix is −A, and the strategies’ constrained sets for player I and II are P and Q, respectively. 

Suppose that players I and II, respectively, select their optimal strategies from the constrained 
sets P and Q in order to maximize their payoffs, then player I’s expected payoff can be represented 
as follows: 

𝐩𝑻𝐀𝐪 = ෍ ෍ p௜a௜௝q௝.୬
୨ୀଵ

୫
୧ୀଵ  (1) 

Thus, player I will select strategy 𝐩∗ ∈ 𝐏 that satisfies minq ∈ Qሼ𝐩∗୘𝐀𝐪ሽ = maxp ∈ P minq ∈ Qሼ𝐩୘𝐀𝐪ሽ = u (2) 

where u is player I’s gain-floor  
Similarly, player II chooses strategy 𝐪∗ ∈ 𝐐 that satisfies maxp ∈ Pሼ𝐩୘𝐀𝐪∗ሽ = minq ∈ Q maxp ∈ Pሼ𝐩୘𝐀𝐪ሽ = v (3) 

where v is the player II’s loss-ceiling  

Definition 21 [40]: If 𝒑∗ ∈ 𝑷 and 𝒒∗ ∈ 𝑸, the following conditions are satisfied:  

𝐩∗୘𝐀𝐪∗ = maxp ∈ P min q ∈ Qሼ𝐩∗୘𝐀𝐪ሽ = minq ∈ Q max p ∈ P ሼ𝐩𝐓𝐀𝐪∗ሽ (4) 

Then, (𝒑∗, 𝒒∗) is called the saddle point, and 𝑢 = 𝒑∗்𝑨𝒒∗ is called the game value of the constrained matrix 
game A.     

Theorem 2 [40]: If (𝒒∗, 𝒛∗)் and (𝒑∗, 𝒚∗)் are feasible solutions of the two linear programming problems as 
follows: maxሼ𝐫𝐓𝐲ሽ

s. t. ⎩⎨
⎧𝐅𝐓𝐲 − 𝐀𝐓𝐩 ≤ 𝟎𝐃𝐓𝐩 ≤ 𝐡𝐲 ≥ 𝟎𝐩 ≥ 𝟎  

 

(5) 

and minሼ𝐡𝐓𝐳ሽ
s. t. ൞𝐃𝐳 − 𝐀𝐪 ≥ 𝟎𝐅𝐪 ≥ 𝐫𝐳 ≥ 𝟎𝐪 ≥ 𝟎  (6) 

respectively. Then, (𝒑∗, 𝒒∗) is the saddle point, and 𝑢 = 𝒓்𝒚∗ = 𝒉்𝒛∗ is the game value of the constrained 
matrix game A.     

Theorem 3 [40]: If there exists (𝒑∗, 𝒒∗), where 𝒑∗ ∈ 𝑃, 𝑎𝑛𝑑 𝒒∗ ∈ 𝑄, so that 𝐩்𝐀𝐪∗ ≤ 𝐩∗்𝐀𝐪∗ ≤ 𝐩∗்𝐀𝐪  

for all 𝒑∗ ∈ 𝑃 𝑎𝑛𝑑 𝒒∗ ∈ 𝑄, then (𝒑∗, 𝒒∗) is the saddle point, and 𝑢 = 𝒑∗்𝑨𝒒∗ is the game value of the 
constrained matrix game A.     

4. Fuzzy Rough Constraint Matrix Games and Solutions Algorithm   
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4.1. Fuzzy Rough Constraint Matrix Games 

The constrained matrix game problem has been extensively studied in the literature in uncertain 
environments [22,23]. However, in some real situations, a single uncertain environment (such as 
rough, fuzzy, stochastic, etc.) is not enough to tackle the situation. In such situations, one can 
introduce a constrained matrix game with payoffs of fuzzy rough numbers (hybrids of a fuzzy 
variable with a rough variable). Let us consider a constrained matrix game with FRNs payoffs, where 
mixed strategy P෩𝐑 and Q෩𝐑 would be fuzzy rough sets on Sଵ and Sଶ. The fuzzy rough payoff matrix 
of player I is expressed as 𝐀෩𝑹 = ൫a෤ோ௜௝൯௠×௡ , where each a෤ோ௜௝   is a fuzzy rough number, a෤ୖ୧୨ =ൣa෤୧୨୐: a෤୧୨୙൧ = ൣ൫a୧୨୐, a୧୨୐, a୧୨୐൯: ൫a୧୨୙, a୧୨୐, a୧୨୙൯൧(i = 1,2, … . , m; j = 1,2, … . . n) . 𝐏෩ୖ = ቄ𝐩: 𝐃෩ ୖ୘𝐩 ≤ 𝐡ሚ ୖ, 𝐩 ≥ 0ቅ 

and 𝐐෩ୖ = ቄ𝐪: 𝐅෨ୖ୘𝐪 ≥ 𝐫෤ୖ, 𝐪 ≥ 0ቅ represent the fuzzy rough constraint sets of strategies for player I 

and II, where h෨ோ = ൫h෨ோଵ, h෨ோଶ, … . , h෨ோୡ൯୘ and r෤ோ = ൫r෤ோଵ, r෤ோଶ, … . , r෤ோୢ൯୘ are vectors of fuzzy rough 
numbers, and 𝐃෩ ୖ = ൫d෨ோ௜௟൯௠×௖  and 𝐅෨ୖ = ൫fሚ ோ୩୨൯ௗ×௡ are fuzzy rough matrixes, with h෨ோ௟ =ቂቀh௟୐, h௟୐, h௟୐ቁ : ቀh௟୙, h௟୐, h௟୙ቁቃ  , r෤ோ௞ = ൣ൫r௞୐, r௞୐, r௞୐൯: ൫r௞୙, r௞୐, r௞୙൯൧ , d෨ோ௜௟ =ቂቀd௜௟୐, d௜௟୐, d௜௟୐ቁ : ቀd௜௟୙, d௜௟୐, d௜௟୙ቁቃ , and fሚ ோ௞௝ = ቂቀf௞௝୐, f௞௝୐, f௞௝୐ቁ : ቀf௞௝୙, f௞௝୐, f௞௝୙ቁቃ (𝑙 = 1,2, … 𝑐; 𝑗 =1,2, … . . 𝑛; 𝑘 = 1,2, … . 𝑑; 𝑖 = 1,2, … 𝑚). 

Then, a constrained matrix game with payoffs of fuzzy rough numbers and sets of strategies 𝐏෩ୖ 
and 𝐐෩ୖ being fuzzy rough constraint sets is simply called a fuzzy rough constrained matrix game. 

Thus, Equations (5) and (6) can be expressed in the following corresponding fuzzy rough 
mathematical programming models as follows: max ቄ𝐫෤ୖ୘ 𝐲ቅ

s. t. ⎩⎪⎨
⎪⎧𝐅෨ୖ୘  𝐲 − 𝐀෩ୖ୘ 𝐩 ≤ 𝟎𝐃෩ ୖ୘ 𝐩 ≤ 𝐡ሚ ୖ𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 

 

(7) 

and min ቄ𝐡ሚ ୖ୘ 𝐳ቅ
s. t. ⎩⎪⎨

⎪⎧𝐃෩ ୖ 𝐳 − 𝐀෩ୖ୘ 𝐪 ≥ 𝟎𝐅෨ୖ୘ 𝐪 ≥ 𝐫෤ୖ୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎
 (8) 

If (𝐩∗, 𝐲∗)୘  is the optimal solution of Equation (7), 𝐩∗ is called an optimal strategy of player I 
in the fuzzy rough constraint matrix game. Likewise, if (𝐪∗, 𝐳∗)୘ is the optimal solution of Equation 
(8), 𝐪∗  is called an optimal strategy of player II in the fuzzy rough constraint matrix game, and (𝐩∗, 𝐪∗)୘ is called a solution of the fuzzy rough constraint matrix game. Denote 𝐮෥∗ୖ = 𝐫෤ୖ୘ 𝐲∗  

and 𝐯෤∗ୖ = 𝐡ሚ ୖ୘ 𝐳∗  

Then, 𝐯෤∗ୖ and 𝐮෥∗ୖ are called player II’s loss-ceiling and player I’s gain-floor, respectively. 

Theorem 4: Suppose that (𝒑∗, 𝒚∗)் and (𝒒∗, 𝒛∗)்are the optimal solutions of Equation (7) and 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8), 
respectively. Denote 𝒖෥∗ோ = 𝒓෤ோ் 𝒚∗ and 𝒗෥∗ோ = 𝒉෩ோ் 𝒛∗. Then, 𝒗෥∗ோ and 𝒖෥∗ோ are fuzzy rough numbers. 

   We follow the method introduced in [39] to convert fuzzy rough mathematical programming 
problems (Equations (7) and (8)) into general fuzzy mathematical programming problems as follows:  
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max ቄ𝐫෤୐୘ 𝐲ቅ
s. t. ⎩⎪⎨

⎪⎧𝐅෨୐୘𝐲 − 𝐀෩୐୘ 𝐩 ≤ 𝟎𝐃෩ ୐୘ 𝐩 ≤ 𝐡ሚ ୐𝐲 ≥ 𝟎𝐩 ≥ 𝟎
 (9) 

max ቄ𝐫෤୙୘ 𝐲ቅ
s. t. ⎩⎪⎨

⎪⎧𝐅෨୙୘ 𝐲 − 𝐀෩୙୘ 𝐩 ≤ 𝟎𝐃෩ ୙୘ 𝐩 ≤ 𝐡ሚ ୙𝐲 ≥ 𝟎𝐩 ≥ 𝟎
 (10) 

   

min ቄ𝐡ሚ ୐୘ 𝐳ቅ
s. t. ⎩⎪⎨

⎪⎧𝐃෩ ୐ 𝐳 − 𝐀෩୐୘ 𝐪 ≥ 𝟎𝐅෨୐୘ 𝐪 ≥ 𝐫෤୐୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎
 

( 

11) 

   and min ቄ𝐡ሚ ୙୘ 𝐳ቅ
s. t. ⎩⎪⎨

⎪⎧𝐃෩ ୙ 𝐳 − 𝐀෩୙୘ 𝐪 ≥ 𝟎𝐅෨୙୘ 𝐪 ≥ 𝐫෤୙୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎
 

( 

12) 

 Equations (9–12) are fuzzy mathematical programming models. According to Corollary 1 
and Definition 8 or Definition 9, Equations (9–12) can be transformed into the multi-objective linear 
programming models as follows: max ቄ𝐫୐୘ 𝐲ቅmax ቄ𝐫୐୘ 𝐲ቅmax ቄ𝐫୐୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

13) 

where 𝐫୐ = ൫rଵ୐, rଶ୐, … . , rୢ୐൯୘, 𝐫୐ = (rଵ୐, rଶ୐, … . , rୢ୐)୘, and 𝐫୐ = ൫rଵ୐, rଶ୐, … . , rୢ୐൯୘
, 
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max ቄ𝐫୙୘ 𝐲ቅmax ቄ𝐫𝐔୘ 𝐲ቅmax ቄ𝐫𝐔୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅𝐔୘𝐲 − 𝐀𝐔୘ 𝐩 ≤ 𝟎𝐅𝐔୘𝐲 − 𝐀𝐔୘ 𝐩 ≤ 𝟎𝐅𝐔୘𝐲 − 𝐀𝐔୘ 𝐩 ≤ 𝟎𝐃𝐔୘ 𝐩 ≤ 𝐡𝐔𝐃𝐔୘ 𝐩 ≤ 𝐡𝐔𝐃𝐔୘ 𝐩 ≤ 𝐡𝐔𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

14) 

where 𝐫୙ = ൫rଵ୙, rଶ୙, … . , rୢ୙൯୘, 𝐫୙ = (rଵ୙, rଶ୙, … . , rୢ୙)୘, and 𝐫୙ = ൫rଵ୙, rଶ୙, … . , rୢ୙൯୘, min ቄ𝐡୐୘ 𝐳ቅmin ቄ𝐡୐୘ 𝐳ቅmin ൜𝐡୐୘ 𝐳ൠ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 
( 

15) 

where 𝐡୐ = ൫hଵ୐, hଶ୐, … . , hୢ୐൯୘, 𝐡୐ = ൫hଵ୐, hଶ୐, … . , hୢ୐൯୘, and 𝐡୐ = ቀhଵ୐, hଶ୐, … . , hୢ୐ቁ୘ and 

min ቄ𝐡୙୘ 𝐳ቅmin ቄ𝐡𝐔୘ 𝐳ቅmin ൜𝐡𝐔୘ 𝐳ൠ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃𝐔 𝐳 − 𝐀𝐔୘ 𝐪 ≥ 𝟎𝐃𝐔 𝐳 − 𝐀𝐔୘ 𝐪 ≥ 𝟎𝐃𝐔 𝐳 − 𝐀𝐔୘ 𝐪 ≥ 𝟎𝐅𝐔୘ 𝐪 ≥ 𝐫𝐔୘𝐅𝐔୘ 𝐪 ≥ 𝐫𝐔୘𝐅𝐔୘ 𝐪 ≥ 𝐫𝐔୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 
( 

16) 

where 𝐡୙ = ൫hଵ୙, hଶ୙, … . , hୢ୙൯୘, 𝐡୙ = ൫hଵ୙, hଶ୙, … . , hୢ୙൯୘, and 𝐡୙ = ቀhଵ୙, hଶ୙, … . , hୢ୙ቁ୘
.  

4.2. Zimmermann’s Algorithm 
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In this Subsection, we introduce a fuzzy multi-objective programming algorithm to solve 
Equations (13–16) by using Zimmermann’s fuzzy programming algorithm [31].  

Firstly, we determine the negative and positive ideal solutions of Equation (13) by solving three 
mathematical programming problems with three different objective functions. Using the simplex 
technique of linear programming problem, we solve the mathematical programming problem as 
follows: max ቄ𝐫୐୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

17) 

denoting its optimal solution by (𝐩୐ଵା, 𝐲୐ଵା)୘ and its optimal objective value by 𝐑୐ା = 𝐫୐୘ 𝐲୐ଵା. 
Analogously, according to Equation (13), we solve the mathematical programming problem 

using the simplex technique as follows: max ቄ𝐫୐୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

18) 

denoting its optimal solution by (𝐩୐ଶା, 𝐲୐ଶା)୘ and its optimal objective value by 𝐑୐ା = 𝐫୐୘ 𝐲୐ଶା. 
Analogously, according to Equation (13), we solve the mathematical programming problem 

using the simplex technique as follows: max ቄ𝐫୐୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

19) 

denoting its optimal solution by (𝐩୐ଷା, 𝐲୐ଷା)୘ and its optimal objective value by 𝐑୐ା = 𝐫୐୘ 𝐲୐ଷା. 
Therefore, the positive ideal solution of Equation (13) can be represented as 𝐑୐ା =ቀ𝐑୐ା, 𝐑୐ା, 𝐑୐ାቁ. The negative ideal solution of Equation (13) can be expressed as follows: 𝐑୐ି = min ቄ𝐫୐୘ 𝐲୐஘ା|θ = 1,2,3ቅ,  
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𝐑୐ି = min ቄ𝐫୐୘ 𝐲୐஘ା|θ = 1,2,3ቅ,  

and  𝐑୐ି = min ቄ𝐫୐୘ 𝐲୐஘ା|θ = 1,2,3ቅ  

The relative membership functions of the three objective functions in Equation (13) can be 
computed as follows: 

μ୐(𝐫୐୘ 𝐲) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐫୐୘ 𝐲 ≥ 𝐑୐ା𝐫୐୘ 𝐲 − 𝐑୐ି𝐑୐ା − 𝐑୐ି       if 𝐑୐ି ≤ 𝐫୐୘ 𝐲 ≤ 𝐑୐ା          0                               if 𝐫୐୘ 𝐲 < 𝐑୐ି,     

μ୐(𝐫୐୘ 𝐲) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐫୐୘ 𝐲 ≥ 𝐑୐ା𝐫୐୘ 𝐲 − 𝐑୐ି𝐑୐ା − 𝐑୐ି       if 𝐑୐ି ≤ 𝐫୐୘ 𝐲 ≤ 𝐑୐ା          0                               if 𝐫୐୘ 𝐲 < 𝐑୐ି,     

and 

μ୐(𝐫୐୘ 𝐲) =
⎩⎪⎨
⎪⎧ 1                                 if 𝐫୐୘ 𝐲 ≥ 𝐑୐ା𝐫୐୘ 𝐲 − 𝐑୐ି𝐑୐ା − 𝐑୐ି       if 𝐑୐ି ≤ 𝐫୐୘ 𝐲 ≤ 𝐑୐ା          0                               if 𝐫୐୘ 𝐲 < 𝐑୐ି,   

  

Using Zimmermann’s algorithm [31], Equation (13) is transformed into the linear programming 
problem as follows: 

 maxሼμ୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧ 𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐅୐୘𝐲 − 𝐀୐୘ 𝐩 ≤ 𝟎𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐃୐୘ 𝐩 ≤ 𝐡୐𝐫୐୘ 𝐲 − 𝐑୐ି ≥ μ୐(𝐑୐ା − 𝐑୐ି)𝐫୐୘ 𝐲 − 𝐑୐ି ≥ μ୐(𝐑୐ା − 𝐑୐ି)𝐫୐୘ 𝐲 − 𝐑୐ି ≥ μ୐(𝐑୐ା − 𝐑୐ି)𝐲 ≥ 𝟎𝐩 ≥ 𝟎0 ≤ μ୐ ≤ 1,

 
( 

20) 

solving Equation (20) by using the simplex technique, we obtain the lower bound gain-floor u෤୐ 
and the optimal strategy 𝐩∗୐ ∈ P for player I. 

In the same analysis of Equation (13), according to Equation (14), we solve the mathematical 
programming problem using the simplex technique as follows: 
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max ቄ𝐫୙୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

21) 

denoting its optimal solution by (𝐩୙ଵା, 𝐲୙ଵା)୘ and its optimal objective value by 𝐑୙ା = 𝐫୙୘ 𝐲୙ଵା. 
Analogously, according to Equation (14), we solve the mathematical programming problem 

using the simplex technique as follows: max ቄ𝐫୙୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

22) 

denoting its optimal solution by (𝐩୙ଶା, 𝐲୙ଶା)୘ and its optimal objective value by 𝐑୙ା = 𝐫୙୘ 𝐲୙ଶା. 
Analogously, according to Equation (14), we solve the mathematical programming problem 

using the simplex technique as follows: max ቄ𝐫୙୘ 𝐲ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐲 ≥ 𝟎𝐩 ≥ 𝟎

 
( 

23) 

denoting its optimal solution by (𝐩୙ଷା, 𝐲୙ଷା)୘ and its optimal objective value is denoted by 𝐑୙ା =𝐫𝐔୘ 𝐲୙ଷା. 
Thus, the positive ideal solution of Equation (14) can be represented as 𝐑୙ା = ቀ𝐑୙ା, 𝐑୙ା, 𝐑୙ାቁ. 

The negative ideal solution of Equation (14) can be obtained as follows: 𝐑୙ି = min ቄ𝐫୙୘ 𝐲୙஘ା|θ = 1,2,3ቅ,  𝐑୙ି = min ቄ𝐫𝐔୘ 𝐲୙஘ା|θ = 1,2,3ቅ,  

and 𝐑୙ି = min ቄ𝐫𝐔୘ 𝐲୙஘ା|θ = 1,2,3ቅ.  

The relative membership functions of the three objective functions in Equation (14) can be 
expressed as follows: 
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μ୙(𝐫୙୘ 𝐲) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐫୙୘ 𝐲 ≥ 𝐑୙ା𝐫୙୘ 𝐲 − 𝐑୙ି𝐑୙ା − 𝐑୙ି       if 𝐑୙ି ≤ 𝐫୙୘ 𝐲 ≤ 𝐑୙ା          0                               if 𝐫୙୘ 𝐲 < 𝐑୙ି,     

μ୙(𝐫୙୘ 𝐲) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐫୙୘ 𝐲 ≥ 𝐑୙ା𝐫୙୘ 𝐲 − 𝐑୙ି𝐑୙ା − 𝐑୙ି       if 𝐑୙ି ≤ 𝐫୙୘ 𝐲 ≤ 𝐑୙ା          0                               if 𝐫୙୘ 𝐲 < 𝐑୙ି,     

and 

μ୙(𝐫୙୘ 𝐲) =
⎩⎪⎨
⎪⎧ 1                                 if 𝐫୙୘ 𝐲 ≥ 𝐑୙ା𝐫୙୘ 𝐲 − 𝐑୙ି𝐑୙ା − 𝐑୙ି       if 𝐑୙ି ≤ 𝐫୙୘ 𝐲 ≤ 𝐑୙ା          0                               if 𝐫୙୘ 𝐲 < 𝐑୙ି,   

  

Using Zimmermann’s algorithm [31], Equation (14) is transformed into the linear programming 
problem as follows:   maxሼμ୙ሽ

s. t.

⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧ 𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐅୙୘𝐲 − 𝐀୙୘ 𝐩 ≤ 𝟎𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐃୙୘ 𝐩 ≤ 𝐡୙𝐫୙୘ 𝐲 − 𝐑୙ି ≥ μ୙(𝐑୙ା − 𝐑୙ି)𝐫୙୘ 𝐲 − 𝐑୙ି ≥ μ୙(𝐑୙ା − 𝐑୙ି)𝐫୙୘ 𝐲 − 𝐑୙ି ≥ μ୙(𝐑୙ା − 𝐑୙ି)𝐲 ≥ 𝟎𝐩 ≥ 𝟎0 ≤ μ୙ ≤ 1,

 
( 

24) 

 
Solving Equation (24) by using the simplex technique, we obtain the upper bound gain-floor u෤୙ and the optimal strategy 𝐩∗୙ ∈ P for player I. 
In the same analysis of Equation (14), according to Equation (15), we solve the mathematical 

programming problem using the simplex technique as follows: 
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denoting its optimal solution by (𝐪୐ଵା, 𝐳୐ଵା)୘ and its optimal objective value by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଵା. 
Analogously, according to Equation (15), we solve the mathematical programming problem 

using the simplex technique as follows: 

denoting its optimal solution by (𝐪୐ଶା, 𝐳୐ଶା)୘ and its optimal objective value by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଶା. 
Analogously, according to Equation (15), we solve the mathematical programming problem 

using the simplex technique as follows: 

denoting its optimal solution by (𝐪୐ଷା, 𝐳୐ଷା)୘ and its optimal objective value by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଷା. 
Thus, the positive ideal solution of Equation (15) can be represented as 𝐇୐ା = ቀ𝐇୐ା, 𝐇୐ା, 𝐇୐ାቁ. 

The negative ideal solution of Equation (15) can be constructed as follows: 𝐇୐ି = max ቄ𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ቅ, 𝐇୐ି = max ቄ𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ቅ, 
 

and  𝐇୐ି = max ൜𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ൠ.  

min ቄ𝐡୐୘ 𝐳ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 

 

(25) 

min ቄ𝐡୐୘ 𝐳ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 

 

(26) 

min ൜𝐡୐୘ 𝐳ൠ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 

 

(27) 
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The relative membership functions of the three objective functions in Equation (15) can be 
formulated as follows: 

λ୐(𝐡୐୘ 𝐳) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐡୐୘ 𝐳 ≤ 𝐇୐ା𝐇୐ି−𝐡୐୘ 𝐳𝐇୐ି−𝐇୐ା       if 𝐇୐ା ≤ 𝐡୐୘ 𝐳 ≤ 𝐇୐ି          0                               if 𝐇୐ି <  𝐡୐୘ 𝐳,     

𝜆୐(𝐡୐୘ 𝐳) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐡୐୘ 𝐳 ≤ 𝐇୐ା𝐇୐ି−𝐡୐୘ 𝐳𝐇୐ି−𝐇୐ା       if 𝐇୐ା ≤ 𝐡୐୘ 𝐳 ≤ 𝐇୐ି          0                               if 𝐇୐ି < 𝐡୐୘ 𝐳,     

and 

𝜆୐(𝐡୐୘ 𝐳) =
⎩⎪⎨
⎪⎧ 1                                 if 𝐡୐୘ 𝐳 ≤ 𝐇୐ା𝐇୐ି−𝐡୐୘ 𝐳𝐇୐ି−𝐇୐ା       if 𝐇୐ା ≤ 𝐡୐୘ 𝐳 ≤ 𝐇୐ି          

0                               if 𝐇୐ି < 𝐡୐୘ 𝐳,   
  

 
Using Zimmermann’s algorithm [31], Equation (15) is transformed into the linear programming 

problem as follows: 
solving Equation (28) by using the simplex technique, we obtain the lower bound loss-ceiling v෤ ୐ and the optimal strategy 𝐪∗୐ ∈ Q for player II. 

Similarly, according to Equation (16), we solve the mathematical programming problem using 
the simplex technique as follows: 

maxሼ𝜆୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧ 𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐃୐ 𝐳 − 𝐀୐୘ 𝐪 ≥ 𝟎𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐅୐୘ 𝐪 ≥ 𝐫୐୘𝐇୐ି−𝐡୐୘ 𝐳 ≥ 𝜆୐(𝐇୐ି−𝐇୐ା)𝐇୐ି−𝐡୐୘ 𝐳 ≥ 𝜆୐(𝐇୐ି−𝐇୐ା)𝐇୐ି−𝐡୐୘ 𝐳 ≥ 𝜆୐(𝐇୐ି−𝐇୐ା)𝐳 ≥ 𝟎𝐪 ≥ 𝟎0 ≤ 𝜆୐ ≤ 1,

 (28) 
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denoting its optimal solution by (𝐪୙ଵା, 𝐳୙ଵା)୘ and its optimal objective value by 𝐇୙ା = 𝐡𝐔୘ 𝐳୙ଵା. 
Analogously, according to Equation (16), we solve the mathematical programming problem 

using the simplex technique as follows: 

denoting its optimal solution by (𝐪୙ଶା, 𝐳୙ଶା)୘ and its optimal objective value by 𝐇୙ା = 𝐡୙୘ 𝐳୙ଶା. 
Analogously, according to Equation (16), we solve the mathematical programming problem 

using the simplex technique as follows: 

denoting its optimal solution by (𝐪୙ଷା, 𝐳୙ଷା)୘ and its optimal objective value by 𝐇୙ା = 𝐡୙୘ 𝐳୙ଷା. 
Thus, the positive ideal solution of Equation (16) can be computed as 𝐇୙ା = ቀ𝐇୙ା, 𝐇୙ା, 𝐇୙ାቁ. 

The negative ideal solution of Equation (16) can be expressed as follows: 𝐇୙ି = max ቄ𝐡୙୘ 𝐳୙஘ା|θ = 1,2,3ቅ, 𝐇୙ି = max ቄ𝐡୙୘ 𝐳୙஘ା|θ = 1,2,3ቅ, 
and 

 

𝐇୙ି = max ൜𝐡୙୘ 𝐳୙஘ା|θ = 1,2,3ൠ.  

The relative membership functions of the three objective functions in Equation (16) can be 
obtained as follows: 

min ቄ𝐡୙୘ 𝐳ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 

 

(29) 

min ቄ𝐡୙୘ 𝐳ቅ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 (30) 

min ൜𝐡୙୘ 𝐳ൠ

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐳 ≥ 𝟎𝐪 ≥ 𝟎

 

 

(31) 
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λ୙(𝐡୙୘ 𝐳) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐡୙୘ 𝐳 ≤ 𝐇୙ା𝐇୙ି−𝐡୙୘ 𝐳𝐇୙ି−𝐇୙ା       if 𝐇୙ା ≤ 𝐡୙୘ 𝐳 ≤ 𝐇୙ି          0                               if 𝐇୙ି <  𝐡୙୘ 𝐳,     

𝜆୙(𝐡୙୘ 𝐳) = ⎩⎪⎨
⎪⎧ 1                                 if 𝐡୙୘ 𝐳 ≤ 𝐇୙ା𝐇୙ି−𝐡୙୘ 𝐳𝐇୙ି−𝐇୙ା       if 𝐇୙ା ≤ 𝐡୙୘ 𝐳 ≤ 𝐇୙ି          0                               if 𝐇୙ି < 𝐡୙୘ 𝐳,     

and 

𝜆୙(𝐡୙୘ 𝐳) =
⎩⎪⎨
⎪⎧ 1                                 if 𝐡୙୘ 𝐳 ≤ 𝐇୙ା𝐇୙ି−𝐡୙୘ 𝐳𝐇୙ି−𝐇୙ା       if 𝐇୙ା ≤ 𝐡୙୘ 𝐳 ≤ 𝐇୙ି          

0                               if 𝐇୙ି < 𝐡୙୘ 𝐳,   
  

 
Using Zimmermann’s algorithm [31], Equation (16) is transformed into the linear programming 

problem as follows: 
      

solving Equation (32) by using the simplex technique, we obtain the upper bound loss-ceiling v෤ ୙ and 

the optimal strategy 𝐪∗୙ ∈ Q for player II. 

4.3. Solution Methodology  

On the basis of the discussion mentioned above, the algorithm for solving fuzzy rough 
constrained matrix game can be summarized as follows. 
Inputs: 𝐀෩ୖ: fuzzy rough payoff matrix 
m: strategies number for player I 
n: strategies number for player II 𝐏෩ୖ: fuzzy rough constraint sets of strategies for player I 𝐐෩ୖ: fuzzy rough constraint sets of strategies for player II 

maxሼλ୙ሽ

s. t.

⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧ 𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐃୙ 𝐳 − 𝐀୙୘ 𝐪 ≥ 𝟎𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐅୙୘ 𝐪 ≥ 𝐫୙୘𝐇୙ି−𝐡୙୘ 𝐳 ≥ 𝜆୙(𝐇୙ି−𝐇୙ା)𝐇୙ି−𝐡୙୘ 𝐳 ≥ 𝜆୙(𝐇୙ି−𝐇୙ା)𝐇୙ି−𝐡୙୘ 𝐳 ≥ 𝜆୙(𝐇୙ି−𝐇୙ା)𝐳 ≥ 𝟎𝐪 ≥ 𝟎0 ≤ 𝜆୙ ≤ 1,

 (32) 
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Step 1. Break down the fuzzy rough programming problem Equation (7) into two programming 
problems with fuzzy parameters given by the lower problem Equation (9) and the upper problem 
Equation (10) for player I. 

Step2. Break down the fuzzy rough programming problem Equation (8) into two programming 
problems with fuzzy parameters given by the lower problem Equation (11) and the upper problem 
Equation (12) for player II. 

Step 3. Construct the multi-objective programming problem given in Equation (13) and solve  
it using Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐩∗𝐋 and the lower bound 
gain-floor u෤୐ of player I . 

Step 4. Construct the multi-objective programming problem given in Equation (14) and solve it 
using Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐩∗𝐔 and the upper bound 
gain-floor u෤୙ of player I . 

Step 5. Construct the multi-objective programming problem given in Equation (15) and solve it 
using Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐪∗𝐋 and the lower bound 
loss-ceiling v෤ ୐ of player II . 

Step 6. Construct the multi-objective programming problem given in Equation (16) and solve it 
using Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐪∗𝐔 and the upper bound 
loss-ceiling v෤ ୙ of player II. 

Outputs: The fuzzy rough game value and the optimal strategies for both players. 
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Figure 1. The flowchart of the proposed algorithm. 

5. Numerical Example 

Now, we illustrate the proposed algorithm by a numerical experiment. Since the constrained 
matrix game with fuzzy rough payoffs has not been discussed in previous researches, there is no 
numerical experiment with fuzzy rough payoffs in previous researches. So, we took an example from 
reference [32] and changed its payoffs to triangular fuzzy rough numbers. Considering: 𝐀෩ୖ = ൬ [(17 ,20, 24): (15 ,20, 25)] [(−22 , −18, −15): (−24 , −18, −14)][(−34 , −32, −28): (−36 , −32, −26)] [(39 ,40, 42): (37 ,40, 44)] ൰  

The coefficient matrices and vectors of the constraint sets of strategies for the player I and II are 
expressed as follows: 
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𝐃෩ ୖ = ൬[(75 ,80, 85): (72 ,80, 87)] 1 −1[(45 ,50, 53): (43, 50, 56)] 1 −1൰,  

𝐅෨ୖ𝐓 = ൬ [(−47, −40, −34): (−49, −40, −32)] 1 −1[(−74 , −70, −66): (−78 , −70, −63)] 1 −1൰,  

and 𝐡ሚ ୖ = ([(63 ,67, 72): (60 ,67, 75)], 1, −1)୘, 𝐫෤ୖ = ([(−55 , −52, −51): (−58 , −52, −50)], 1, −1)୘ 
respectively. 

5.1. Computational Results  

We obtain the negative and positive ideal solutions of Equation (15) by solving three 
mathematical programming problems with different objective functions, respectively.  

According to Equation (25), the mathematical programming problem is formulated as follows: 

Solving Equation (33) using the simplex technique, an optimal solution (𝐪୐ଵା, 𝐳୐ଵା ) can be 
obtained, where 𝐪୐ଵା = (1, 0)  and 𝐳୐ଵା = (1.7, 0, 110.5) , and its optimal objective value is 
represented by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଵା = −3.4 

According to Equation (26), the mathematical programming problem can be constructed as 
follows: 

Solving Equation (34) using the simplex technique, an optimal solution (𝐪୐ଶା, 𝐳୐ଶା ) can be 
obtained, where 𝐪୐ଶା = (0.7321429, 0.2678571)  and 𝐳୐ଶା = (0.7, 0 , 45.94643) , and its optimal 
objective value is given by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଶା = 0.9535714. 

According to Equation (27), the mathematical programming problem can be described as 
follows: 

min ሼ63 zଵ୐ + zଶ୐ − zଷ୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎪⎧75 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 17 qଵ୐ + 22 qଶ୐ ≥ 045 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 34 qଵ୐ − 39 qଶ୐ ≥ 0−47 qଵ୐ − 74 qଶ୐ ≥ −5580 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 20 qଵ୐ + 18 qଶ୐ ≥ 050 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 32 qଵ୐ − 40 qଶ୐ ≥ 0−40 qଵ୐ − 70 qଶ୐ ≥ −5285 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 24 qଵ୐ + 15 qଶ୐ ≥ 053 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 28 qଵ୐ − 42 qଶ୐ ≥ 0−34 qଵ୐ − 66 qଶ୐ ≥ −51qଵ୐ +  qଶ୐ ≥ 1−qଵ୐ −  qଶ୐ ≥ −1zଵ୐, 𝑧ଶ୐, 𝑧ଷ୐, qଵ୐, qଶ୐ ≥ 0

 

 

(33) 

min ሼ67 zଵ୐ + zଶ୐ − zଷ୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎪⎧75 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 17 qଵ୐ + 22 qଶ୐ ≥ 045 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 34 qଵ୐ − 39 qଶ୐ ≥ 0−47 qଵ୐ − 74 qଶ୐ ≥ −5580 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 20 qଵ୐ + 18 qଶ୐ ≥ 050 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 32 qଵ୐ − 40 qଶ୐ ≥ 0−40 qଵ୐ − 70 qଶ୐ ≥ −5285 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 24 qଵ୐ + 15 qଶ୐ ≥ 053 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 28 qଵ୐ − 42 qଶ୐ ≥ 0−34 qଵ୐ − 66 qଶ୐ ≥ −51qଵ୐ +  qଶ୐ ≥ 1−qଵ୐ −  qଶ୐ ≥ −1zଵ୐, 𝑧ଶ୐, 𝑧ଷ୐, qଵ୐, qଶ୐ ≥ 0

 

 

(34) 
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Solving Equation (35) using the simplex technique, an optimal solution (𝐪୐ଷା, 𝐳୐ଷା ) can be 
obtained, where 𝐪୐ଷା = (0.7113402, 0.2886598)  and 𝐳୐ଷା = (0.6417526, 0, 41.80670) , and its 

optimal objective value is expressed by 𝐇୐ା = 𝐡୐୘ 𝐳୐ଷା = 4.399485. 
Therefore, the positive ideal solution of Equation (15) can be computed as 𝐇𝐋ା = −3.4, 𝐇𝐋ା =0.9535714, and 𝐇𝐋ା = 4.399485. Then, the negative ideal solution of Equation (15) can be written as 

follows: 𝐇୐ି = max ቄ𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ቅ = −1.376289, 𝐇୐ି = max ቄ𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ቅ = 3.4, 
and 

 

𝐇୐ି = max ൜𝐡୐୘ 𝐳୐஘ା|θ = 1,2,3ൠ = 11.9.  

The relative membership functions of the three objective functions in Equation (15) can be 
represented as follows: 

λ୐(63 zଵ୐ + zଶ୐ − zଷ୐) = ⎩⎨
⎧ 1                                 if                    63 zଵ୐ + zଶ୐ − zଷ୐ ≤ −3.4−1.376289 − 63 zଵ୐ − zଶ୐ + zଷ୐−1.376289 + 3.4       if              − 3.4 ≤ 63 zଵ୐ + zଶ୐ − zଷ୐  ≤ −1.376289          0                               if − 1.376289 < 63 zଵ୐ + zଶ୐ − zଷ୐,    

 𝜆୐(67 zଵ୐ + zଶ୐ − zଷ୐)
= ⎩⎨

⎧ 1                                 if       67 zଵ୐ + zଶ୐ − zଷ୐ ≤ 0.95357143.4 − 67 zଵ୐ − zଶ୐ + zଷ୐3.4 − 0.9535714       if   0.9535714 ≤ 67 zଵ୐ + zଶ୐ − zଷ୐  ≤ 3.4          0                               if                   3.4 < 67 zଵ୐ + zଶ୐ − zଷ୐,    

and 𝜆୐(72 zଵ୐ + zଶ୐ − zଷ୐)
= ⎩⎨

⎧ 1                                 if         72 zଵ୐ + zଶ୐ − zଷ୐ ≤ 4.39948511.9 − 72 zଵ୐ − zଶ୐ + zଷ୐11.9 − 4.399485       if    4.399485 ≤ 72 zଵ୐ + zଶ୐ − zଷ୐  ≤ 11.9          0                               if             11.9 < 72 zଵ୐ + zଶ୐ − zଷ୐,    

Using Zimmermann’s algorithm [31], Equation (15) is transformed into the linear programming 
problem as follows: 

min ሼ72 zଵ୐ + zଶ୐ − zଷ୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎪⎧75 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 17 qଵ୐ + 22 qଶ୐ ≥ 045 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 34 qଵ୐ − 39 qଶ୐ ≥ 0−47 qଵ୐ − 74 qଶ୐ ≥ −5580 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 20 qଵ୐ + 18 qଶ୐ ≥ 050 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 32 qଵ୐ − 40 qଶ୐ ≥ 0−40 qଵ୐ − 70 qଶ୐ ≥ −5285 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 24 qଵ୐ + 15 qଶ୐ ≥ 053 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 28 qଵ୐ − 42 qଶ୐ ≥ 0−34 qଵ୐ − 66 qଶ୐ ≥ −51qଵ୐ +  qଶ୐ ≥ 1−qଵ୐ −  qଶ୐ ≥ −1zଵ୐, 𝑧ଶ୐, 𝑧ଷ୐, qଵ୐, qଶ୐ ≥ 0

 

 

(35) 
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The optimal solution (𝐪∗୐, z∗୐ ) of Equation (36) can be computed by using the simplex method, 
where 𝐪∗୐ = (0.8478494 , 0.1521506)୘  and 𝐳∗୐ = (1.131971, 0 , 73.83170)୘.Then, player II’s lower 
bound loss-ceiling v෤ ୐∗  and optimal strategy 𝐪∗୐  are v෤ ୐∗ = 𝐡ሚ 𝐓z∗୐ = (−2.51753 , 2.01036, 7.67021) 
and 𝐪∗୐ = (0.8478494 , 0.1521506)୘, respectively.     

The same analysis is followed to compute the upper bound game value and optimal strategies 
of player II and for player I. We obtain the optimal strategies for players I and II as follows: [p୐∗: p୙∗][(0.7727145, 0.2272855): (0.7401451, 0.2598549)]  [q୐∗: q୙∗][(0.8478494 , 0.1521506): (0.8357301, 0.1642699)]  

and the fuzzy rough game value for players I and II are as follows: [u෤୐∗: u෤୙∗][(0.627833, 2.77282, 3.48782 ): (−0.611173, 2.86533, 4.02416)]  [v෤ ୐∗: v෤ ୙∗][(−2.51753 , 2.01036, 7.67021): (−4.8969, 2.97249, 11.9661)]  

Also, μ୐∗ = 1.435136, μ୙∗ = 0.4767324, λ୐∗ = 0.5639330, λ୙∗ = 0.4638195.  

Obviously, the game value for players I and II is the fuzzy rough interval number. 

5.2. Discussion 

Since the fuzzy rough constrained matrix game has not been discussed in the literature, there 
are no numerical results in other works for the problem under study. Therefore, the outcomes of our 
proposed solution are compared to the results obtained from the GAMS software [41]. GAMS is a 
multi-objective mathematical programming solver that is widely used by many researchers in 
engineering and economics.  

The results obtained by solving the same fuzzy rough constrained matrix game problem using 
the GAMS software [41] are summarized as follows:  
player I’s lower bound gain-floor u෤୐∗  and optimal strategy 𝐩∗୐  are u෤୐∗ = 𝐫෤𝐓𝐲∗୐ =(0.62480734 , 2.76041572, 3.48416093)  and 𝐩∗୐ = (0.77184031, 0.22523647)୘ , player I’s upper 
bound gain-floor u෤୙∗  and optimal strategy 𝐏∗୙  are u෤୙∗ = 𝐫෤𝐓𝐲∗୐ =(−0.61066472 , 2.83290714, 4.01250316)  and 𝐩∗୙ = (0.73878336 , 0.25784159)୘ . Similarly, player 
II’s lower bound loss-ceiling v෤ ୐∗  and optimal strategy 𝐪∗୐  are v෤ ୐∗ = 𝐡ሚ 𝐓z∗୐ =(−2.50785714 , 2.00214286, 7.63214286) and 𝐪∗୐ = (0.84528571 , 0.15071429)୘and the player II’s 

max ሼ𝜆୐ሽ

s. t.

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎪⎪
⎪⎧ 75 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 17 qଵ୐ + 22 qଶ୐ ≥ 045 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 34 qଵ୐ − 39 qଶ୐ ≥ 0−47 qଵ୐ − 74 qଶ୐ ≥ −5580 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 20 qଵ୐ + 18 qଶ୐ ≥ 050 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 32 qଵ୐ − 40 qଶ୐ ≥ 0−40 qଵ୐ − 70 qଶ୐ ≥ −5285 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ − 24 qଵ୐ + 15 qଶ୐ ≥ 053 zଵ୐ + 𝑧ଶ୐ − 𝑧ଷ୐ + 28 qଵ୐ − 42 qଶ୐ ≥ 0−34 qଵ୐ − 66 qଶ୐ ≥ −51−1.376289 − 63 zଵ୐ − zଶ୐ + zଷ୐ ≥ 𝜆୐(−1.376289 + 3.4)3.4 − 67 zଵ୐ − zଶ୐ + zଷ୐ ≥ 𝜆୐(3.4 − 0.9535714)11.9 − 72 zଵ୐ − zଶ୐ + zଷ୐ ≥ 𝜆୐(11.9 − 4.399485)qଵ୐ +  qଶ୐ ≥ 1−qଵ୐ −  qଶ୐ ≥ −10 ≤ 𝜆୐ ≤ 1zଵ୐, 𝑧ଶ୐, 𝑧ଷ୐, qଵ୐, qଶ୐ ≥ 0

 

 

(36) 
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upper bound loss-ceiling v෤ ୙∗  and optimal strategy 𝐪∗୙  are v෤୙∗ = 𝐡ሚ 𝐓z∗୙ =(−4.89629986 , 2.97083202, 11.96183987) and 𝐪∗୙ = (0.83564646 , 0.16435354)୘.  
Comparing the results from the GAMS software to the ones from our proposed solution, it is 

evident that the results are almost the same, which confirms that our proposed approach can solve 
the fuzzy rough constrained matrix game problem effectively. In addition to that, our approach is 
applicable to solve many other fuzzy rough matrix games such as fuzzy rough bi-matrix games, fuzzy 
rough coalition games, and fuzzy rough multi-criteria games. 

Analyzing the aforementioned fuzzy multi-objective programming algorithm, we summarize 
the following advantages of the proposed algorithm: 

• Uncertainty is widely common in many real-life models such as roughness, randomness, and 
fuzziness. Triangular FRNs can appropriately express fuzziness and uncertainty. Our proposed 
algorithm and models can effectively obtain the optimal strategies of fuzzy rough constrained 
matrix games. 

• Our proposed algorithm is effective in solving fuzzy rough constrained matrix games based on 
the Zimmermann’s technique [31] and the lower and upper approximation of FRNs, which can 
decrease the uncertainty to a great extent. 

• Our proposed algorithm ensures that any fuzzy rough constrained matrix game has a triangular 
FRNs-type value, which can be estimated by solving the derived four multi-objective linear 
programming problems. 

6. Conclusions 

To the best of the authors’ knowledge, the existing research has not investigated the problem of 
fuzzy rough constrained matrix games. In this article, we developed an effective fuzzy multi-
objective programming algorithm to solve fuzzy rough constrained matrix game. Based on both the 
upper and lower approximation of the FRNs and the linear programming problems of the classical 
constrained matrix game, we have constructed new auxiliary fuzzy multi-objective linear 
programming problems for each player. Furthermore, the proposed approach can ensure that any 
fuzzy rough constrained matrix game has the fuzzy rough interval-type value, which can be explicitly 
obtained by solving the derived four multi-objective linear programming problems (i.e., Equations 
(13–16)). Finally, a numerical experiment of market share game model is given to illustrate the 
validity of the proposed method. 

Our proposed technique is developed to obtain the optimal strategies of constrained matrix 
games with payoffs of triangular FRNs, which are a special form of FRNs. However, there are many 
forms of FRNs, such as trapezoidal FRNs, intuitionistic FRNs, convex FRNs, and L-R FRNs. Using 
these forms of FRNs to describe uncertainty and imprecision in games theory requires further 
research. Moreover, our proposed method has a wide range of future applications. For example, it 
can be applied to solve fuzzy rough n-person non-cooperative games, fuzzy rough bi-matrix games, 
fuzzy rough coalition games, fuzzy rough multi-criteria games, and many other games models.  
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