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Abstract: Let R be a Krasner hyperring. In this paper, we prove a factorization theorem in the category
of Krasner R-hypermodules with inclusion single-valued R-homomorphisms as its morphisms.
Then, we prove various isomorphism theorems for a smaller category, i.e., the category of Krasner
R-hypermodules with strong single-valued R-homomorphisms as its morphisms. In addition,
we show that the latter category is balanced. Finally, we prove that for every strong single-valued
R-homomorphism f : A→ B and a ∈ A, we have Ker( f ) + a = a + Ker( f ) = {x ∈ A | f (x) = f (a)}.

Keywords: Krasner hyperring; Krasner hypermodule; isomorphism theorem; factorization theorem;
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1. Introduction

Algebraic hyperstructure theory addresses the study of algebraic objects endowed with
multivalued operations, which are intended to generalize classical algebraic structures as groups, rings,
or modules [1–5]. In the framework of that theory, hypergroups play a major role. A hypergroup is
basically a set endowed by an associative multivalued binary operation, which fulfills an additional
condition called reproducibility. Their inspection may reveal complex relationships among algebra,
combinatorics, graphs, and numeric sequences [6,7]. Indeed, hyperstructures are inherently more
complicated and bizarre than their classical counterparts. Hence, one of the main research directions in
hyperstructure theory consists of identifying a subclass of a rather generic hyperstructure on the basis
of a reasonable set of axioms, symmetries, or properties and proceeding with their analysis, in order to
construct a theory that is at the same time general, profound, and beautiful.

Here, we consider one of the most important classes of hypergroups, that is the class of canonical
hypergroups introduced by Mittas in [8]. This class constitutes the additive hyperstructure of many
other hyperstructures, for example some types of hyperrings, hyperfields, and hypermodules. Notably,
hyperrings and hyperfields, whose additive hyperstructure is a canonical hypergroup, were firstly
introduced by Krasner [9]. Later, various authors defined and studied many other kinds of hyperrings
and hypermodules; see, e.g., [5,10–12]. In the context of canonical hypergroups, Madanshekaf [11] and
Massouros [12] studied hypermodules whose additive structure is a canonical hypergroup equipped
with a single-valued external multiplication. We call Krasner hypermodule a hypermodule equipped with
a canonical hypergroup as its additive hyperstructure and an external single-valued multiplication,
in order to distinguish it from other types of hypermodules. In fact, the name “Krasner” has been given
to this kind of hypermodule in [13], inspired by the structure of the Krasner hyperring [9], even though
such a hyperstructure has been previously considered by other authors in [11,12]. In fact, Krasner
hypermodules are meant to generalize the concept of the Krasner hyperring.
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In this work, our aim is to take a detailed look at isomorphism theorems for Krasner hypermodules.
The relevance of isomorphism theorems is undoubtable, in all algebraic studies. In fact, in every category
of algebraic structures, homomorphisms describe the relationship between objects. However, due to
the multivalued nature of hyperstructure algebra, the analysis of isomorphisms on hypermodules
is very involved. In fact, one encounters various kinds of homomorphisms when studying Krasner
hypermodules. In [14–16], both single-valued and multi-valued homomorphisms were introduced;
and in both classes, at least three different kinds of homomorphisms can be considered, that is the
so-called inclusion homomorphisms, strong homomorphisms, and weak homomorphisms, depending
on their behavior with respect to the multivalued addition. We mention that Davvaz proved in [17]
that for a strong hyperring homomorphism, a first isomorphism theoremholds provided that its kernel
is normal. Furthermore, Verlajan and Asokkumar proved in [18] similar results without the latter
condition for a strong hyperring homomorphism in a different and more general class of hyperrings.

Here, by fixing a Krasner hyperring R, we consider the class of Krasner hypermodules over R
together with inclusion, strong and weak single-valued R-homomorphisms among them (with the
usual composition of mappings), and the so-called primary categories of Krasner R-hypermodules [19],
which are denoted by Rhmod, Rs hmod, and Rw hmod, respectively. When dealing with multivalued
R-homomorphisms, the composition of morphisms is defined in a more general way, and we
obtain different categories whose morphisms are multivalued R-homomorphisms. The corresponding
categories, which are called secondary categories, fall outside the scope of the present work. We note in
passing that in [12], Massouros worked with multivalued R-homomorphisms, while Madanshekaf
in [11] considered only strong single-valued R-homomorphisms.

This paper is organized as follows. In Section 2, we state some basic concepts, definitions,
and basic results needed to develop our work. Krasner hypermodules are presented in Section 3
together with their main properties. Section 4 contains the main results of this paper. In particular,
by considering a generic Krasner hyperring R, Theorem 1 provides a factorization theorem in the
category Rhmod. Subsequently, we prove various isomorphism theorems in Rs hmod. The last section
contains concluding remarks and a suggestion for possible further research.

2. Preliminaries

Throughout this paper, we use a few basic concepts and definitions that belong to standard
terminology in hyperstructure theory. For more details about hyperstructures, the interested reader
can refer to the classical references [1–5].

Let H be a non-empty set; let P(H) denote the set of all subsets of H; and let P∗(H) = P(H) \ {∅}.
Then, H together with a map:

+ : H × H 7→ P∗(H)

(a, b) 7→ a + b,

is called a hypergroupoid and is denoted by (H,+). The operation + is called the hyperoperation on H.
Let A, B ⊆ H. The hyperoperation A + B is defined as:

A + B =
⋃

(a,b)∈A×B

a + b.

If there is no confusion, for simplicity {a}, A + {b}, and {a} + B are denoted by a, A + b,
and a + B, respectively.

Definition 1. A non-empty set S together with the hyperoperation +, denoted by (S,+), is called
a semihypergroup if for all x, y, z ∈ S, (x + y) + z = x + (y + z), that is, the hyperoperation is associative.
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Definition 2. A semihypergroup (H,+) satisfying the reproducibility condition x + H = H + x = H for
every x ∈ H is called a hypergroup.

Let e be an element of a semihypergroup (H,+) such that e + x = x for all x ∈ H. Then, e is
called a left scalar identity. A right scalar identity is defined analogously. Moreover, an element x of
a semihypergroup (H,+) is called a scalar identity if it is both a left and right scalar identity. A scalar
identity in a semihypergroup H is unique, if it exists. In that case, we denote the scalar identity of H
by 0H . Let 0H be the scalar identity of hypergroup (H,+) and x ∈ H. An element x′ ∈ H is called
an inverse of x in (H,+) if 0H ∈ (x + x′) ∩ (x′ + x).

Definition 3. A non-empty set M together with the hyperoperation + is called a canonical hypergroup if the
following axioms hold:

1. (M,+) is a semihypergroup (associativity);
2. (M,+) is commutative (commutativity);
3. there is a scalar identity 0M (existence of scalar identity);
4. for every x ∈ M, there is a unique element denoted by−x called the inverse of x such that 0M ∈ x + (−x),

which for simplicity, we write as 0H ∈ x− x (existence of inverse);
5. for all x, y, z ∈ M, it holds that x ∈ y + z =⇒ y ∈ x− z (reversibility).

In the sequel, −x denotes the inverse of x in the hypergroup (M,+), and we write x− y instead
of x + (−y). If there is no confusion, sometimes we omit the indication of the hyperoperation in
a hypergroup, and for simplicity, we write M instead of (M,+).

Definition 4. Let M be a hypergroup. A non-empty subset N of M is called a canonical subhypergroup of M,
denoted by N ≤ M, if it is a canonical hypergroup itself.

It is easy to verify that N ≤ M if and only if N 6= ∅ and x − y ⊆ N for all x, y ∈ N. Clearly,
it follows that 0M ∈ N. Hereafter, we recall some results discussed in [20] concerning the structure of
the quotient of a canonical hypergroup with respect to a canonical subhypergroup.

Let (M,+) be a canonical hypergroup; let N be an arbitrary canonical subhypergroup of M;
and set M

N := {x + N | x ∈ M}. Consider the hyperoperation +′ on M
N defined as:

(x + N) +′ (y + N) = {t + N | t ∈ x + y}. (1)

For notational convenience, we may write x̄ instead of x + N.

Lemma 1. ([20], Lemma 3.1) x̄ ∩ x̄′ 6= ∅ implies x̄ = x̄′.

Proposition 1. ([20], Proposition 3.2) For every canonical hypergroup M, if N ≤ M, then (M
N ,+′) is

a canonical hypergroup.

Proposition 2. ([20], Proposition 3.3) The hyperoperation +′ on M
N is the same as +′′ defined by:

(x + N) +′′ (y + N) := {t + N | t ∈ x̄ + ȳ}.

Finally, we recall some concepts from category theory; see, e.g., [21].

Definition 5. In every category C,

1. a morphism f : B 7→ C is said to be a mono if for every g, h : A 7→ B the following implication holds:

f ◦ g = f ◦ h =⇒ g = h.



Symmetry 2019, 11, 687 4 of 11

2. a morphism f : A 7→ B is said to be an epi if for every g, h : B 7→ C the following implication holds:

g ◦ f = h ◦ f =⇒ g = h.

3. A morphism f : A 7→ B of a category C is called an iso in C if there exists some g : B 7→ A (in C) such that
f ◦ g = idB and g ◦ f = idA. In that case, g is denoted by f−1.

3. Krasner Hypermodules

We start this section with a notable generalization of classical rings introduced by Krasner in [9]
and called “Krasner hyperrings” by many authors; see [4,13–16,19].

Definition 6. A non-empty set R together with the hyperoperation + and the operation · is called a Krasner
hyperring if the following axioms hold:

1. (R,+) is a canonical hypergroup;
2. (R, ·) is a semigroup including 0R as a bilaterally-absorbing element, that is 0R · x = x · 0R = 0R for all

x ∈ R;
3. (y + z) · x = (y · x) + (z · x) and x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Definition 7. Let (R,+, ·) be a hyperring, and let S be a non-empty subset of R that is closed under the maps
+ and · in R. If S is itself a hyperring under these maps, then S is called a subhyperring of R. A subhyperring I
of R is called a left (resp., right) hyperideal if r ∈ R and i ∈ I implies r · i ∈ I (resp., i · r ∈ I). A left and right
hyperideal I is simply called a hyperideal of R.

We use the notation I E R when the set I is a hyperideal of R. Moreover, we write I C R if I E R
and I ( R, that is I is a proper hyperideal.

From now on, we overlook the name “Krasner” and simply use “hyperring”. Furthermore, by R,
we mean a (Krasner) hyperring. Usually, R is said to have a unit element if there exists y ∈ R such that
x · y = y · x = x for every x ∈ R. If the element y exists, then it is unique, and we use the notation 1R
to denote it. In that case, we say that R is unitary.

Definition 8. Let X and Y be two non-empty sets. A map ∗ : X × Y 7→ Y sending (x, y) to x ∗ y ∈ Y is
called a left external multiplication on Y. That operation is naturally extended to any U ⊆ X and V ⊆ Y by
u ∗V := {u ∗ v | v ∈ V} and U ∗ v := {u ∗ v | u ∈ U}.

Analogously to the previous definition, a right external multiplication on Y is defined by ∗ :
Y× X 7→ Y sending (y, x) to y ∗ x ∈ Y.

Definition 9. Let (R,+, ·) be a hyperring. A canonical hypergroup (A,+) together with the left external
multiplication ∗ : R× A 7→ A is called a left Krasner hypermodule over R if for all r1, r2 ∈ R and for all
a1, a2 ∈ A, the following axioms hold:

1. r1 ∗ (a1 + a2) = r1 ∗ a1 + r1 ∗ a2;
2. (r1 + r2) ∗ a1 = r1 ∗ a1 + r2 ∗ a1;
3. (r1 · r2) ∗ a1 = r1 ∗ (r2 ∗ a1);
4. 0R ∗ a1 = 0A.

Remark 1.

(i) If A is a left Krasner hypermodule over a Krasner hyperring R, then we say that A is a left Krasner
R-hypermodule. Similarly, the right Krasner R-hypermodule is defined by the map ∗ : A× R 7→ A
satisfying the similar properties mentioned in Definition 9 with affection on the right.

(ii) If R is a hyperring with the unit element 1R and A is a Krasner R-hypermodule satisfying 1R ∗ a = a
(resp. a ∗ 1R = a) for all a ∈ A, then A is said to be a unitary left (resp. right) Krasner R-hypermodule.
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(iii) From now on, for convenience, every hyperring R is assumed to have the unit element 1R and by
“an R-hypermodule A”, we mean a unitary left Krasner R-hypermodule, unless otherwise stated.

Definition 10. A non-empty subset B of an R-hypermodule A is said to be an R-subhypermodule of A, denoted
by B ≤ A, if B is an R-hypermodule itself, that is for all x, y ∈ B and all r ∈ R, x− y ⊆ B and r ∗ x ∈ B.

Remark 2. We list here below some examples and properties related to R-subhypermodules, whose simple proofs
are omitted for brevity:

1. Every hyperring R is an R-hypermodule, and every I E R is an R-subhypermodule of R.
2. Let R be a hyperring. Every canonical hypergroup A can be considered as an R-hypermodule with the

trivial external multiplication r ∗ a = 0A for every r ∈ R and a ∈ A.
3. Let A be an R-hypermodule and ∅ 6= B ⊆ A. For every I E R,

IB = {a ∈
m

∑
i=1

ri ∗ ni | ri ∈ I, ni ∈ B, m ∈ Z+}

is an R-subhypermodule of A.
4. Let {Ai}i∈I be a family of R-subhypermodules of A. Then, ∩i∈I Ai ≤ A.

Definition 11. Let A and B be R-hypermodules. A function f : A 7→ B that satisfies the conditions:

1. f (x + y) ⊆ f (x) + f (y);
2. f (r ∗ x) = r ∗ f (x)

for all r ∈ R and all x, y ∈ A, is said to be an (inclusion) R-homomorphism from A into B. Moreover, if the
equality holds in Point 1, then f is called a strong (or good) R-homomorphism; and if f (x + y)∩ f (x) + f (y) 6=
∅ holds instead of 1, then f is called a weak R-homomorphism.

The category whose objects are all R-hypermodules and whose morphisms are all
R-homomorphisms is denoted by Rhmod. The class of all R-homomorphisms from A into B is denoted
by homR(A, B). Moreover, we denote by Rs hmod (resp., Rw hmod) the category of all R-hypermodules
whose morphisms are strong (resp., weak) R-homomorphisms. The class of all strong (resp., weak)
R-homomorphisms from A into B is denoted by homs

R(A, B) (resp., homw
R(A, B)). It is easy to see that

Rs hmod is a subcategory of Rhmod, and Rhmod is a subcategory of Rw hmod. Using standard notations,
we express this as:

Rs hmod � Rhmod � Rw hmod.

The categories are usually called the primary categories of R-hypermodules; see, e.g., [19].
Now, let f ∈ homR(A, B), and define:

Ker( f ) := {x ∈ A | f (x) = 0B},
Im( f ) := {y ∈ B | ∃x ∈ A : f (x) = y}.

For further reference, we gather hereafter some information about Ker( f ) and Im( f ) from [13]:

• Ker( f ) is an R-subhypermodule of A.
• Clearly, Im( f ) may not be an R-subhypermodule of B.
• For every morphism f in Rs hmod, Im( f ) is always an R-subhypermodule of the codomain of f .

Recall that if A is an R-hypermodule and B is a non-empty subset of A such that B is itself
a hypermodule over R, then B is said to be an R-subhypermodule of B denoted by B ≤ A. Clearly,
for every R-hypermodule A, {0A} and A are two R-subhypermodules of A. In the following,
we construct another R-hypermodule from A and B ≤ A called the quotient R-hypermodule.
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Proposition 3. Let B ≤ A be an R-hypermodule. Then, the canonical hypergroup ( A
B ,+′) with the

hyperoperation +′ defined as in (1) is an R-hypermodule with the external multiplication � defined by:

r� (x + B) = r ∗ x + B,

for x, y ∈ A and r ∈ R.

Proof. As mentioned in Proposition 1, ( A
B ,+′) is a canonical hypergroup. First, we show that � is

well defined. Hence, let r1 = r2 ∈ R and x + B = y + B. We prove that r1 ∗ x + B = r2 ∗ y + B. In fact,
since x ∈ y + b for b ∈ B, we have r1 ∗ x ∈ r1 ∗ y + r1 ∗ b ⊆ r1 ∗ y + B, so r1 ∗ x + B ⊆ r1 ∗ y + B.
Consequently r1 ∗ x + B ⊆ r2 ∗ y + B. Analogously, r1 ∗ x + B ⊇ r2 ∗ y + B. Thus, r1 � (x + B) =

r2 � (y + B) and � is well defined.
Next, we check the axioms mentioned in Definition 9. Let r1, r2 ∈ R and x + B, y + B ∈ A

B .
Clearly, r1 ∗ 0A = 0A, 0R ∗ x = 0A in A. Moreover, the zero element of A

B is 0A + B (or B). Therefore,
r1 � (0A + B) = r1 ∗ 0A + B = 0A + B and 0R � (x + B) = 0R ∗ x + B = 0A + B imply that Axiom 4 of
Definition 9 holds true. In order to prove the first axiom of Definition 9, note that:

r1 � [(x + B) +′ (y + B)] = r1 � {z + B | z ∈ x + B + y + B}
= {r1 ∗ z + B | z ∈ x + B + y + B}
= {a + B | a = r1 ∗ z, z ∈ x + B + y + B}
= {a + B | a ∈ r1 ∗ (x + B + y + B)}
= {a + B | a ∈ r1 ∗ x + B + r1 ∗ y + B}
= (r1 ∗ x + B) +′ (r1 ∗ y + B) = [r1 � (x + B)] +′ [r1 � (y + B)].

Furthermore, the second axiom of Definition 9 holds. Indeed,

(r1 + r2)� (x + B) = {r | r ∈ r1 + r2} � (x + B)

= {r ∗ x + B | r ∈ r1 + r2}
= {a + B | a = r ∗ x, r ∈ r1 + r2}
= {a + B | a ∈ (r1 + r2) ∗ x} = {a + B | a ∈ r1 ∗ x + r2 ∗ x}.

By Proposition 2,

{a + B | a ∈ r1 ∗ x + r2 ∗ x} = {a + B | a ∈ r1 ∗ x + B + r2 ∗ x + B}
= (r1 ∗ x + B) +′ (r2 ∗ x + B) = [r1 � (x + B)] +′ [r2 � (x + B)].

Thus:
(r1 + r2)� (x + B) = r1 � (x + B)] +′ [r2 � (x + B)].

Finally, as concerns the third axiom of Definition 9, we have:

(r1 · r2)� (x + B) = ((r1 · r2) ∗ x) + B

= (r1 ∗ (r2 ∗ x)) + B

= r1 � [(r2 ∗ x) + B] = r1 � [r2 � (x + B)],

and the proof is complete.

4. Main Results

Factorization theorems are keystone results in abstract algebra. Indeed, these kinds of theorems
relate the structure of two objects between which a homomorphism is given, in terms of the kernel and
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the image of the homomorphism. Moreover, they are preliminary steps toward more stringent results,
where homomorphisms are replaced by isomorphisms. We start this section with a factorization
theorem for an R-homomorphism between R-hypermodules.

Theorem 1. (Factorization theorem) Let f ∈ homR(A, B). If C is any R-subhypermodule included in Ker( f ),
then there exists a unique R-homomorphism ψ ∈ homR(

A
C , B) such that f = ψ ◦ π, where π : A 7→ A

C is the
canonical quotient map. Hence, the diagram:

A
f //

π
��

B

A
C

∃!ψ

@@

commutes.

Proof. By assumption, C ⊆ Ker( f ) ⊆ A. Define ψ : A
C 7→ B by ψ(x + C) = f (x). Clearly, ψ makes the

diagram commute. Now, we need to check that it is a unique well-defined R-homomorphism.
Suppose that x + C = y + C. Then, (x − y) ∩ C 6= ∅. Clearly, C ⊆ Ker( f ) implies (x − y) ∩

Ker( f ) 6= ∅. Then, there is z ∈ x − y with f (z) = 0B. Thus, x ∈ z + y. Therefore, f (x) ∈ f (z +
y) ⊆ f (z) + f (y) = f (y). Consequently, f (x) = f (y). Therefore, ψ(x + C) = ψ(y + C), and ψ is
well defined.

Moreover,

ψ((x + C) +′ (y + C)) = ψ({z + C | z ∈ x + C + y + C})
= ψ({z + C | z ∈ x + y})
= {ψ(z + C) | z ∈ x + y}
= { f (z) | z ∈ x + y}
⊆ f (x) + f (y) = ψ(x + C) + ψ(y + C).

Now, assume r ∈ R. Then:

ψ(r� (x + C)) = f (r ∗ x) = r ∗ f (x) = r ∗ ψ(x + C).

Suppose there is another map ρ satisfying the conditions. Then, ρ(π(x)) = f (x) for all x ∈ A,
but ψ(π(x)) = f (x) for all x ∈ A. This means ρ(x + C) = f (x) and ψ(x + C) = f (x). Thus, ρ = ψ,
so that it is unique.

A mono in the category Rhmod (resp., Rs hmod) is called an R-monomorphism (resp., strong
R-monomorphism). An epi in the category Rhmod (resp., Rs hmod) is called an R-epimorphism (resp., strong
R-epimorphism). An iso in the category Rhmod (resp., Rs hmod) is called an R-isomorphism (resp., strong
R-isomorphism). When we say f : A 7→ B is an R-isomorphism in Rs hmod, automatically, f is
a strong R-homomorphism.

Remark 3. We point out some properties of R-isomorphisms in Rhmod and Rs hmod.

(i) An iso in the category Rhmod (or an R-isomorphism) is surjective and injective, i.e., bijective. For this,
let f : A 7→ B be an iso in Rhmod. Therefore, f ◦ f−1 = idB and f−1 ◦ f = idA. Clearly, f ◦ f−1 = idB
implies f is surjective. Furthermore, if f (x) = f (y), then f−1 ◦ f = idA implies that x = y.

(ii) f : A 7→ B is an R-isomorphism in Rs hmod if and only if it is bijective. To show this fact, suppose f : A 7→
B is bijective. Then, f−1 : B 7→ A is also an R-homomorphism. Indeed, for every y1, y2 ∈ B, there are
(unique) x1, x2 ∈ A such that f (xi) = yi for i ∈ {1, 2}, and since f (x1 + x2) = f (x1) + f (x2) =
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y1 + y2, we obtain f−1(y1 + y2) = x1 + x2 = f−1(y1) + f−1(y2). Finally, f (r ∗ x) = r ∗ f (x)
implies f−1(r ∗ y) = r ∗ f−1(y), and so, f−1 is an R-homomorphism. Therefore, f ◦ f−1 = idB and
f−1 ◦ f = idA, and f is an R-isomorphism. The converse fact follows from (i) since every R-isomorphism
in Rs hmod is an R-isomorphism in Rhmod.

Notation 1. If there exists an iso between R-hypermodules A and B in Rhmod (resp., Rs hmod), we use the
notation A ∼= B (resp., A ∼=s B). Moreover, if B ≤ A and x ∈ A, for convenience, we use x̄ instead of x + B.

Theorem 2. (First strong isomorphism theorem) If ϕ ∈ homs
R(A, B), then:

A
Ker(ϕ)

∼=s ϕ(A) = Im(ϕ)

as R-hypermodules.

Proof. First note that Im(ϕ) is an R-subhypermodule of B. Let K = Ker(ϕ). Define a map f : A
K 7→

Im(ϕ) by f (x̄) = ϕ(x) for all x ∈ A. Suppose that x̄ = ȳ, where x, y ∈ A. Then, x ∈ ȳ and x ∈ y + k
for some k ∈ K. Hence,

ϕ(x) ∈ ϕ(y + k) = ϕ(y) + ϕ(k) = ϕ(y) + 0B = ϕ(y).

Therefore, ϕ(x) = ϕ(y). Thus, f (x̄) = f (ȳ), and the map f is well defined.
If x, y ∈ A, then:

f (x̄ +′ ȳ) = f ({z̄ | z ∈ x̄ + ȳ})
= f ({z̄ | z ∈ x + y})
= { f (z̄) | z ∈ x + y} = {ϕ(z) | z ∈ x + y}.

On the other hand,

f (x̄) + f (ȳ) = ϕ(x) + ϕ(y)

= ϕ(x + y) = {ϕ(z) | z ∈ x + y}.

Hence, f (x̄ +′ ȳ) = f (x̄) + f (ȳ). Moreover,

f (r� x̄) = f (r ∗ x) = ϕ(r ∗ x) = r ∗ ϕ(x) = r ∗ f (x̄).

Thus, f is an R-homomorphism. Let x̄, ȳ ∈ A
K be such that f (x̄) = f (ȳ). Then, ϕ(x) = ϕ(y).

This means that 0B ∈ ϕ(x) − ϕ(y) = ϕ(x − y), that is ϕ(z) = 0B for some z ∈ x − y. Therefore,
z ∈ K. Now,

z ∈ x− y =⇒ x ∈ z + y =⇒ x ∈ y + K.

Since x ∈ x + K and {a + K | a ∈ A} is a partition for A, we have x + K = y + K, i.e., x̄ = ȳ,
and hence, f is injective. Clearly, f is surjective. Thus, according to the part (ii) of Remark 3, we have
A
K
∼=s Im(ϕ), and the proof is complete.

Theorem 3. (Second strong isomorphism theorem) If A and B are R-subhypermodules of an R-hypermodule H,
then B

A∩B
∼=s

A+B
A in Rs hmod.

Proof. It is clear that we can consider the R-subhypermodule A + B of the R-hypermodule H as
an R-hypermodule A + B for which A is an R-subhypermodule. Similarly, the R-subhypermodule B
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of the R-hypermodule H as an R-hypermodule B for which A ∩ B is an R-subhypermodule. Hence,
define g : B 7→ A+B

A by g(b) = b + A for every b ∈ B. For all a, b ∈ B,

g(a + b) = g({x | x ∈ a + b})
= {g(x) | x ∈ a + b}
= {x + A | x ∈ a + b}
= a + A +′ b + A = g(a) + g(b).

Furthermore,
g(r ∗ x) = r ∗ x + A = r ∗ (x + A) = r ∗ g(x).

Thus, g is a strong R-homomorphism. Now, x + A ∈ A+B
A implies that x ∈ y + A for some

y ∈ A + B. That is, y ∈ a + b for some a ∈ A, b ∈ B. Since y ∈ b + A, we get y + A = b + A by
Lemma 1. Thus, g(b) = b + A = y + A = x + A, and g is surjective.

Finally, let b ∈ B. Then,

b ∈ Ker(g)⇐⇒ g(b) = 0 A+B
A

⇐⇒ b + A = 0H + A⇐⇒ b ∈ A.

Thus, b ∈ Ker(g) if and only if b ∈ A ∩ B. Hence, by the first strong isomorphism theorem,
B

A∩B
∼=s

A+B
A and the theorem is proved.

Theorem 4. (Third strong isomorphism theorem) If A and B are R-subhypermodules of an R-hypermodule H
such that B ⊆ A, then H

B
/ A

B
∼=s

H
A .

Proof. Define a map h : H
B 7→

H
A by h(x + B) = x + A. Then, h is a strong and surjective

R-homomorphism with Ker(h) = A
B . Therefore, by the first strong isomorphism theorem, H

B
/ A

B
∼=s

H
A ,

and we have the claim.

Proposition 4. (i) Let f ∈ homR(A, B) or f ∈ homs
R(A, B). Then, f is an R-monomorphism if and only if it

is injective. (ii) f ∈ homs
R(A, B) is injective if and only if Ker( f ) = {0A}.

Proof.

(i) (⇐) It is clear.
(⇒) Let f ∈ homR(A, B) (resp., f ∈ homs

R(A, B)) be an R-monomorphism and f (x) = f (y).
Then, f (r ∗ x) = f (r ∗ y) for an arbitrary r ∈ R. Now, define g, h ∈ homs

R(R, A) with g(r) = r ∗ x
and h(r) = r ∗ y for each r ∈ R. Clearly, f ◦ g = f ◦ h. Since f is monic, we have g = h. Therefore,
f (1) = g(1) implies x = y.

(ii) (⇐) Let Ker( f ) = {0A} and f (x) = f (y). Therefore, 0B ∈ f (x)− f (y) = f (x− y). Thus, there is
z ∈ x− y such that f (z) = 0A. By assumption, z = 0A. Now, 0A ∈ x− y implies x = y.
(⇒) Let z ∈ Ker( f ) and f is injective. Therefore, f (z) = 0B. On the other hand f (0A) = 0B. Thus,
z = 0A by injectivity.

Corollary 1. In the category Rs hmod, f ∈ homR(A, B) is an R-monomorphism if and only if Ker( f ) = {0A}.

Proposition 5. (i) In the category Rhmod, every surjective R-homomorphism is an R-epimorphism. (ii) In the
category Rs hmod, an R-homomorphism is an R-epimorphism if and only if it is surjective.

Proof.
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(i) Let f ∈ homR(A, B) be surjective, and let g, h ∈ homR(B, C). If g ◦ f = h ◦ f , then for all a ∈ A,
we have g( f ((a)) = h( f (a)). Now, let b ∈ B. Clearly, there is x ∈ A such that f (x) = b. Thus,
g(b) = g( f (x)) = h( f (x)) = h(b). Hence, f is an R-epimorphism.

(ii) (⇐) It is clear from (i).
(⇒) Let f ∈ homs

R(A, B) be an R-epimorphism and b ∈ B. Suppose f is not surjective. Then,
f (A) 6= B. Define g, h : B 7→ B

f (A)
with g(b) = 0 B

A
and h(b) = b + f (A). Then, clearly, g ◦ f =

h ◦ f , but g 6= h. This contradiction shows that f is surjective.

A morphism is said to be a bimorphism if it is a mono, as well as an epi. A category is said to be
balanced when a morphism is a bimorphism if and only if it is an iso.

Proposition 6. The category Rs hmod is balanced.

Proof. f ∈ homs
R(A, B) is a bimorphism if and only if f is bijective by Propositions 4(i) and 5(ii) if and

only if f is an R-isomorphism by Remark 3(ii).

We conclude this section with a result concerning f ∈ homs
R(A, B).

Proposition 7. Let f ∈ homs
R(A, B) and a ∈ A. Let

f−1( f (a)) := {x ∈ A | f (x) = f (a)}.

Then, f−1( f (a)) = Ker( f ) + a = a + Ker( f ).

Proof. Setting K := Ker( f ), we have:

x ∈ f−1( f (a))⇐⇒ f (x) = f (a)

⇐⇒ 0B ∈ f (x)− f (a)

⇐⇒ 0B ∈ f (x− a)

⇐⇒ z ∈ (x− a) ∩ K

⇐⇒ x ∈ z + a, f (z) = 0B ⇐⇒ x ∈ K + a,

and the proof is complete.

5. Conclusions

Krasner hypermodules have been already considered from the standpoint of category theory by
various authors in, e.g., [11–13,15], focusing on the properties of different types of homomorphisms,
notably the so-called inclusion homomorphisms, strong homomorphisms, and weak homomorphisms,
according to their behavior with respect to the multivalued addition. Since morphisms play
an important role in every category, one needs a clear understanding of fundamental theorems
concerning homomorphisms, such as factorization and isomorphism theorems, in order to pursue
fundamental studies in category theory. In this paper, we first studied the primary categories of Krasner
hypermodules over a Krasner hyperring, introduced in [19]. In particular, we proved factorization
and isomorphism theorems regarding both inclusion and strong single-valued homomorphisms
as their morphisms. Moreover, we focused on strong isomorphism theorems between quotient
hypermodules, and we showed that the category of Krasner R-hypermodules with strong single-valued
homomorphisms is balanced. Arguably, analogous results may have a different and more complex form
in other categories of (general) Krasner hypermodules, depending on multivalued homomorphisms.
On the basis of preliminary results presented in [13,15,19], we believe that the exploration of
factorization and isomorphism theorems for multivalued homomorphisms between hypermodules is
a possible direction for further research.
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