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Abstract: In this article, the non-Newtonian fluid model named Casson fluid is considered.
The semi-infinite domain of disk is fitted out with magnetized Casson liquid. The role of both
thermophoresis and Brownian motion is inspected by considering nanosized particles in a Casson
liquid spaced above the rotating disk. The magnetized flow field is framed with Navier’s slip
assumption. The Von Karman scheme is adopted to transform flow narrating equations in terms of
reduced system. For better depiction a self-coded computational algorithm is executed rather than to
move-on with build-in array. Numerical observations via magnetic, Lewis numbers, Casson, slip,
Brownian motion, and thermophoresis parameters subject to radial, tangential velocities, temperature,
and nanoparticles concentration are reported. The validation of numerical method being used is
given through comparison with existing work. Comparative values of local Nusselt number and
local Sherwood number are provided for involved flow controlling parameters.

Keywords: Casson fluid model; rotating rigid disk; nanoparticles; Magnetohydrodynamics (MHD)

1. Introduction

The examination of non-Newtonian fluids has received remarkable attention from researchers
and scientists because of their extensive use in industrial and technological areas. For instance,
paints, synthetic lubricants, sugar solutions, certain oils, clay coating, drilling muds, and blood as a
biological fluid are common examples of non-Newtonian fluids, just to mention a few. The fundamental
mathematical equations given by Navier–Stokes cannot briefly delineate the flow field characteristics
of non-Newtonian fluids because of the complex mathematical expression involved in the formulation
of flow problem. In addition, the relation between strain rate and shear stress is non-linear so
the single constitutive expressions are fruitless to report complete description of flows subject to
non-Newtonian fluids. Numerous non-Newtonian fluid models are exposed to explore rheological
characteristics, namely Bingham Herschel–Bulkley fluid model, Seely, Carreau Carreau–Yasuda, Sisko,
Eyring, Cross, Ellis, Williamson, tangent hyperbolic, Generalized Burgers, Burgers, Oldroyd-8 constants,
Oldroyd-A, Oldroyd-B fluid model, Maxwell, Jeffrey, Casson fluid model, etc. Researchers discussed
flow characteristics of non-Newtonian fluid models via stretching surfaces by incorporating pertinent
physical effects. Among these, Casson fluid model has many advantages as compared to rest of fluid
models. This model can be used to approximate the properties of blood and daily life suspensions.
One can assessed recent developments in this direction in References [1–15].

Symmetry 2019, 11, 699; doi:10.3390/sym11050699 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/5/699?type=check_update&version=1
http://dx.doi.org/10.3390/sym11050699
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 699 2 of 12

The centrifugal filtration, gas turbine rotors, rotating air cleaning machines, food processing,
medical equipment, system of electric-power generation, crystal growth processes, and many others
are the practical applications of rotational fluids flow. Therefore, analysis of flows due to rotation of
solid surfaces is widely recognized by scientists, and researchers like Karman [16] firstly report viscous
fluid flow induced by rotating solid disk. A special transformation named as Karman transformation
given by him for the first time in this attempt. These transformations are utilized for conversion of
fundamental equations termed as Naviers–Stokes equations in terms of ordinary differential system.
Later on, a number of studies were given by researchers to depict the flow characteristics of both
Newtonian and non-Newtonian fluids model over a rotating disk. Preceding these analyses in 2013,
the extension of Karman problem was given by Turkyilmazoglu and Senel [17]. In this attempt they
discussed numerical results for heat transfer properties of rotating partial slip fluid flow. In 2014, the
magnetized slip flow via porous disk was reported by Rashidi et al. [18]. In addition, they discussed
entropy measurements for this case. The flow properties in the presence of nano-size particles were
discussed by Turkyilmazoglu [19]. He used numerical algorithm for solution purpose. In fact, he dealt
comparative execution to report the impact of various nanoparticles suspended in fluid flow regime.
Afterwards, tremendous attempts are given in this direction by way of both analytical and numerical
approach. One can find the concern developments on rotating flows in References [20–31].

The present article contains analysis of Casson liquid towards rotating rigid disk. The Casson
flow field is magnetized and has nanoparticles. Further, slip effects are also taken into account. The
physical model is translated in terms of mathematical model. For solution purposes, the van Karman
way of study is adopted. A computational algorithm is applied and the obtained results of involved
parameters of concerned quantities are discussed via graphs and tables. Further, the current attempt is
compared with existing literature and we found a good agreement which leads to the surety of the
present work.

2. Problem Formulation

The Casson liquid is quipped above the disk for z > 0. The constant frequency (Ω) is constant.
The semi bounded magnetized flow regime contains suspended nanoparticles. The surface is taken
with velocity slip condition. The quantities (u,v,w) are in (r,φ,z) directions. The ultimate differential
system of said problem is:
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, w = 0, T = Tw, C = Cwat z = 0, (7)

u→ 0, v→ 0, T→ T∞, C→ C∞asz→∞, (8)
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for order reduction one can use the variables [16],

u = rΩ dF(ξ)
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3. Computational Outline

To transform the system of Equations (10)–(13) into an initial value problem one can use the
dummy substitutions:

Y2 = F′(ξ), Y3 = F′2 = F′′ (ξ), Y5 = G′(ξ), Y7 = T′(ξ), Y9 = C′(ξ), so we have
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Y1(ξ) = 0, Y2(ξ) = β F′′ (ξ) = βα1, Y3(ξ) = F′′ (ξ), Y4(ξ) = 1 + βG′(ξ) = 1 + βα2,

Y5(ξ) = G′(ξ), Y6(ξ) = 1, Y7(ξ) = α3, Y8(ξ) = 1, Y9(ξ) = α4, when ξ→ 0,
(18)
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with
Y2(ξ) = 0, Y4(ξ) = 0, Y6(ξ) = 0, Y8(ξ) = 0, when ξ→∞, (19)

here,α1, α2, α3 and α4 are initial guess values.

4. Analysis

The Casson fluid (CF) flow is considered on a rigid disk. The flow field is magnetized with
suspended nanoparticles. The said problem is controlled mathematically and a numerical solution
is offered through the shooting method. In detail, Figures 1–6 are used to highlight the variations of
both CF velocities (F′(ξ) and G(ξ)) via physical parameters, namely λ, γ, and β. Figures 1 and 2 are
plotted to examine the impact of λ on CF velocity. It is clear from Figures 1 and 2 that the CF velocity
decreases against λ.
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The impact of γ on CF velocity is examined and provided via Figure 3. The CF velocity decreases
for higher values of γ. This is due to activation of Lorentz force via increasing γ. Similarly, the effect
of γ on tangential velocity G(ξ) is examined and given by means of Figure 4. It is important to note
that the tangential velocity decreases for γ like radial one. The effect of β on radial velocity is offer in
Figure 5. It is noticed that the radial velocity reflects a diminishing nature for positive values of β and
the corresponding momentum boundary layer is also effected and admits decline values. Figure 6 gives
the effect of β on tangential velocity of Casson fluid parameter. It is observed that the tangential velocity
decreases for slip parameter. The Casson fluid temperature is examined and provided via Figures 7–9.
Particularly, Figure 7 is plotted against NT while Figure 8 is used to identify the influence of Pr on T(ξ).
Figure 9 reports influence of NB on T(ξ). From these figures we observed that Casson fluid temperature
increases towards NT, NB but opposite trend is testified for Pr. Figures 10–12 reports the impact of
Le, NB and Nt on C(ξ). In detail, Figure 10 paints the effect of Le on C(ξ). The Casson concertation
decreases for positive variations in Le. The C(ξ) effected significantly towards NB. Figure 11 is evident
that the NB results decline values in C(ξ) for both zero and non-zero values of β. Such decreasing
trend is due to higher values of Brownian force. The change in C(ξ) is observed towards Nt and offer
in Figure 12. The higher values of NB corresponds increasing trends in C(ξ) and related momentum
boundary layer. In this attempt the MHD Casson nanofluid flow brought by rotating solid disk in
the presence of slip conditions is examined. For comparison purpose, when Casson fluid parameter
approaches to infinity our problem absolutely match with Hayat et al. [32]. In this work they studied
nanoparticle aspects on viscous fluid flow due to rotating disk along with slip effects numerically.
We have compared the variation of both Nusselt and Sherwood numbers with their findings as shown
in Tables 1 and 2. One can see from these tables our finding match with existing values in a limiting
sense. The trifling difference is due to choice of numerical method used in both attempts. Their values
are obtained by build in command in Mathematica while we have used self-coded algorithm (shooting
method with R-K scheme) subject to Casson nanofluid flow induced by solid rotating disk. Beside
this one can extend idea to computational fluid dynamics in context of industrial and standpoints, see
References [32–42].
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Table 1. Local Nusselt number comparison with Hayat et al. [32].

Nu
√

Rer
= −

dT(0)
dξ

β γ NT Le Pr NB Hayat et al. [32] Present values

0.2 - - - - - 0.32655 0.326600

0.5 - - - - - 0.30360 0.30363

0.8 - - - - - 0.28715 0.28724

- 0.0 - - - - 0.30494 0.30502

- 0.7 - - - - 0.24421 0.24434

- 1.4 - - - - 0.17566 0.17575

- - 0.5 - - - 0.25913 0.25916

- - 0.7 - - - 0.23865 0.23879

- - 1.0 - - - 0.21010 0.21025

- - 0.5 - - 0.29633 0.29642

- - 1.0 - - 0.28954 0.28963

- - - 1.5 - - 0.28395 0.28398

- - - - 0.5 - 0.24989 0.24999

- - - - 1.0 - 0.29211 0.29224

- - - - 1.5 - 0.32286 0.32294

- - - - - 0.5 0.26341 0.26358

- - - - - 0.7 0.23677 0.23687

- - - - - 1.0 0.20056 0.20068

Table 2. Local Sherwood number comparison with Hayat et al. [32].

Sh
√

Rer
= −

dC(0)
dξ

β γ NT Le Pr NB Hayat et al. [32] Present values

0.2 - - - - - 0.27583 0.27593

0.5 - - - - - 0.26933 0.26945

0.8 - - - - - 0.26493 0.26498

- 0.0 - - - - 0.27000 0.27012

- 0.7 - - - - 0.25387 0.25394

- 1.4 - - - - 0.23722 0.23735

- - 0.5 - - - 0.22206 0.22215

- - 0.7 - - - 0.22539 0.22564

- - 1.0 - - - 0.22285 0.22288

- - 0.5 - - 0.21373 0.21380

- - 1.0 - - 0.30132 0.30145

- - - 1.5 - - 0.38690 0.38696

- - - - 0.5 - 0.22934 0.22944

- - - - 1.0 - 0.26624 0.26636

- - - - 1.5 - 0.31262 0.31276

- - - - - 0.5 0.30338 0.30342

- - - - - 0.7 0..31875 0..31887

- - - - - 1.0 0.32959 0.32978
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5. Closing Remarks

A Casson fluid (CF) flow yield by rotating rigid disk is considered. Both the Brownian and
thermophoresis aspects are entertained by incorporating nanoparticles. The flow characteristics are
reported numerically with the support of computational algorithm. The summary is as follows:

• CF velocities which includes [G(ξ), F′(ξ)] reflects decline trend towards β.
• CF velocities are decreasing function of λ and γ.
• CFT [T(ξ)] admits inciting nature towards both NT and NB but opposite trend is observed for Pr.
• CFC [C(ξ)] shows decline values for both Le, and NB.
• CFC [C(ξ)] reflect inciting trend for NT.
• Comparative values of HTR and MTR are provided for involved flow controlling parameters.
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Nomenclature

V = (u, v, w) Velocity field
(r, φ, z) Polar coordinates
ν Kinematic viscosity
λ Casson fluid parameter
ρ f Fluid density
σ Electrical conductivity
B0 Uniform applied magnetic field
α Thermal diffusivity
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
T∞ Ambient temperature
L Velocity slip parameter
Tw Surface temperature
Cw Surface concentration
C Concentration
F′(ξ), G(ξ) Dimensionless velocities
T(ξ) Dimensionless temperature
C(ξ) Dimensionless concentration
γ Magnetic field parameter
Pr Prandtl number
NB Brownian motion parameter
NT Thermophoresis parameter
Le Lewis number
β Velocity slip parameter
Rer Reynolds number
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