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Abstract: The principal motivation of this paper is to propose a general scheme that is applicable
to every existing multi-point optimal eighth-order method/family of methods to produce a further
sixteenth-order scheme. By adopting our technique, we can extend all the existing optimal
eighth-order schemes whose first sub-step employs Newton’s method for sixteenth-order convergence.
The developed technique has an optimal convergence order regarding classical Kung-Traub conjecture.
In addition, we fully investigated the computational and theoretical properties along with a main
theorem that demonstrates the convergence order and asymptotic error constant term. By using
Mathematica-11 with its high-precision computability, we checked the efficiency of our methods and
compared them with existing robust methods with same convergence order.
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1. Introduction

The formation of high-order multi-point iterative techniques for the approximate solution of
nonlinear equations has always been a crucial problem in computational mathematics and numerical
analysis. Such types of methods provide the utmost and effective imprecise solution up to the specific
accuracy degree of

Ω(x) = 0, (1)

where Ω : C → C is holomorphic map/function in the neighborhood of required ξ. A certain
recognition has been given to the construction of sixteenth-order iterative methods in the last two
decades. There are several reasons behind this. However, some of them are advanced digital computer
arithmetic, symbolic computation, desired accuracy of the required solution with in a small number of
iterations, smaller residual errors, CPU time, smaller difference between two iterations, etc. (for more
details please see Traub [1] and Petković et al. [2]).

We have a handful of optimal iterative methods of order sixteen [3–9]. Among these methods
most probably are the improvement or extension of some classical methods e.g., Newton’s method
or Newton-like method, Ostrowski’s method at the liability of further values of function/s and/or
1st-order derivative/s or extra numbers of sub-steps of the native schemes.

In addition, we have very few such techniques [5,10] that are applicable to every optimal 8-order
method (whose first sub-step employs Newton’s method) to further obtain 16-order convergence
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optimal scheme, according to our knowledge. Presently, optimal schemes suitable to every iterative
method of particular order to obtain further high-order methods have more importance than obtaining
a high-order version of a native method. Finding such general schemes are a more attractive and
harder chore in the area of numerical analysis.

Therefore, in this manuscript we pursue the development of a scheme that is suitable to every
optimal 8-order scheme whose first sub-step should be the classical Newton’s method, in order to
have further optimal 16-order convergence, rather than applying the technique only to a certain
method. The construction of our technique is based on the rational approximation approach. The main
advantage of the constructed technique is that it is suitable to every optimal 8-order scheme whose
first sub-step employs Newton’s method. Therefore, we can choose any iterative method/family
of methods from [5,11–25], etc. to obtain further 16-order optimal scheme. The effectiveness of our
technique is illustrated by several numerical examples and it is found that our methods execute
superior results than the existing optimal methods with the same convergence order.

2. Construction of the Proposed Optimal Scheme

Here, we present an optimal 16-order general iterative scheme that is the main contribution of
this study. In this regard, we consider a general 8-order scheme, which is defined as follows:

wr = xr −
Ω(xr)

Ω′(xr)
,

zr = φ4(xr, wr),

tr = ψ8(xr, wr, zr),

(2)

where φ4 and ψ8 are optimal scheme of order four and eight, respectively.
We adopt Newton’s method as a fourth sub-step to obtain a 16-order scheme, which is given by

xr+1 = tr −
Ω(tr)

Ω′(tr)
, (3)

that is non-optimal in the regard of conjecture given by Kung-Traub [5] because of six functional
values at each step. We can decrease the number of functional values with the help of following γ(x)
third-order rational functional

γ(x) = γ(xr) +
(x− xr) + b1

b2(x− xr)3 + b3(x− xr)2 + b4(x− xr) + b5
, (4)

where the values of disposable parameters bi(1 ≤ i ≤ 5) can be found with the help of following
tangency constraints

γ(xr) = Ω(xr), γ′(xr) = Ω′(xr), γ(wr) = Ω(wr), γ(zr) = Ω(zr). (5)

Then, the last sub-step iteration is replaced by

xr+1 = tr −
Ω(tr)

γ′(tr)
, (6)

that does not require Ω′(tr). Expressions (2) and (6) yield an optimal sixteenth-order scheme. It is vital
to note that the γ(x) in (4) plays a significant role in the construction of an optimal 16-order scheme.

In this paper, we adopt a different last sub-step iteration, which is defined as follows:

xr+1 = xr −QΩ(xr, wr, zr), (7)
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where QΩ can be considered to be a correction term to be called naturally as “error corrector”. The last
sub-step of this type is handier for the convergence analysis and additionally in the dynamics study
through basins of attraction. The easy way of obtaining such a fourth sub-step iteration with a feasible
error corrector is to apply the Inverse Function Theorem [26] to (5). Since ξ is a simple root (i.e.,
γ′(ξ) 6= 0), then we have a unique map τ(x) satisfying γ(τ(x)) = x in the certain neighborhood of
γ(ξ). Hence, we adopt such an inverse map τ(x) to obtain the needed last sub-step of the form (7)
instead of using γ(x) in (5).

With the help of Inverse Function Theorem, we will yield the final sub-step iteration from the
expression (5):

x = xr −
ϕ(x)− ϕ(xr) + b1

b2
(

ϕ(x)− ϕ(xr)
)3

+ b3
(

ϕ(x)− ϕ(xr)
)2

+ b4
(

ϕ(x)− ϕ(xr)
)
+ b5

, (8)

where bi, i = 1, 2, . . . , 5 are disposable constants. We can find them by adopting the following
tangency conditions

ϕ(xr) = Ω(xr), ϕ′(xr) = Ω′(xr), ϕ(wr) = Ω(wr), ϕ(zr) = Ω(zr), ϕ(tr) = Ω(tr). (9)

One should note that the rational function on the right side of (8) is regarded as an error corrector.
Indeed, the desired last sub-step iteration (8) is obtained using the inverse interpolatory function
approach meeting the tangency constraints (9). Clearly, the last sub-step iteration (6) looks more
suitable than (3) in the error analysis. It remains for us to determine parameters bi(1 ≤ i ≤ 5) in (8)

By using the first two tangency conditions, we obtain

b1 = 0, b5 = Ω′(xr). (10)

By adopting last three tangency constraints and the expression (10), we have the following three
independent relations

b2(Ω(wr)−Ω(xr))
2 + b3(Ω(wr)−Ω(xr)) + b4 =

1
wr − xr

− Ω′(xr)

Ω(wr)−Ω(xr)
,

b2(Ω(zr)−Ω(xr))
2 + b3(Ω(zr)−Ω(xr)) + b4 =

1
zr − xr

− Ω′(xr)

Ω(zr)−Ω(xr)
,

b2(Ω(tr)−Ω(xr))
2 + b3(Ω(tr)−Ω(xr)) + b4 =

1
tr − xr

− Ω′(xr)

Ω(tr)−Ω(xr)
,

(11)

which further yield

b2 = −
θ1 + θ2

{
Ω(tr)(tr − xr) + Ω(wr)(zr − tr) + Ω(zr)(xr − zr)

}
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(xr − zr)

,

b3 =

b2(Ω(wr)−Ω(zr))(Ω(wr)− 2Ω(xr) + Ω(zr)) +
Ω′(xr)

Ω(wr)−Ω(xr)
+

Ω′(xr)(2Ω(xr)−Ω(zr))

Ω(xr)(Ω(xr)−Ω(zr))
+

1
zr − xr

Ω(zr)−Ω(wr)

b4 =
b2Ω(xr)(Ω(wr)−Ω(xr))3 + b3Ω(xr)(Ω(wr)−Ω(xr))2 + Ω′(xr)Ω(wr)

Ω(xr)(Ω(xr)−Ω(wr))
,

(12)

where θ1 = Ω′(xr)(Ω(tr) − Ω(zr))(tr − xr)(xr − zr)
[
(Ω(xr) − Ω(wr))(Ω(tr)(Ω(zr) − 2Ω(xr)) +

Ω(xr)(Ω(wr) + 2Ω(xr) − 2Ω(zr))) + Ω(xr)(Ω(tr) − Ω(xr))(Ω(xr) − Ω(zr))
]
, θ2 = Ω(xr)(Ω(tr) −

Ω(xr))(Ω(xr)−Ω(wr))(Ω(xr)−Ω(zr)).
Let us consider that the rational Function (8) cuts the x – axis at x = xr+1, in order to obtain the

next estimation xr+1. Then, we obtain
ϕ(xr+1) = 0, (13)

which further yield by using the above values of b1, b2 and b3
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xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} , (14)

where θ3 = Ω′(xr)Ω(tr)Ω(zr)(Ω(tr)−Ω(zr))(tr − xr)(xr − zr)
[
(Ω(xr)−Ω(wr))

{
−Ω(tr)(Ω(wr) +

2Ω(xr)− 2Ω(zr)) + Ω(wr)2 + (Ω(wr) + 2Ω(xr))(Ω(xr)−Ω(zr))
}
+ Ω(xr)(Ω(tr)−Ω(xr))(Ω(xr)−

Ω(zr))
]
.

Finally, by using expressions (2) and (14), we have

wr = xr −
Ω(xr)

Ω′(xr)
,

zr = φ4(xr, wr),

tr = ψ8(xr, wr, zr),

xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} ,

(15)

where θ2 and θ3 are defined earlier. We illustrate that convergence order reach at optimal 16-order
without adopting any additional functional evaluations in the next Theorem 1. It is vital to note
that only coefficients A0 and B0 from φ4(xr, wr) and ψ8(xr, wr, zr), respectively, contribute to its
important character in the development of the needed asymptotic error constant, which can be found
in Theorem 1.

Theorem 1. Let Ω : C → C be an analytic function in the region containing the simple zero ξ and initial
guess x = x0 is sufficiently close to ξ for guaranteed convergence. In addition, we consider that φ4(xr, wr) and
ψ8(xr, wr, zr) are any optimal 4- and 8-order schemes, respectively. Then, the proposed scheme (15) has an
optimal 16-order convergence.

Proof. Let us consider er = xr− ξ be the error at rth step. With the help of the Taylor’s series expansion,
we expand the functions Ω(xr) and Ω′(xr) around x = ξ with the assumption Ω′(ξ) 6= 0 which leads
us to:

Ω(xr) = Ω′(ξ)

[
er +

16

∑
k=2

ckek
r + O(e17

r )

]
(16)

and

Ω′(xr) = Ω′(ξ)

[
1 +

16

∑
k=2

kckek−1
r + O(e17

r )

]
, (17)

where cj =
Ω(j)(ξ)
j!Ω′(ξ) for j = 2, 3, . . . , 16, respectively.

By inserting the expressions (16) and (17) in the first sub-step (15), we have

wr − ξ = c2e2
r + 2(c3 − c2

2)e
3
r + (4c3

2 − 7c3c2 + 3c4)e4
r + (20c3c2

2 − 8c4
2 − 10c4c2

− 6c2
3 + 4c5)e5

r +
11

∑
k=1

Gkek+4
r + O(e17

r ),
(18)

where Gk = Gk(c2, c3, . . . , c16) are given in terms of c2, c3, . . . , ci with explicitly written two coefficients
G1 = 16c5

2− 52c3c3
2 + 28c4c2

2 +(33c2
3− 13c5)c2− 17c3c4 + 5c6, G2 = 2

{
16c6

2− 64c3c4
2 + 36c4c3

2 + 9(7c2
3−

2c5)c2
2 + (8c6 − 46c3c4)c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

}
, etc.

The following expansion of Ω(wr) about a point x = ξ with the help of Taylor series

Ω(wr) = Ω′(ξ)
[
c2e2

r + 2(c3 − c2
2)e

3
r + (5c3

2 − 7c3c2 + 3c4)e4
r + 2(6c4

2 − 12c3c2
2

+ 5c4c2 + 3c2
3 − 2c5)e5

r +
11

∑
k=1

Ḡkek+4
r + O(e17

r
]
.

(19)
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As in the beginning, we consider that φ4(xr, wr) and φ8(xr, wr, zr) are optimal schemes of
order four and eight, respectively. Then, it is obvious that they will satisfy the error equations of the
following forms

zr − ξ =
12

∑
m=0

Amem+4
r + O(e17

r ) (20)

and

tr − ξ =
8

∑
m=0

Bmem+8
r + O(e17

r ), (21)

respectively, where A0, B0 6= 0. By using the Taylor series expansion, we further obtain

Ω(zr) = Ω′(ξ)
[
A0e4

r + A1e5
r + A2e6

r + A3e7
r + (A2

0c2 + A4)e8
r + (2A0 A1c2 + A5)e9

r + {(A2
1 + 2A0 A2)c2

+ A6}e10
r + {2(A1 A2 + A0 A3)c2 + A7}e11

r + (A3
0c3 + 2A4 A0c2 + A2

2c2 + 2A1 A3c2 + A8)e12
r

+ (3A1 A2
0c3 + 2A5 A0c2 + 2A2 A3c2 + 2A1 A4c2 + A9)e13

r + H1e14
r + H2e15

r + H3e16
r + O(e17

n )
] (22)

and
Ω(tr) = Ω′(ξ)

[
B0e8

r + B1e9
r + B2e10

r + B3e11
r + B4e12

r + B5e13
r + B6e14

r + B7e15
r

+ (A2B2
0 + B8)e16 + O(e17

r
]
,

(23)

where H1 = 3A2 A2
0c3 + 2A6 A0c2 + 3A2

1 A0c3 + A2
3c2 + 2A2 A4c2 + 2A1 A5c2 + A10, H2 = A3

1c3 +

6A0 A2 A1c3 + 2(A3 A4 + A2 A5 + A1 A6 + A0 A7)c2 + 3A2
0 A3c3 + A11 and H3 = A4

0c4 + 3A4 A2
0c3 +

2A8 A0c2 + 3A2
2 A0c3 + 6A1 A3 A0c3 + A2

4c2 + 2A3 A5c2 + 2A2 A6c2 + 2A1 A7c2 + 3A2
1 A2c3 + A12.

With the help of expressions (16)–(23), we have

θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
}

= er − A0B0(5c4
2 − 10c2

2c3 + 2c2
3 + 4c2c4 − c5)c2e16

r + O(e17
r ).

(24)

Finally, we obtain

en+1 = A0B0(5c4
2 − 10c2

2c3 + 2c2
3 + 4c2c4 − c5)c2e16

r + O(e17
r ). (25)

The above expression (25) claims that our scheme (15) reaches the 16-order convergence.
The expression (15) is also an optimal scheme in the regard of Kung-Traub conjecture since it uses only
five functional values at each step. Hence, this completes the proof.

Remark 1. Generally, we naturally expect that the presented general scheme (15) should contain other terms
from A0, A1, . . . A12 and B0, B1, . . . , B8. However, there is no doubt from the expression (25) that the asymptotic
error constant involves only on A0 and B0. This simplicity of the asymptotic error constant is because of adopting
the inverse interpolatory function with the tangency constraints.

2.1. Special Cases

This is section is devoted to the discussion of some important cases of the proposed scheme.
Therefore, we consider

1. We assume an optimal eighth-order technique suggested scheme by Cordero et al. [13]. By using
this scheme, we obtain the following new optimal 16-order scheme
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wr = xr −
Ω(xr)

Ω′(xr)
,

zr = xr −
Ω(xr)

Ω′(xr)

[
Ω(xr)−Ω(wr)

Ω(xr)− 2Ω(wr)

]
,

ur = zr −
Ω (zr)

(
Ω (xr)−Ω (wr)

Ω (xr)− 2Ω (wr)
+

Ω (zr)

2 (Ω (wr)− 2Ω (zr))

)
2

Ω′ (xr)
,

tr = ur −
3(b2 + b3)Ω (zr) (ur − zr)

Ω′ (xr) (b1 (ur − zr) + b2 (wr − xr) + b3 (zr − xr))
,

xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} ,

(26)

where b1, b2, b3 ∈ R, provided b2 + b3 6= 0. Let us consider b1 = b2 = 1 and b3 = 2 in the above
scheme, recalled by (OM1).

2. Again, we consider another optimal 8-order scheme presented by Behl and Motsa in [11]. In this
way, we obtain another new optimal family of 16-order methods, which is given by



wr = xr −
Ω(xr)

Ω′(xr)
,

zn = wr −
Ω(xr)Ω(wr)

Ω′(xr)(Ω(xr)− 2Ω(wr))
,

tr = zr −
Ω(xr)Ω(wr)Ω(zr)

(
1− Ω(wr)

2Ω(xr)
− bΩ(xr)(Ω(wr) + 4Ω(zr))

2(2Ω(wr)−Ω(xr))(bΩ(xr)−Ω(zr))

)
Ω′(xr)(−2Ω(wr) + Ω(xr))(Ω(wr)−Ω(zr))

,

xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} ,

(27)

where b ∈ R. We chose b = − 1
2 in this expression, called by (OM2).

3. Let us choose one more optimal 8-order scheme proposed by Džuníc and Petkovíc [15]. Therefore,
we have

wr = xr −
Ω(xr)

Ω′(xr)
,

zn = wr −
Ω(wr)

Ω′(xr)

[
Ω(xr)

Ω(xr)− 2Ω(wr)

]
,

tr = zr +
Ω (xr)Ω (zr) (Ω (xr) + 2Ω (zr)) (Ω (wr) + Ω (zr))

Ω′ (xr)Ω (wr) (2Ω (xr)Ω (wr)−Ω (xr) 2 + Ω (wr) 2)
,

xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} .

(28)

Let us call the above scheme by (OM3).
4. Now, we pick another optimal family of eighth-order iterative methods given by Bi et al. in [12].

By adopting this scheme, we further have



wr = xr −
Ω(xr)

Ω′(xr)
,

zr = wr −
Ω(wr)

Ω′(xr)

[
2Ω(xr)−Ω(wr)

2Ω(xr)− 5Ω(wr)

]
,

tr = zr −
Ω (xr) + (α + 2)Ω (zr)

Ω (xr) + αΩ (zr)

 Ω(zr)

Ω[zr, wr] +
Ω[zr, xr]−Ω′(xr)

zr − xr
(zr − wr)

 ,

xr+1 = xr +
θ2(Ω(tr)−Ω(wr))(Ω(tr)−Ω(zr))(Ω(wr)−Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)−Ω(wr))−Ω(zr)(Ω(wr)−Ω(zr))(xr − zr)
} ,

(29)
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where α ∈ R and Ω[·, ·] is finite difference of first order. Let us consider α = 1 in the above
scheme, denoted by (OM4).
In similar fashion, we can develop several new and interesting optimal sixteenth-order schemes
by considering any optimal eighth-order scheme from the literature whose first sub-step employs
the classical Newton’s method.

3. Numerical Experiments

This section is dedicated to examining the convergence behavior of particular methods which
are mentioned in the Special Cases section. Therefore, we shall consider some standard test functions,
which are given as follows:

Ω1(x) = 10x exp
(
−x2)− 1; [11] ξ = 1.679630610428449940674920

Ω2(z) = x5 + x4 + 4x2 − 15; [16] ξ = 1.347428098968304981506715

Ω3(x) = x4 + sin
(

π
x2

)
− 5; [18] ξ =

√
2

Ω4(x) = exp
(
−x2 + x + 2

)
+ x3 − cos(x + 1) + 1; [20] ξ = −1

Ω5(x) = cos
(

x2 − 2x + 16
9

)
− log

(
x2 − 2x + 25

9

)
− 1; [4] ξ = 1 +

√
7

3 i

Ω6(x) = sin−1(x2 − 1)− x
2 + 1; [12] ξ = 0.5948109683983691775226562

Ω7(x) = x3 + log(x + 1); [6] ξ = 0
Ω8(x) = tan−1(x)− x + 1; [2] ξ = 2.132267725272885131625421

Here, we confirm the theoretical results of the earlier sections on the basis of gained results∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and computational convergence order. We displayed the number of iteration

indexes (n), approximated zeros (xr), absolute residual error of the corresponding function

(|Ω(xr)|), error in the consecutive iterations |xr+1 − xr|,
∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣, the asymptotic error constant

η = lim
n→∞

∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and the computational convergence order (ρ) in Table 1. To calculate (ρ),

we adopt the following method

ρ =

∣∣∣∣ (xr+1 − xr)/η

(xr − xr−1)

∣∣∣∣ , n = 1, 2, 3.

We calculate (ρ), asymptotic error term and other remaining parameters up to a high number of
significant digits (minimum 1000 significant digits) to reduce the rounding-off error. However, due
to the restricted paper capacity, we depicted the values of xr and ρ up to 25 and 5 significant figures,

respectively. Additionally, we mentioned
∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and η by 10 significant figures. In addition

to this, the absolute residual error in the function |Ω(xr)| and error in the consecutive iterations
|xr+1 − xr| are depicted up to 2 significant digits with exponent power that can be seen in Tables 1–3.

Furthermore, the estimated zeros by 25 significant figures are also mentioned in Table 1.
Now, we compare our 16-order methods with optimal 16-order families of iterative schemes that

were proposed by Sharma et al. [7], Geum and Kim [3,4] and Ullah et al. [8]. Among these schemes, we
pick the iterative methods namely expression (29), expression (Y1) (for more detail please see Table 1
of Geum and Kim [3]) and expression (K2) (please have look at Table 1 of Geum and Kim [4] for more
details) and expression (9), respectively called by SM, GK1, GK2 and MM. The numbering and titles
of the methods (used for comparisons) are taken from their original research papers.
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Table 1. Convergence behavior of methods OM1, OM2, OM3 and OM4 on Ω1(x)–Ω8(x).

Cases Ω(x) n xr |Ω(xr)| |xr+1− xr|
∣∣∣∣ xr+1− xr

(xr − xr−1)p

∣∣∣∣ η ρ

OM1 Ω1

0 1.7 5.5(−2) 2.0(−2)
1 1.679630610428449940674920 1.0(−26) 3.8(−27) 4.299293162 3.402712013 15.940
2 1.679630610428449940674920 1.6(−422) 5.8(−423) 3.402712013 16.000

OM1 Ω2

0 1.1 7.1 2.5(−1)
1 1.347428099532342545074013 2.1(−8) 5.6(−10) 2.858404704 0.6398089109 14.928
2 1.347428098968304981506715 2.5(−147) 6.7(−149) 0.6398089109 16.000

OM2 Ω3

0 1.3 1.2 1.1(−1)
1 1.414213562373095736525797 7.8(−15) 6.9(−16) 0.8202219879 0.1956950645 15.340
2 1.414213562373095048801689 5.5(−243) 4.9(−244) 0.1956950645 16.000

OM2 Ω4

0 −0.7 1.9 3.0(−1)
1 −1.000000000000007093884377 4.3(−14) 7.1(−15) 1.647949998(−6) 6.821618098(−6) 17.180
2 −1.000000000000000000000000 1.7(−231) 2.8(−232) 6.821618098(−6) 16.000

OM3 Ω5

0 0.9 + 0.8i 2.2(−1) 1.3(−1)
1 0.99999999 · · ·+ 0.88191710 . . . i 5.3(−17) 3.0(−17) 0.004949317501 0.04805746878 17.111
2 1.0000000 · · ·+ 0.88191710 . . . i 3.8(−266) 2.2(−266) 0.04805746878 16.000

OM3 Ω6

0 0.5 9.8(−2) 9.5(−2)
1 0.5948109683983691775226557 5.5(−25) 5.2(−25) 1.216280520(−8) 2.864980977(−8) 16.364
2 0.5948109683983691775226562 8.3(−397) 7.8(−397) 2.864980977(−8) 16.000

OM4 Ω7

0 0.5 5.3(−1) 5.0(−1)
1 0.00001072560410679202312616917 1.1(−5) 1.1(−5) 0.7031544881 0.1352418133 13.6218
2 4.148195228902998294111344(−81) 4.1(−81) 4.1(−81) 0.1352418133 16.000

OM4 Ω8

0 2.2 5.6(−2) 6.8(−2)
1 2.132267725272885131625421 6.7(−31) 8.1(−31) 4.147660854(−12) 6.197625624(−12) 16.1492
2 2.132267725272885131625421 1.9(−493) 2.3(−493) 6.197625624(−12) 16.000

It is straightforward to say that our proposed methods not only converge very fast towards the required zero,
but they have also small asymptotic error constant.

Table 2. Comparison of residual error on the test examples Ω9(x)–Ω12(x).

Ω(x) |Ω(xr)| SM GK1 GK2 MM OM1 OM2 OM3 OM4

Ω9

|Ω(x0)| 2.5(−1) 2.5(−1) ∗ 2.5(−1) # 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1)
|Ω(x1)| 3.7(−7) 2.8 ∗ 7.6(−2) # 1.7(−4) 8.1(−7) 9.3(−8) 1.2(−7) 2.1(−7)
|Ω(x2)| 8.1(−105) 2.0(−4) ∗ 1.9(−19) # 6.1(−62) 9.3(−99) 7.7(−116) 3.9(−112) 6.5(−110)

Ω10

|Ω(x0)| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|Ω(x1)| 7.9(−14) 7.6(−13) 3.0(−12) 4.4(−12) 4.1(−14) 2.7(−14) 3.4(−14) 2.1(−13)
|Ω(x2)| 7.3(−224) 5.3(−209) 2.1(−199) 1.1(−194) 4.0(−227) 3.7(−231) 2.1(−231) 3.1(−216)

Ω11

|Ω(x0)| 3.8(−1) 3.8(−1) 3.8(−1) 3.8(−1) 3.8(−1) 3.8(1−) 3.8(−1) 3.8(−1)
|Ω(x1)| 3.5(−12) 1.3(−12) 1.6(−10) 7.4(−11) 1.5(−12) 1.1(−12) 1.9(−12) 5.9(−13)
|Ω(x2)| 2.1(−186) 1.9(−193) 1.3(−156) 1.4(−163) 1.5(−193) 2.4(−195) 7.6(−192) 2.7(−199)

Ω12

|Ω(x0)| 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1)
|Ω(x1)| 2.3(−11) 8.6(−5) 1.7(−4) 2.8(−7) 5.4(−11) 8.4(−12) 1.3(−11) 1.5(−11)
|Ω(x2)| 1.4(−170) 1.2(−63) 9.3(−57) 1.0(−109) 5.5(−164) 2.6(−178) 2.2(−174) 3.1(−174)

Ω13

|Ω(x0)| 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1)
|Ω(x1)| 1.7(−26) 8.2(−26) 6.0(−23) 1.3(−28) 4.5(−26) 7.9(−28) 2.9(−26) 1.2(−29)
|Ω(x2)| 2.8(−459) 1.3(−446) 1.3(−398) 6.7(−501) 5.4(−452) 4.8(−484) 3.8(−455) 8.2(−517)

∗ and # stand for converge to undesired roots −1.89549 . . . and 0, respectively.



Symmetry 2019, 11, 691 9 of 11

Table 3. Comparison of error in the consecutive iterations on the test examples Ω9(x)–Ω13(x).

Ω(x) |xr+1− xr| SM GK1 GK2 MM OM1 OM2 OM3 OM4

Ω9

|x1 − x0| 4.0(−1) 5.5 ∗ 1.7 # 4.0(−1) 4.0(−1) 4.0(−1) 4.0(−1) 4.0(−1)
|x2 − x1| 4.5(−7) 2.1 ∗ 1.5(−1) # 2.1(−4) 9.9(−7) 1.1(−7) 1.5(−7) 2.6(−7)
|x3 − x2| 9.9(−105) 2.4(−4) ∗ 3.8(−19) # 7.4(−62) 1.1(−98) 9.4(−116) 4.8(−112) 8.0(−110)

Ω10

|x1 − x0| 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1)
|x2 − x1| 1.2(−14) 1.2(−13) 4.6(−13) 6.7(−13) 6.3(−15) 4.1(−15) 5.2(−15) 3.2(−14)
|x3 − x2| 1.1(−224) 8.2(−210) 3.3(−200) 1.7(−195) 6.1(−228) 5.7(−232) 3.3(−232) 4.8(−217)

Ω11

|x1 − x0| 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1)
|x2 − x1| 3.0(−12) 1.2(−12) 1.4(−10) 6.4(−11) 1.3(−12) 9.6(−13) 1.6(−12) 5.1(−13)
|x3 − x2| 1.8(−186) 1.7(−193) 1.2(−156) 1.3(−163) 1.3(−193) 2.1(−195) 6.6(−192) 2.4(−199)

Ω12

|x1 − x0| 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1)
|x2 − x1| 2.3(−11) 8.5(−5) 1.7(−4) 2.8(−7) 5.4(−11) 8.4(−12) 1.3(−11) 1.5(−11)
|x3 − x2| 1.4(−170) 1.2(−63) 9.3(−57) 1.0(−109) 5.5(−164) 2.6(−178) 2.2(−174) 3.1(−174)

Ω13

|x1 − x0| 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1)
|x2 − x1| 4.5(−28) 2.2(−27) 1.6(−24) 3.5(−30) 1.2(−27) 2.1(−29) 7.9(−28) 3.1(−31)
|x3 − x2| 7.6(−461) 3.5(−448) 3.5(−400) 1.8(−502) 1.5(−453) 1.3(−485) 1.0(−456) 2.2(−518)

∗ and # stand for converge to undesired roots −1.89549 . . . and 0, respectively.

We want to demonstrate that our methods perform better than the existing ones. Therefore,
instead of manipulating the results by considering self-made examples or/and cherry-picking among
the starting points, we assume 4 numerical examples; the first one is taken from Sharma et al. [7]; the
second one is considered from Geum and Kim [3]; the third one is picked from Geum and Kim [4]
and the fourth one is considered from Ullah et al. [8] with the same starting points that are mentioned
in their research articles. Additionally, we want to check what the outcomes will be if we assume
different numerical examples and staring guesses that are not suggested in their articles. Therefore, we
assume another numerical example from Behl et al. [27]. For the detailed information of the considered
examples or test functions, please see Table 4.

We have suggested two comparison tables for every test function. The first one is associated
with (|Ω(xr)|) mentioned in Table 2. On the other hand, the second one is related to |xr+1 − xr|
and the corresponding results are depicted in Table 3. In addition, we assume the estimated zero of
considered functions in the case where exact zero is not available, i.e., corrected by 1000 significant
figures to calculate |xr − ξ|. All the computations have been executed by adopting the programming
package Mathematica 11 with multiple precision arithmetic. Finally, b1(±b2) stands for b1 × 10(±b2) in
Tables 1–3.

Table 4. Test problems.

Ω(x) x0 Root(r)

Ω9(x) = sin x− x
2 ; [7] 1.5 1.895494267033980947144036

Ω10(x) = sin
(

2
x

)
+ 3x2 + e−x2 − 3; [3] 0.65 0.7929384316301793741678596

Ω11(x) = e−x cos(3x) + x− 2; [4] 1.6 1.878179124117988404113719

Ω12(x) = e−x − cos x; [8] 1
6 0

Ω13(z) = (x− 2)2 − log x− 33x; [27] 37.5 36.98947358294466986534473

4. Conclusions

We constructed a general optimal scheme of 16-order that is suitable for every optimal 8-order
iterative method/family of iterative methods provided the first sub-step employs classical Newton’s
method, unlike the earlier studies, where researchers suggested a high-order version or extension of
certain existing methods such as Ostrowski’s method or King’s method [28], etc. This means that we can
choose any iterative method/family of methods from [5,11–21], etc. to obtain further optimal 16-order
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scheme. The construction of the presented technique is based on the inverse interpolatory approach.
Our scheme also satisfies the conjecture of optimality of iterative methods given by Kung-Traub.
In addition, we compare our methods with the existing methods with same convergence order on
several of the nonlinear scalar problems. The obtained results in Tables 2 and 3 also illustrate the
superiority of our methods to the existing methods, despite choosing the same test problem and same
initial guess. Tables 1–3 confirm that smaller |Ω(xr)|, |xr+1 − xr| and simple asymptotic error terms
are related to our iterative methods. The superiority of our methods over the existing robust methods
may be due to the inherent structure of our technique with simple asymptotic error constants and
inverse interpolatory approach.
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