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Abstract: Recently, symmetry in complex network structures has attracted some research interest.
One of the fascinating problems is to give measures of the extent to which the network is symmetric.
In this paper, based on the natural action of the automorphism group Aut(Γ) of Γ on the vertex set
V of a given network Γ = Γ(V, E), we propose three indexes for the characterization of the global
symmetry of complex networks. Using these indexes, one can get a quantitative characterization
of how symmetric a network is and can compare the symmetry property of different networks.
Moreover, we compare these indexes to some existing ones in the literature and apply these indexes
to real-world networks, concluding that real-world networks are far from vertex symmetric ones.
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1. Introduction

In the past few decades, an array of discoveries has added to our understanding of complex
networks [1]. Previous studies were mainly focused on statistical properties of real networks, such as
small-world properties [2] and power-law degree distributions [3]. However, one property of the
network structure, symmetry, has been rarely studied.

Symmetry, an important concept in many areas of physics [4], can be described explicitly using
mathematical tools, namely invariance under a certain group action [5]. Recently, symmetry in
network structures has attracted some research interest. In [6], by the analysis of the statistics of
local symmetric motifs that contribute to the local symmetry of networks, the authors showed that
the symmetry of complex networks is a consequence of a similar linkage pattern. The work in [7]
utilized symmetry information to characterize the structural heterogeneity of real networks. In [8,9],
Holme proposed ways to measure symmetric properties of vertices and their surroundings in networks.
In [10], Garrido managed to show measures of symmetry in complex networks and highlighted their
close relation with measures of information and entropy. By considering the size and structure of
the automorphism groups of a variety of empirical real-world networks, the authors in [11] found
that, in contrast to classical random graph models, many real-world networks are richly symmetric.
They also commented on how symmetry can affect network redundancy and robustness in that
same paper.

Despite the recent progress in the study of symmetry in network structures, there were few results
on the quantitative characterizations of the symmetry of complex networks. We are mainly concerned
with giving measurements of the extent to which the network is symmetric. Based on the natural action
of the automorphism group Aut(Γ) on the vertex set V of a given network Γ(V, E), we propose three
symmetry indexes SIΓ,i for the characterization of the symmetry of networks, 1 ≤ i ≤ 3. Particularly,
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SIΓ,1 characterizes how much a network differs from a vertex symmetric one. Recall that vertex
symmetric networks, or symmetric interconnection networks in [12], have the property that the network
viewed from any vertex of the network looks the same. We take such networks as richly symmetric.
In that same paper, based on finite groups and their generators, the authors proposed a group-theoretic
model, called the Cayley graph model, for designing, analyzing, and improving such networks.
Explicitly, the authors showed that any vertex symmetric network can be represented by a simple
extension of this model. Despite the abundance of symmetry in such networks, many real networks
are found not to be vertex symmetric. As a result, we introduce the concept of orbit-homogeneous
networks, namely all the orbits in the vertex set V under the automorphism group action have the
same size. We take such networks as less symmetric than the vertex symmetric ones, and our second
symmetry index SIΓ,2 characterizes how much a network differs from an orbit-homogeneous one.
Finally, the third index SIΓ,3 is the average of the second ones in some sense, which indicates the
disparity of sizes between all orbits. Using these three indexes, one can compare the symmetry
property of different networks. For more details, see Section 3.2. Moreover, by an analysis of an
explicit example in Section 4, we find that our symmetry indexes are much better than the ones
in [6,13]. The rest of this paper is organized as follows. In the next section, we recall some basic
facts about group actions, which are fundamental to our symmetry indexes. In Section 3, we first
introduce the automorphism group action on the vertex set. Based on this group action, we propose
three symmetry indexes and discuss their properties. We use a figure to illustrate our definitions.
Then, utilizing these indexes, we compare the symmetry property of different networks. In Section 4,
these symmetry indexes are compared to those existing in the literature. We apply these symmetry
indexes to real-world networks in Section 5. Finally, the following section contains our conclusions,
and we summarize the notations appearing in this paper in the last section.

2. Group Actions

In this section, we recall some basic mathematical notions that will be used in this paper. Explicitly,
we need the concept of group actions. We shall proceed as elementarily as possible; however, we omit
the definition of a group, which can be found in any mathematical textbooks on algebra; see for
example [14]. Let G be a group. By a group action, we mean a pair (S, f ), where S is a set and:

f : G× S→ S

is a map, such that:

• f (g1, f (g2, s)) = f (g1g2, s), for g1, g2 ∈ G and s ∈ S,
• f (e, s) = s, where e denotes the identity element of the group G.

When no confusion is possible, we simply write f (g, s) as gs and omit the symbol f . The action is said
to be transitive, if for any two elements s1, s2 ∈ S, there exists an element g ∈ G, such that gs1 = s2.
For an element s ∈ S, the orbit of s under the action of G is defined to be the subset {gs : g ∈ G} of
S. Here, we make the convention that if g1 6= g2, but g1s = g2s, then we count g1s in the orbit of s
only once. We will use the notation Gs to denote the orbit of s. Obviously, different orbits have empty
intersections, and S is the union of all orbits.

For an element s ∈ S, the stabilizer Gs of s in G is defined as:

Gs := {g ∈ G : gs = s}. (1)

It follows easily that Gs is a subgroup of G. Recall that for any subgroup H of G, we define two
elements g1, g2 ∈ G to be equivalent if there exists an element h ∈ H, such that g1h = g2. If g1 and
g2 are equivalent, we denote them as g1 ∼ g2. It follows easily that ∼ is an equivalence relation.
We denote by G/H the set G modulo the equivalence relation ∼ defined by H. For g ∈ G, we denote
by [g] ∈ G/H the equivalence class determined by g.
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Proposition 1. The natural map:
G/Gs → Gs, [g] 7→ gs

is bijective for any s ∈ S.

Proof. It follows directly from the definitions.

When G and S as sets are finite, the above proposition will give us an explicit quantity equation.
We will use this result in the next section. To get a feeling about group actions, we consider the
following example.

Example 1. Let G = 2Z, the even integers with addition as the group multiplication. Clearly, zero is the
identity element of G. We take S to be Z, and the group action is defined by addition:

2Z×Z→ Z, (a, b) 7→ a + b.

For 0 ∈ Z, the orbit G0 = 2Z, and for 1 ∈ Z, the orbit G1 = 2Z+ 1. Clearly, Z = G0∪ G1. For any n ∈ Z,
the stabilizer Gn = {0}. By Proposition 1, the following map:

G → Gn, g 7→ g + n

is bijective, which is obvious.

3. Symmetry Indexes

3.1. Group Actions Arise from Networks

A graph or network is denoted by Γ = Γ(V, E), where V is the set of vertices and E ⊂ V ×V is
the set of edges. We only consider graphs that are finite, undirected, loop-free, and devoid of multiple
edges in this paper. If (v1, v2) ∈ E, v1 and v2 are adjacent. Denote by S(V) the set of all permutations
on V, namely all bijective maps from V to itself. S(V) is a group under the composition operation of
permutations. We call it the permutation group of the vertex set V. It has a natural action on the vertex
set V, namely,

S(V)×V → V
( f , v) 7→ f (v),

(2)

where f (v) denotes the image of v under the permutation f . We are concerned with those permutations
that preserve the adjacency relations of vertices. Explicitly, an automorphism of the graph Γ is a
permutation f ∈ S(V) such that, for any vertices u and v, f (u) is adjacent to f (v) if and only if u is
adjacent to v. We denote the set of automorphisms of Γ by G = Aut(Γ). Clearly, G is a subgroup of
S(V), and by (2), we have a restricted group action:

G×V → V. (3)

It is this natural group action (3) that we will address in this paper.
Let O = {O1,O2, ...,Ok} be the orbit set of the action (3), namely each Oi is a G-orbit in V and V

is the union of the vertices in these orbits. Vertices in the same orbit have similar properties.

Proposition 2. Vertices in the same orbit have the same degrees.

Proof. Let v1, v2 be two vertices in the same orbit with degrees d1, d2, respectively. By definition,
there exists an element f ∈ G such that f (v1) = v2. Let {w1, ..., wd1} be the neighbors of v1.
Then, { f (w1), ..., f (wd1)} are different neighbors of f (v1) = v2. Thus, d1 ≤ d2. Similarly, d2 ≤ d1,
which forces d1 = d2.
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Recall that two subgroups H1, H2 of G are said to be conjugate if there exists an element g ∈ G,
such that gH1g−1 = H2. Obviously, conjugate subgroups have the same order, namely they have the
same number of elements.

Proposition 3. Vertices in the same orbit have conjugate stabilizers. Particularly, stabilizers of vertices in the
same orbit have the same order.

Proof. Let v1, v2 be two vertices in the same orbit with stabilizers G1, G2, respectively. By definition,
there exists an element f ∈ G such that f (v1) = v2. It follows easily that G2 = f G1 f−1.

3.2. Symmetry Indexes for Networks

Based on the automorphism group action (3), we will propose several symmetry indexes for
the measurement of symmetry of networks in this subsection. Our characterizations of symmetry
are focused on the global structure of networks. This is different from Holme’s viewpoint [8,9],
which proposed ways to measure symmetric properties of vertices and their surroundings in networks.
Our work was inspired by [6], where the authors used graph-oriented symmetry measurements;
this allows measurement of the symmetry of the whole network.

For a set S, denote by |S| the number of elements in S. We are mainly concerned with finite sets
in this paper. Recall that O = {O1,O2, ...,Ok} denote the orbit set under the automorphism group
action (3). Consider the ratio of the maximal size of the orbits to the size of the network Γ = Γ(V, E);
we define:

SIΓ,1 =
max1≤i≤k|Oi|

|V| . (4)

By Propositions 2 and 3, vertices in the same orbit have similar properties. Thus, networks with all
vertices in the same orbit will be considered richly symmetric.

Recall that a graph is said to be vertex symmetric if for every pair of vertices, v and w,
there exists an automorphism of the graph that maps v into w. Vertex symmetric graphs have
the property that the network viewed from any vertex of it looks the same. In such a network,
congestion problems are minimized since the load will be distributed uniformly through all the
vertices. Moreover, this symmetry allows for identical processors at every vertex with identical
routing algorithms. Vertex symmetric graphs or symmetric interconnection networks were studied by
Akers and Krishnamurthy in [12].

Proposition 4. The graph Γ is vertex symmetric if and only if SIΓ,1 = 1.

Proof. From the point of view of automorphism group action (3), the graph Γ is vertex symmetric if
and only if Aut(Γ) acts on the vertex set V transitively, which means that there is only one orbit under
the action (3). This is equivalent to SIΓ,1 = 1.

By Proposition 4, we can take SIΓ,1 as the index of how much a network differs from a vertex
symmetric one. Generally, 1/|V| ≤ SIΓ,1 ≤ 1. The bigger SIΓ,1 is, the more symmetric the network is.
On the other hand, recall that a network Γ is said to be asymmetric [6,13], if the automorphism group
Aut(Γ) is a trivial group, namely it has only one element. The index SIΓ,1 also captures information of
the asymmetricness of a network.

Proposition 5. A network Γ is asymmetric if and only if SIΓ,1 = 1/|V|.

Proof. If Γ is asymmetric, then clearly, SIΓ,1 reaches its minimum 1/|V|. Conversely, assume that
SIΓ,1 = 1/|V|. Then, each orbit under the action (3) is trivial, namely it contains only one element.
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We conclude that the automorphism group must be a trivial group; otherwise, there will be at least one
orbit with more than one vertex. Thus, the network Γ is asymmetric.

The popular n-cubes, n-dimensional Boolean hypercube, and cube-connected cycles, which have
been widely used as processor interconnection networks, are all vertex symmetric networks. However,
many real networks are not vertex symmetric; in other words, the symmetric index SIΓ,1 is less than
one. For these graphs, consider the ratio of the minimal size of the orbits to the maximal size of the
orbits; we define:

SIΓ,2 =
min1≤i≤k|Oi|
max1≤i≤k|Oi|

. (5)

Clearly, 0 < SIΓ,2 ≤ 1. This symmetry index SIΓ,2 characterizes the maximal size differences of the
orbits. Intuitively, we consider graphs with orbits having similar sizes to be more symmetric.

Definition 1. A graph is said to be orbit-homogeneous if all its orbits have the same size.

By Definition 1, a graph Γ is orbit-homogenous if and only if SIΓ,2 = 1. In this sense, we can take
SIΓ,2 as the index of how much a network differs from an orbit-homogeneous one. Recall that the
stabilizers of vertices under the action (3) have been defined in (1). Using stabilizers, we have another
characterization of orbit-homogeneous networks.

Proposition 6. A network Γ = Γ(V, E) is orbit-homogeneous if and only if the stabilizers Gv and Gw have the
same order for any pair of vertices v and w in V.

Proof. By Proposition 3, the stabilizers of vertices in the same orbit have the same order. Assume
v ∈ Oi and w ∈ Oj with i 6= j. By Lagrange’s theorem [15] in group theory and Proposition 1, we have
|G| = |Gv||Oi| and |G| = |Gw||Oj|. Thus, |Oi| = |Oj| if and only if |Gv| = |Gw|. Now, the proposition
is obvious.

For the measurement of symmetry of non-orbit-homogeneous networks, we introduce
the following:

SIΓ,3 =
∑1≤i≤k

|Oi |
maxj |Oj |

|O| , (6)

where |O| denotes the number of orbits in V under the action (3). Different from SIΓ,2,
which characterizes the maximal size differences of the orbits, SIΓ,3 detects the average deviation
of size of all orbits to the maximal one. This index is more meticulous than the second one. It follows
easily that a network Γ is orbit-homogeneous if and only if SIΓ,3 = 1. The following result gives the
relations among the three indexes.

Proposition 7. For a network Γ, 1 ≥ SIΓ,3 ≥ SIΓ,2 and SIΓ,3SIΓ,1 = 1/|O|.

Proof. This follows directly from the definitions of the indexes.

To illustrate the above symmetry indexes, we consider the network in Figure 1. This network has
ten vertices and twenty edges. Utilizing some tools, such as in [16], we can find all automorphisms
for this graph (a total of eight automorphisms can be found). Moreover, we can obtain the orbit
decomposition under the action (3) through some computer coding. Vertices in each orbit are marked
with the same color in Figure 1. The resulting orbit set isO = {{1, 2}, {5, 7}, {8, 9}, {3}, {4}, {6}, {10}}.
Thus, SIΓ,1 = 0.2, SIΓ,2 = 0.5, and SIΓ,3 = 0.7143.
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Figure 1. Illustration of the symmetry indexes. Vertices with the same color belong to the same orbit.

Clearly, SIΓ,2 = 1 implies that SIΓ,3 = 1 (the converse is also true), and SIΓ,1 = 1 implies that
SIΓ,2 = 1. Thus, for detecting the symmetry of a network Γ, we will first consider the first index SIΓ,1,
then the second one, and finally, the third one.

Given two networks, with these symmetry indexes introduced above, now we can decide which
one is more symmetric. What we keep in mind is that vertex symmetric networks are richly symmetric
and then are the less symmetric ones, the orbit-homogeneous networks. Explicitly, given two networks
Γ1(V1, E1) and Γ2(V2, E2) of the same size, namely |V1| = |V2|, if SIΓ1,1 > SIΓ2,1, we consider Γ1 to be
more symmetric than Γ2; if SIΓ1,1 = SIΓ2,1, we compare the second symmetry index. The network
with larger SIΓ,2 will be considered as more symmetric. If the second symmetry indexes are equal,
we compare their third symmetry indexes. If the three symmetry indexes are all equal, we will consider
the two networks o have the same symmetry property.

Example 2. Consider two networks Γ1 and Γ2 both with 33 vertices. Assume that Γ1 has four orbits under the
action (3) and its orbit sizes are {10, 9, 9, 5}, while Γ2 has five orbits and its orbit sizes are {10, 6, 6, 6, 5}. Then,
SIΓ1,1 = SIΓ2,1 = 10/33 and SIΓ1,2 = SIΓ2,2 = 1/2, while SIΓ1,3 > SIΓ2,3; thus, we conclude that Γ1 is more
symmetric than Γ2.

4. Comparison to the Existing Symmetry Index

In their exploration of the origin of symmetry in real networks [6], the authors proposed the
following measurement of symmetry in networks:

γΓ =
∑1≤i≤k,|Oi |>1 |Oi|

N
, (7)

where N denotes the number of vertices in V. This measurement is based on the intuitive observation
that a network having more nontrivial orbits will be more symmetric. We point out that even if γ

reaches its maximal value of one, the network is not as symmetric as γ indicates that it should be.
In other words, the measurement γ is too coarse. As an example, consider the two networks in Figure
2. Both are with ten vertices and twenty edges. Figure 2a is vertex symmetric, while Figure 2b has
three orbits under the automorphism group action, and vertices in the same orbit are marked with the
same color. Clearly, γa = γb = 1, but intuitively, Figure 2a is more symmetric than Figure 2b. Actually,
using our symmetry index defined in Section 3.2, SIb,1 = 0.4 < 1 = SIa,1. Thus, we conclude that
Figure 2a is more symmetric than Figure 2b.

In [13], the following measurement:

βΓ =

(
|Aut(Γ)|

N!

)1/N
(8)
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was introduced, which measures the symmetry relative to the maximal number of possible
automorphisms of a network with N vertices. This index is also too coarse. Actually, for the two
networks in Figure 2, βa = 0.2979 < βb = 0.3347; however, as we already pointed out, Figure 2a is
more symmetric than Figure 2b. Moreover, the order of the automorphism group of a network is not
an ideal symmetry index. The more symmetric network Figure 2a has 20 automorphisms, while the
less symmetric network Figure 2b has 64 automorphisms.
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Figure 2. (a) Vertex symmetric network. (b) Network with three orbits and each orbit is nontrivial.

5. Application to Real-World Networks

In this section, we apply our symmetry indexes together with the indexes in Section 4 to
the following real-world network datasets. The first is the social network of friendships between
34 members of a karate club at a U.S. university in the 1970s [17]. We refer to this network as the
Karate Club. The second dataset is an undirected social network of frequent associations between
62 dolphins in a community living off Doubtful Sound, New Zealand [18]. We refer to this dataset as
Dolphins. The third dataset is the adjacency network of common adjectives and nouns in the novel
David Copperfieldby Charles Dickens [19]. We refer to this as Word Adjacency. The fourth dataset is
the network of American football games between Division IA colleges during regular season Fall 2000
[20]. We refer to this network as Football Game. The results, including the sizes of the networks and
orders of the automorphism groups and five symmetry indexes, are summarized in the following table.

From the above table, we see that the indexes SIΓ,1 were quite small for these real-world networks.
Actually, the maximal orbit in Karate Club had only five vertices, and the maximal orbits of Dolphins
and Word Adjacency had two vertices. By the theoretic analysis in Section 3, we conclude that
these networks were far from vertex symmetric ones, and the network Football Game was even
asymmetric. As the size of the networks in Table 1 increased, the order of the automorphism groups
decreased, and the index SIΓ,1 also decreased, so we conclude that the symmetry of these networks also
decreased. Note that when using the three indexes SIΓ,i to detect the symmetry of a network, we first
considered the first index SIΓ,1. Since SIΓ,1 = 0.0087 (actually reaches its minimum, thus asymmetric
by Proposition 5) of the Football Game network, we conclude that Football Game was asymmetric,
although SIΓ,2 = 1.

Table 1. Symmetry indexes for real-world networks.

Networks (V , E) |Aut(Γ)| SIΓ,1 SIΓ,2 SIΓ,3 βΓ γΓ

Karate Club (34, 78) 480 0.1471 0.2 0.2518 0.089 0.3235
Dolphins (62, 159) 4 0.0323 0.5 0.5167 0.0427 0.0645

Word Adjacency (112, 425) 2 0.01786 0.5 0.5 0.0237 0.0179
Football Game (115, 613) 1 0.0087 1 1 0.2297 0
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6. Conclusions

In this paper, based on the orbit decompositions of the vertex set V of a network Γ(V, E) under
the natural action of the automorphism group Aut(Γ), we have proposed three indexes for the
characterization of the symmetry of network structures. The first one characterized how much
a network differs from a vertex symmetric one, which we took as richly symmetric. To address
a less symmetric network structure, we introduced the concept of orbit-homogeneous networks.
Accordingly, the second symmetry index gives a characterization of how far a network is from an
orbit-homogeneous one. Finally, the third symmetry index was the average of the second ones in some
sense, which detected the average deviation of the size of all orbits to the maximal one. Using these
indexes, one can get quantitative characterization of how symmetric a network is and can compare the
symmetry property of different networks. Different from the measurements in [8,9], our symmetry
indexes were global and depended on the whole network structure. Therefore, these indexes can
measure the symmetry of networks in a gradually relaxed quantitative way, thereby making exact
characterization of symmetric structures of a network. As pointed out in Section 4, our symmetry
indexes were much better than those in [6,13]. After applying these symmetry indexes to real-world
networks in Section 5, we found that real-world networks were far from vertex symmetric ones.

7. Notations

In this section, for the convenience of the reader, we illustrate the notations that appeared in
this paper.

Γ = Γ(V, E): Network Γ with vertex set V and edge set E
Aut(Γ): Automorphism group of Γ
SIΓ,i: Symmetry indexes for network Γ, i = 1, 2, 3
|S|: Number of elements in the set S
G: Group
G× S→ S: Group action of G on S
Gs: Stabilizer of s in G under the group action G× S→ S
Gs: Orbit of s under the group action
G/H: The set G modulo the equivalence relation defined by the subgroup H of G
S(V): Permutation group of the vertex set V
Oi: Orbit of the automorphism group action on the vertex set
β, γ: Symmetry measurements
N: Number of vertices in the vertex set V.
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