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Abstract: The present paper aims to define three new notions: Θe-contraction, a Hardy–Rogers-type
Θ-contraction, and an interpolative Θ-contraction in the framework of extended b-metric space. Further,
some fixed point results via these new notions and the study endeavors toward a feasible solution would
be suggested for nonlinear Volterra–Fredholm integral equations of certain types, as well as a solution
to a nonlinear fractional differential equation of the Caputo type by using the obtained results. It also
considers a numerical example to indicate the effectiveness of this new technique.
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1. Introduction

The fixed point theory is derived from the investigation of the solution for certain types of differential
equations using the successive approximation method. Indeed, the renowned fixed point theorems of
Banach [1] are a reformulation of the successive approximation method that was used by some famous
mathematicians, namely Cauchy, Liouville, Picard, Lipschitz, Peano, etc. This fact also indicates that the
advances and progress in fixed point theory can be referred back to differential equations and the integral
equations. On the other hand, in recent years, fixed point theory has been used very extensively to find
solutions of nonlinear fractional differential equations.

Indeed, in the last few decades, fractional calculus and fractional differential and integral equations
have been the most interesting research topics, not only in mathematics, but also in physics . We can find a
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brief historical introduction to fractional derivatives with basic notations, illustrations, and results in [2–4].
Since the beginning, it has been known that the theory has wide applications not only in nonlinear analysis
and computational mathematics, but also in applied sciences, including computer science and economics.
The applications of these fixed point theories have been presented in the last century, due to this strong
relation of fixed point theory and the applications used in several disciplines.

The authors in [5] proposed the notion of Θ-contraction as a generalization of a standard contraction,
given by Banach, and proved fixed point theorems in the context of Bianciari distance space. We, first,
recall the notion of Θ-contraction, which is based on the following class of auxiliary functions:

Θ :=
{

θ
∣∣ θ : (0, ∞)→ (1, ∞) satisfies (Θ1)− (Θ4)

}
,

where:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence {sn} ⊂ (0, ∞), limn→∞ θ(sn) = 1⇔ limn→∞ sn = 0+;
(Θ3) there exist q ∈ (0, 1) and ` ∈ (0, ∞] such that lims→0+

θ(s)−1
sq = `;

(Θ4) θ is continuous.

This notion has been used by many authors to provide fixed point results; see, e.g., [6–14].
On the other hand, we recall the notion of extended b-metric space (simply, δe-metric space),

introduced by Kamran et al. [15], which is the most general form of the concept of the metric. For the sake
of completeness, we recollect the definition as follows:

Definition 1 ([15]). For a non-empty set S and a mapping ω : S × S → [1, ∞), we say that a function δe :
S× S→ [0, ∞) is called an extended b-metric (in short, δe-metric) if it satisfies:

(i) δe(x, y) = 0 if and only if x = y;
(ii) δe(x, y) = δe(y, x);

(iii) δe(x, y) ≤ ω(x, y)[δe(x, z) + δe(z, y)],

for all x, y, z ∈ S. The symbols (S, δe) denote δe-metric space.

Remark 1. It is clear that in the case of θ(x, y) = s, for s ≥ 1, the extended b-metric becomes the standard b-metric.
As is known well, the b-metric does not need to be continuous. As a result, the extended b-metric is not necessarily
continuous either. In this paper, it is presumed that the extended b-metric is continuous.

Example 1. Let p ∈ (0, 1), q > 1, and S = Lp[a, b] ∪ Lq[a, b] be equipped with the metric:

δe(x, y) =


dp(x, y) if x, y ∈ Lp[a, b],
dq(x, y) if x, y ∈ Lq[a, b],

0 otherwise,

where:

Lr([a, b]) = {x : [a, b]→ R :
∫ b

a
|x(t)|rdt < ∞} for r = p, q.

and:

dr(x, y) =

(
∞

∑
n=1
|xn − yn|r

)1/r

, for r = p, q.
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It is obvious that (S, δe) forms an extended b-metric with:

ω(x, y) =


21/p if x, y ∈ Lp[a, b](R),
21/q if x, y ∈ Lq[a, b](R),

1 otherwise.

Example 2. Let S = [0, 1], ω : S × S → [1, ∞), ω(x, y) = xy+1
x+y , and ω(0, 0) = 3

2 . Define δe : S × S →
[0, ∞) as:

δe(x, y) =

{
1

xy , for x, y ∈ (0, 1], x 6= y

0, for x, y ∈ [0, 1], x = y

δe(y, 0) = δe(0, y) =
1
y

, for y ∈ (0, 1].

Clearly, (i) and (ii) hold. For (iii), we shall consider the following cases:
Case 1. Let x, y ∈ (0, 1], for z ∈ (0, 1]; we have:

δe(x,y) ≤ ω(x, y)[δe(x, z) + δe(z, y)]

⇔ 1
xy
≤ 1 + xy

x + y

(
1
xz

+
1
yz

)
⇔ 1

xy
≤ 1 + xy

x + y

(
y + x
xyz

)
⇔ z ≤ 1 + xy

If z = 0, then:

δe(x,y) ≤ ω(x, y)[δe(x, 0) + δe(0, y)]

⇔ 1
xy
≤ ω(x, y)

(
1
x
+

1
y

)
⇔ 1

xy
≤ 1 + xy

x + y

(
x + y

xy

)
⇔ 1 ≤ 1 + xy

⇔ 0 ≤ xy

Case 2. For x ∈ (0, 1] and y = 0, let z ∈ (0, 1]:

δe(x,0) ≤ ω(x, 0)[δe(x, z) + δe(z, 0)]

⇔ 1
x
≤ 1

x

(
1
xz

+
1
z

)
⇔ 1 ≤ 1 + x

xz
⇔ xz ≤ 1 + x

Case 3. For x = 0 = y and z ∈ (0, 1],
clearly one can check that δe(x, y) ≤ ω(x, y)[δe(x, z) + δe(z, y)].
Similarly, for x = 0 = y and z = 0, the triangle inequality holds.
Hence, for any x, y, z ∈ S, δe(x, y) ≤ ω(x, y)[δe(x, z) + δe(z, y)].
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Definition 2 ([15]). Let S be a non-empty set endowed with the extended b-metric δe, and a sequence {xn} in S is
said to:

(a) converge to x if for any given ε > 0, there exists N = N(ε) ∈ N such that δe(xn, x) < ε, for all n ≥ N.
In brief, we write lim

n→∞
xn = x.

(b) be fundamental (Cauchy) if for every ε > 0, there exists N = N(ε) ∈ N such that δe(xm, xn) < ε, for all
m, n ≥ N.

Furthermore, this study defines the completeness of δe-metric space as follows:

(c) If any fundamental (Cauchy) sequence in S is convergent, then we say that (S, δe) is complete.

For more interesting examples and basic results in δe-metric space, we refer to [16–20]. For some
recent modifications or developments to extended b−metric spaces, the reader may refer to the so-called
controlled and double-controlled metric type spaces in [21,22] and for further fixed point investigations in
extended b-metric spaces to [23].

With reference to the above facts, the proposed three new concepts are Θe-contraction,
a Hardy–Rogers-type Θ-contraction, and an interpolative Θ-contraction in δe-metric space, and we prove
pertinent fixed point theorems in Section 2. By using the obtained results in Section 2, we propose the
solutions of the nonlinear integral equation and fractional differential equation via the fixed point approach,
which are presented in Sections 3 and 4. The effectiveness of this approach is illustrated by a numerical
experiment in Section 5.

2. Main Results

Now, we start this section by introducing the concept of Θe-contraction.

Definition 3. A self-mapping T, on an extended b-metric space (S, δe), is named a Θe-contraction if there exists a
function θ ∈ Θ such that:

θ(δe(Tx, Ty)) ≤ [θ(δe(x, y))]r if δe(Tx, Ty) 6= 0 for x, y ∈ S,

where r ∈ [0, 1) such that lim sup
m,n→∞

ω(xn, xm) <
1
r

; here, xn = Tnx0 for x0 ∈ S.

Theorem 1. If a self-mapping T, on a completed extended b-metric space (S, δe), forms a Θe-contraction, then T
has a unique fixed point in S.

Proof. For an arbitrary point x0 ∈ S, we construct an iterative sequence {xn}0∞ as follows:

xn = Tnx0 for all n ∈ N.

Suppose, if Tn∗x = Tn∗+1x for some n∗ ∈ N, then Tn∗x will be a fixed point of T.
Therefore, without loss of generality, we can assume that δe(Tnx, Tn+1x) > 0 for all n ∈ N.

From Definition 3, we have:

θ(δe(xn, xn+1)) = θ(δe(Txn−1, Txn))

≤ [θ(δe(xn−1, xn))]
r

≤ [θ(δe(xn−2, xn−1))]
r2

.
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Recursively, we find that:
θ(δe(xn, xn+1)) ≤ [θ(δe(x0, x1))]

rn
. (1)

Accordingly, we obtain that:

1 < θ(δe(xn, xn+1)) ≤ [θ(δe(x0, x1))]
rn

for all n ∈ N. (2)

Letting n→ ∞ in (1), we get θ(δe(xn, xn+1))→ 1 as n→ ∞.
From (Θ2), we have:

lim
n→∞

δe(xn, xn+1) = 0. (3)

From (Θ3), there exist q ∈ (0, 1) and ` ∈ (0, ∞] such that:

lim
n→∞

θ(δe(xn, xn+1))− 1
[δe(xn, xn+1)]q

= `.

We presume ` < ∞ and B = `
2 > 0. On account of the limit definition, there exists n0 ∈ N such that:∣∣∣∣ θ(δe(xn, xn+1))− 1

[δe(xn, xn+1)]q
− `

∣∣∣∣ ≤ B

for all n ≥ n0.

It yields that
∣∣∣∣ θ(δe(xn, xn+1))− 1

[δe(xn, xn+1)]q

∣∣∣∣ ≥ `− B = B for all n ≥ n0.

Then, we derive that:

n[δe(xn, xn+1)
q] ≤ n

[ θ(δe(xn, xn+1))− 1
B

]
for all n ≥ n0.

Assume ` = ∞ and B > 0 (an arbitrary positive number). From the definition of the limit, there exists
n0 ∈ N

such that
θ(δe(xn, xn+1))− 1
[δe(xn, xn+1)]q

≥ B for all n ≥ n0.

This implies that:

n[δe(xn, xn+1)]
q ≤ n

[ θ(δe(xn, xn+1))− 1
B

]
for all n ≥ n0.

Subsequently, in all cases, there exist 1
B > 0 and n0 ∈ N such that:

n[δe(xn, xn+1)]
q ≤ n

[ θ(δe(xn, xn+1))− 1
B

]
for all n ≥ n0.

Using Equation (1), we obtain:

n[δe(xn, xn+1)]
q ≤ [θ(δe(x0, x1))]

rn − 1 for all n ≥ n0.

As n→ ∞ in the inequality above, we find:

lim
n→∞

n[δe(xn, xn+1)]
q = 0.
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Thus, there exists n1 ∈ N such that:

δe(xn, xn+1) ≤
1

n
1
q

for all n ≥ n1. (4)

Let N = max{n0, n1}. Due to the modified triangle inequality, we derive that:

δe(xn, xn+m) = ω(xn, xn+m)[δe(xn, xn+1) + δe(xn+1, xn+m)]

= ω(xn, xn+m)δe(xn, xn+1) + ω(xn, xn+m)δe(xn+1, xn+m)

≤ ω(xn, xn+m)δe(xn, xn+1)

+ ω(xn, xn+m)ω(xn+1, xn+m)[δe(xn+1, xn+2) + δe(xn+2, xn+m)]

≤ ω(xn, xn+m)δe(xn, xn+1) + ω(xn, xn+m)ω(xn+1, xn+m)δe(xn+1, xn+2)

+ ω(xn, xn+m)ω(xn+1, xn+m)ω(xn+2, xn+m)[δe(xn+2, xn+3) + δe(xn+3, xn+m)]

...

≤ ω(xn, xn+m)δe(xn, xn+1) + ω(xn, xn+m)ω(xn+1, xn+m)δe(xn+1, xn+2)

+ · · ·+ ω(xn, xn+m)ω(xn+1, xn+m) · · ·ω(xn+m−1, xn+m)δe(xn+m−1, xn+m)

This can be written as,

δe(xn, xn+m) ≤
n+m−1

∑
j=n

δe(xj, xj+1)
n+m−1

∏
i=n

ω(xi, xn+m)

Since lim
n,m→∞

ω(xn, xm) <
1
r

, we have:

δe(xn, xn+m) ≤
n+m−1

∑
j=n

δe(xj, xj+1)
n+m−1

∏
i=n

ω(xi, xn+m) ≤
1
r

∞

∑
j=n

1

j
1
q

,

which is convergent as n, m→ ∞ and 1
q > 1.

Thus, the sequence {xn} in S is a Cauchy sequence. Since (S, δe) is a complete δe-metric space,
there exists a point η in S such that {xn} converges to η.

One can easily note that T is continuous. Suppose that Tx 6= Ty. Taking the expression (3) into
account, we have:

ln[θδe(Tx, Ty)] ≤ r ln[θδe(x, y)]

≤ ln[θδe(x, y)].

Regarding (Θ1), it implies that, δe(Tx, Ty) ≤ δe(x, y) for all distinct x, y ∈ S.
From this evaluation, we can get, δe(xn+1, Tη) = δe(Txn, Tη) ≤ δe(xn, η) for all n ∈ N.

As n→ ∞ in the inequality above, we derive xn+1 → Tη. By the uniqueness of the limit, Tη = η.

Suppose f has another fixed point ζ such that η 6= ζ. Then, clearly, δe(η, ζ) = δe( f η, f ζ) 6= 0.
Now, using the condition (3), we get,
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θ(δe(η, ζ)) = θ(δe(Tη, Tζ)) = θ(δe(Tqη, Tqζ))

≤ [θ(δe(η, ζ))]r
q

< θ(δe(η, ζ)), a contradiction.

Therefore, η = ζ. This claims that T has a unique fixed point in S.

Example 3. Let S = [0, ∞). Define δe : S× S→ [0, ∞) as:

δe(x, y) = (x− y)2

and ω : S× S→ [1, ∞) as ω(x, y) = 2x + 3y + 5. Then, (S, δe) is a complete extended b-metric space.
Define T : X → X as Tx = x

3 , so that δe(Tx, Ty) = ( x
3 −

y
3 )

2 ≤ 1
8 = rδe(x, y), where r = 1

8 .
Note that for each x ∈ S, Tn(x) = x

3n .

We have lim
m,n→∞

ω(xm, xn) = lim
m,n→∞

2
x

3m + 3
x
3n < 8 =

1
r

.

Now, define θ : (0, ∞)→ (1, ∞) as θ(t) = et.
Then, all the conditions of Theorem 1 are satisfied so that the mapping T has a unique fixed point “0” in S.

If we take ω(x, y) = b > 1 in the above theorem, then we get the below corollary.

Corollary 1. Let T be a self-mapping on a complete b-metric space (S, d). If there exist ϑ ∈ Θ and r ∈ (0, 1)
such that:

ϑ(d(Tx, Ty)) ≤ [ϑ(d(x, y))]r if d(Tx, Ty) 6= 0 f or x, y ∈ S,

then T has a unique fixed point in S.

If we take ω(x, y) = 1 in the above theorem, then we get the below corollary.

Corollary 2. Let T be a self-mapping on a complete metric space (S, d). If there exist ϑ ∈ Θ and r ∈ (0, 1)
such that:

ϑ(d(Tx, Ty)) ≤ [ϑ(d(x, y))]r if d(Tx, Ty) 6= 0 f or x, y ∈ S,

then T has a unique fixed point in S.

In what follows, we define the second notion, HR-Θ-contraction, as follows:

Definition 4. A self-mapping f , on an extended b-metric space (S, δe), is called a Hardy–Rogers-type Θ-contraction
(HR-Θ-contraction), if there exists a function θ ∈ Θ and non-negative real number r < 1 such that:

θ(δe( f x, f y)) ≤[M f ,θ(x, y)]r, (5)

for all x, y ∈ S, where:

M f ,θ(x, y) := max{θ(δe(x, y)), θ(δe(x, f x)), θ(δe(y, f y)), θ(
δe(x, f y) + δe(y, f x)

2
)}.

where lim sup
n,m→∞

ω(xn, xm) <
1
r

; here, xn = f nx0 for x0 ∈ S and r ∈ (0, 1).
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Theorem 2. If a self-mapping T, on a completed extended b-metric space (S, δe) forms an HR-Θ-contraction, then T
has a unique fixed point in S.

Proof. As in Theorem 1, we construct an iterative sequence {xn}0∞ by starting at an arbitrary point x0 ∈ S
as follows:

xn = f nx0 for all n ∈ N.

Without loss of generality, we suppose that δe( f nx, f n+1x) > 0 for all n ∈ N. Indeed, if f n∗x = f n∗+1x
for some n∗ ∈ N, then f n∗x will be a fixed point of T.

We prove that lim
n→∞

δe(xn, xn+1) = 0.

Employing the contraction condition (5), we get,

θ(δe(xn+1, xn)) ≤ [M f ,θ(xn, xn−1)]
r, (6)

where:
M f ,θ(xn, xn−1) = max{θ(δe(xn, xn−1)), θ(δe(xn, f xn)), θ(δe(xn−1, f xn−1)),

θ( δe(xn , f xn−1)+δe(xn−1, f xn)
2 )}

= max{θ(δe(xn, xn−1)), θ(δe(xn, xn+1)), θ(δe(xn−1, xn)),
θ( δe(xn−1,xn)+δe(xn ,xn+1)

2 )}.
≤ max{θ(δe(xn, xn−1)), θ(δe(xn, xn+1))}.

If M f ,θ(xn, xn−1) = θ(δe(xn, xn+1)), then the inequality (6) becomes:

θ(δe(xn+1, xn)) ≤ θ(δe(xn, xn+1))
r ⇔ ln (θ(δe(xn+1, xn))) ≤ r ln (θ(δe(xn+1, xn))) ,

which is a contradiction (since r < 1). Thus, we have M f ,θ(xn, xn−1) = θ(δe(xn1 , xn)). It is yielded
from (6) that:

θ(δe(xn, xn+1)) ≤ [θ(δe(xn, xn−1))]
r.

Iteratively, we find that:
θ(δe(xn, xn+1)) ≤ [θ(δe(x0, x1))]

rn
.

After this observation, by following the related lines in the proof of Theorem 2, we conclude that the
sequence {xn} in S is a Cauchy sequence. Regarding that (S, δe) is a complete δe-metric space, there exists
a point η in S such that {xn} converges to η.

Without lose of generality, we may assume that f nx 6= η for all n (or, for large enough n.) Assume
that δe(η, Tη) > 0. Employing (5), we get:

θ(δe( f xn, f η)) ≤ [M f ,θ(xn, η)]r,

for all x, y ∈ S, where:

M f ,θ(xn, η) := max{θ(δe(xn, η)), θ(δe(xn, f xn)), θ(δe(η, f η)), θ(
δe(xn, f η) + δe(η, f xn)

2
)}.

By taking n→ ∞ in the inequality above, we derive that:

θ(δe(η, f η)) ≤ [θ(δe(η, f η))]r < θ(δe(η, f η)),

a contradiction. Hence, f η = η.
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That is, f has a fixed point in S.
Suppose f has another fixed point ζ such that η 6= ζ.
Then, clearly, δe(η, ζ) = δe( f η, f ζ) 6= 0.
Now, using the condition (7), we get,

1 < θ(δe(η, ζ)) = θ(δe( f η, f ζ))

≤ [max{θ(δe(η, ζ)), θ(δe(η, f η)), θ(δe(ζ, f ζ)),
θ(δe(η, f ζ) + δe(ζ, f η))}]r

< θ(δe(η, ζ)),

a contradiction. Accordingly, we have η = ζ.
Thus, f has a unique fixed point in S.

Definition 5. Let (S, δe) be a δe-metric space and f : X → X be a mapping. Then, f is said to be an
interpolative-Θ-contraction if there exists a function θ ∈ Θ and non-negative real numbers r1, r2, r3, r4 with
r1 + r2 + r3 + 2r4 < 1 such that:

θ(δe( f x, f y)) ≤[θ(δe(x, y))]r1 [θ(δe(x, f x))]r2

[θ(δe(y, f y))]r3 [θ(δe(x, f y) + δe(y, f x))]r4 ,

(7)

for all x, y ∈ S.

Where lim sup
n,m→∞

ω(xn, xm) <
1
r

; here, xn = f nx0 for x0 ∈ S and r ∈ (0, 1).

Theorem 3. Let (S, δe) be a complete δe-metric space such that δe is a continuous functional and f : X → X be an
interpolative-Θ-contraction. Then, f has a unique fixed point in S.

We skip the proof since:

[θ(δe(x, y))]r1 [θ(δe(x, f x))]r2 [θ(δe(y, f y))]r3 [θ(δe(x, f y) + δe(y, f x))]r4

≤ [Mθ, f (x, y)]r1+r2+r3+2r4 .

Thus, it is sufficient to choose r := r1 + r2 + r3 + 2r4 < 1 in Theorem 2 to conclude the theorem above.
In Theorem 3, if we take r2 = 0, r3 = 0, r4 = 0, then the above theorem reduces to as below.

Corollary 3. labelJS1-c-4 Let (S, δe) be an extended b-metric space and θ ∈ Θ. If a mapping f : X → X
satisfies that
there exists r1 ∈ [0, 1) such that:

θ(δe( f x, f y)) ≤ [θ(δe(x, y))]r1 for all x, y ∈ S (8)

where r ∈ [0, 1) and lim sup
m,n→∞

ω(xn, xm) <
1
r

, then f has a unique fixed point in S.

In Theorem 3, if we take r1 = 0, r2 = 0, r3 = 0, then the above theorem reduces to as below.
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Corollary 4. labelJS1-c-4 Let (S, δe) be an extended b-metric space such that δe is a continuous functional, θ ∈ Θ,
and f : X → X be a mapping. Suppose that there exists r4 ∈ [0, 1) such that:

θ(δe( f x, f y)) ≤ [θ(δe(x, f y) + δe(y, f x))]r4 for all x, y ∈ S (9)

and r ∈ [0, 1) such that lim sup
m,n→∞

ω(xn, xm) <
1
r

. Then, f has a unique fixed point in S.

3. Fixed Point Method for the Common Solution of Nonlinear Volterra–Fredholm Integral Equations

Let X := C([a, b],R); the set of all continuous real valued functions is defined on [a, b]. Define
δe : S× S→ R and γ : S× S→ [1, ∞) by:

δe(x, y) = sup |x(t) + y(t)|2, t ∈ [a, b] and γ(x, y) = |x(t)|+ |y(t)|+ 1.

Clearly, (S, δe) is a complete extended b-metric space.
Consider the nonlinear Volterra–Fredholm integral equation:

x(t) = λ1

∫ t

a
κ1(t, s, x(s))ds + λ2

∫ b

a
κ2(t, s, x(s))ds; a ≤ t ≤ b, (10)

where x(t) is the unknown solution, κi(t, s, x(s)); (i = 1, 2) are called smooth functions, and λi, a, and b
are constants.

Let us assume a = 0 for an effortlessness detailed examination of the nonlinear Volterra–Fredholm
integral Equation (10).

Suppose that the following conditions hold:

1. the mapping f : C[0, b]→ C[0, b] defined by:

f (x(t)) = λ1

∫ t

0
κ1(t, s, x(s))ds + λ2

∫ b

0
κ2(t, s, x(s))ds;

for all x ∈ C[0, b] and 0 ≤ s ≤ t ≤ b, is a continuous mapping and
κi : [0, b]× [0, b]×R→ R

2. Υ : [0, ∞)→ [1, ∞) with Υ(t) < t for all t > 0.
3. κi for some constant Ai satisfies:

|κi(t, s, x(s))− κi(t, s, y(s))| ≤ Ai[Υ(|x(s)− y(s)|)]
r1
2 ,

where 0 ≤ s ≤ t ≤ b, i = 1, 2.
4. Further suppose that $t + ηb < 1, where $ = λ1A1 and η = λ2A2.

Then, the nonlinear Volterra–Fredholm Equation (10) has a unique solution.
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Consider:

| f x(t)− f y(t)|2 =

∣∣∣∣λ1

∫ t

0
κ1(t, s, x(s))ds + λ2

∫ b

0
κ2(t, s, x(s))ds

−
(

λ1

∫ t

0
κ1(t, s, y(s))ds + λ2

∫ b

0
κ2(t, s, y(s))ds

)∣∣∣∣2
=

∣∣∣∣λ1

[ ∫ t

0
(κ1(t, s, x(s))− κ1(t, s, y(s)))ds

]
+ λ2

[ ∫ b

0
(κ2(t, s, x(s))− κ2(t, s, y(s)))ds

]∣∣∣∣2
≤
∣∣∣∣λ1A1(Υ|x(s)− y(s)|)

r1
2 t + λ2A2(Υ|x(s)− y(s)|)

r1
2 b
∣∣∣∣2

=

∣∣∣∣($t + η)(Υ|x(s)− y(s)|)
r1
2

∣∣∣∣2
<

(
Υ(|x(s)− y(s)|

)r1

=

(
Υ(δe(x, y)

)r1

This gives,

sup
t∈[0,b]

| f U(t)− f V(t)|2 ≤
(

Υδe(x(t), y(t))
)r1

,

which implies,

δe( f (x(t)), f (y(t))) ≤
(

Υδe(x(t), y(t))
)r1

, for all x, y ∈ S.

which yields,

Υ(δe( f (x(t)), f (y(t)))) ≤ δe( f (x(t)), f (y(t)))

≤
(

Υδe(x(t), y(t))
)r1

It follows that f satisfies all the conditions of Corollary 1. Hence, f has a unique fixed point. This yields
that there exists a unique solution of the non-linear Volterra–Fredholm integral equation.

4. Fixed Point Method for Common Solution of Nonlinear Fractional Differential Equations

In this section, by using Corollary 2, we investigate the existence and uniqueness solution for nonlinear
fractional differential equations (NFDE), in the sense of the Caputo derivative. Recall that the Caputo
fractional derivative of ℘(t) order $ > 0 is denoted by CD$℘(t), and it is defined as:

CD$℘(t) =
1

Γ(n− $)

∫ t

0
(t− τ)n−$−1℘n(τ)dτ;

with n = [$] + 1 ∈ N, where $ ∈ [n− 1, n) and [$] denotes the greatest integer of $ (i.e., the integral part of
$) and ℘ : [0, ∞)→ R is a continuous function.

Here, S = C([0, 1],R) denotes the set of all continuous functions from [0, 1] into R.
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In this section, we shall investigate the existence of uniqueness solutions to a non-linear fractional
differential equation.

CD$(x(t)) = h(t, x(t)) (11)

with the integral boundary conditions x(0) = 0, x(1) =
∫ ρ

0 x(τ)dτ; where x ∈ S, t, ρ ∈ (0, 1), $ ∈ (1, 2]
and h : [0, 1]×R→ R is a continuous function.

Recall that x ∈ S forms a solution for (11) whenever x ∈ S forms a solution for the following fractional
integral equation:

x(t) =
1

Γ($)

∫ t

0
(t− τ)$−1h(τ, x(τ))dτ

− 2t
(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1h(τ, x(τ))dτ

+
2t

(2− ρ2)Γ($)

∫ ρ

0

( ∫ τ

0
(τ − ϑ)$−1h(ϑ, x(ϑ))dϑ

)
dτ.

Define the operator Υ : X → X by:

Υx(t) =
1

Γ($)

∫ t

0
(t− τ)$−1h(τ, x(τ))dτ

− 2t
(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1h(τ, x(τ))dτ

+
2t

(2− ρ2)Γ($)

∫ ρ

0

( ∫ τ

0
(τ − ϑ)$−1h(ϑ, x(ϑ))dϑ

)
dτ.

where S forms a δe-metric space with:

δe(x, y) = sup
t∈[0,1]

|x(t)− y(t)|q, for all x, y ∈ S, with coefficient s = 2q−1.

Now, we will prove that the NFDE (11) has a unique solution if the following assumption holds:

|h(b, η1)− h(b, η2)| ≤ Γ($ + 1)
(
θ
(
|η1 − Υη2|q + |η2 − Υη1|q

)q) r4
q

where q > 1 and θ : [0, ∞)→ [1, ∞) with θ(t) < t for all t > 0. We need to prove that the condition (9) of
Corollary 2 holds. Consider,
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|Υx(t)− Υy(t)| =
∣∣∣∣ 1
Γ($)

∫ t

0
(t− τ)$−1h(τ, x(τ))dτ

− 2t
(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1h(τ, x(τ))dτ

+
2t

(2− ρ2)Γ($)

∫ ρ

0

( ∫ τ

0
(τ − ϑ)$−1h(ϑ, x(ϑ))dϑ

)
dτ

− 1
Γ($)

∫ t

0
(t− τ)$−1h(τ, y(τ))dτ

+
2t

(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1h(τ, y(τ))dτ

− 2t
(2− ρ2)Γ($)

∫ ρ

0

( ∫ τ

0
(τ − ϑ)$−1h(ϑ, y(ϑ))dϑ

)
dτ

∣∣∣∣
≤ 1

Γ($)

∫ t

0
(t− τ)$−1|h(τ, x(τ))− h(τ, y(τ))|dτ

+
2t

(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1|h(τ, x(τ))− h(τ, y(τ))|dτ

+
2t

(2− ρ2)Γ($)

∫ ρ

0

∣∣∣∣ ∫ τ

0
(τ − ϑ)$−1[h(ϑ, x(ϑ))− h(ϑ, y(ϑ))]dϑ

∣∣∣∣dτ

≤ 1
Γ($)

∫ t

0
(t− τ)$−1Γ($ + 1)

(
θ[|x(τ)− Υy(τ)|q + |y(τ)− Υx(τ)|q]

) r4
4 dτ

+
2t

(2− ρ2)Γ($)

∫ 1

0
(1− τ)$−1Γ($ + 1)

(
θ[|x(τ)− Υy(τ)|q + |y(τ)− Υx(τ)|q]

) r4
4 dτ

+
2t

(2− ρ2)Γ($)

∫ ρ

0

∫ τ

0
(τ − ϑ)$−1Γ($ + 1)

(
θ[|x(τ)− Υy(τ)|q + |y(τ)− Υx(τ)|q]

) r4
4 dτ

≤ Γ($ + 1)
(
θ[|x(τ)− Υy(τ)|q + |y(τ)− Υx(τ)|q]

) r4
q

1
Γ($)

( ∫ t

0
(t− τ)$−1dτ +

2t
(2− ρ2)

∫ 1

0
(1− τ)$−1dτ

+
2t

(2− ρ2)

∫ ρ

0

∫ τ

0
(τ − ϑ)$−1dϑdτ

)

≤ Γ($ + 1)
(

θ(δe(x, Υy) + δe(y, Υx))
) r4

q

1
Γ($)

(
t$

$
+

2t
(2− ρ2)

1
$
+

2t
(2− ρ2)

ρ$+1

$($ + 1)

)

≤ Γ($ + 1)
(

θ(δe(x, Υy) + δe(y, Υx))
) r4

q

1
Γ($ + 1)

sup
t∈(0,1)

(
t$ +

2t
(2− ρ2)

+
2t

(2− ρ2)

ρ$+1

($ + 1)

)

≤
(

θ(δe(x, Υy) + δe(y, Υx))
) r4

q
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Thus, for q > 1, we can write:

|Υx(t)− Υy(t)|q ≤
(
θ(δe(x(t), Υy(t)) + δe(y(t), Υx(t)))

)r4 .

Therefore,
sup

t∈[0,1]
|Υx(t)− Υy(t)|q ≤

(
θ(δe(x(t), Υy(t)) + δe(y(t), Υx(t)))

)r4

⇒ δe(Υx(t), Υy(t)) ≤
(
θ(δe(x(t), Υy(t)) + δe(y(t), Υx(t)))

)r4

This implies,

θ
(
δe(Υx(t), Υy(t))

)
≤ δe(Υx(t), Υy(t))

≤
(
θ(δe(x(t), Υy(t)) + δe(y(t), Υx(t)))

)r4

As a result, this study concludes that all axioms of the Corollary 2 are fulfilled. Hence, Υ has a unique
fixed point, and the mentioned NFDE has a unique solution.

5. Numerical Example

In this section, a numerical example is established to indicate the significance of the given results.
Let S be a set of all continuous real-valued functions defined on [0,1], i.e., S = C([0, 1],R). Define δe :

S× S→ R and ω : S× S→ [1, ∞) by δe(x, y) = supt∈[0,1] |x(t)− y(t)|2 and ω(x, y) = 3|x(t)|+ 5|y(t)|+ 2,
respectively. Clearly, (S, δe) is a complete δe-metric space.
Let f : X → X be the operator defined by:

f x(t) = ϑ(t) +
∫ 1

0
κ(t, s)x(s)ds; x(t) ∈ S. (12)

Let ϑ(t) = t cos(t), κ(t, s) = t, and x(s) = sin(x(s)). Then, (5.1) becomes:

f x(t) = t cos(t) +
∫ 1

0
t sin(x(s))ds; x(t) ∈ S. (13)

Suppose the following conditions hold.

1. ϑ(t), κ(t, s), and x(s) are continuous
2. Υ : [0, ∞)→ [1, ∞) with Υ(t) < t for all t > 0
3. | sin(x(s))− sin(y(s))| ≤ (Υ|x(s)− y(s)|2)

r1
2
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Consider,

| f x(t)− f y(t)|2 = |t cos(t) +
∫ 1

0
t sin(x(t))ds− t cos(t) +

∫ 1

0
t sin(y(t))ds|2

= |
∫ 1

0
t sin(x(t))ds−

∫ 1

0
t sin(y(t))ds|2

= |
∫ 1

0
t[sin(x(t))− sin(y(t))]ds|2

=
∫ 1

0
|t|2| sin(x(t))− sin(y(t))|2ds

<

[
(Υ|x(s)− y(s)|2)

r1
2

]2 ∫ 1

0
ds

= (Υ|x(s)− y(s)|2)r1

= (Υδe(x, y))r1

which yields,
sup

t∈[0,1]
| f x(t)− f y(t)|2 ≤ (Υδe(x, y))r1 .

⇒ δe( f x(t), f y(t)) ≤ (Υδe(x, y))r1 for all x, y ∈ S.

As a result, the conclusion is that all axioms of Theorem 1 are satisfied. Consequently, the integral
Equation (12) has a unique solution. It can be easily checked that x(t) = t is the exact solution of
Equation (12).

Now, we shall use the iteration method to underline the validity of our approaches:

xn+1(t) = f xn(t) = ϑ(t) +
∫ 1

0
κ(t, s)xn(s)ds

i.e., xn+1(t) = f xn(t) = ϑ(t) +
∫ 1

0
t sin(xn(s))ds

Tables 1–5 shown the examples. Figures 1 and 2 shown the sequence of xn+1(t) = f xn(t) = tcos(t) +∫ 1
0 t sin(xn(s))ds converges to the exact solution 0.2 and 0.6 respecially.

Let x0(t) = 0 be an initial solution.

Table 1. For t = 0.2, the exact solution is x(0.2) = 0.2.

n xn+1(0.2) Approximate Solution Absolute Error

0 x1(0.2) 0.199999 1× 10−6

1 x2(0.2) 0.2001246 1.246× 10−4

2 x3(0.2) 0.2001247 1.247× 10−4

3 x4(0.2) 0.2001247 1.247× 10−4

Table 2. For t = 0.4, the exact solution is x(0.4) = 0.4.

n xn+1(0.4) Approximate Solution Absolute Error

0 x1(0.4) 0.39999 1× 10−5

1 x2(0.4) 0.40099 9.915× 10−4

2 x3(0.4) 0.40099 9.975× 10−4
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Table 3. For t = 0.6, the exact solution is x(0.6) = 0.6.

n xn+1(0.6) Approximate Solution Absolute Error

0 x1(0.6) 0.59997 3× 10−5

1 x2(0.6) 0.60336 3.36× 10−3

2 x3(0.6) 0.60338 3.38× 10−3

3 x4(0.6) 0.60338 3.38× 10−3

Table 4. For t = 0.8, the exact solution is x(0.8) = 0.8.

n xn+1(0.8) Approximate Solution Absolute Error

0 x1(0.8) 0.79993 7× 10−5

1 x2(0.8) 0.80797 7.97× 10−3

2 x3(0.8) 0.80805 8.05× 10−3

3 x4(0.8) 0.80805 8.05× 10−3

Table 5. For t = 1, the exact solution is x(1) = 1.

n xn+1(1) Approximate Solution Absolute Error

0 x1(1) 0.99987 1.23× 10−4

1 x2(1) 1.01557 0.01557
2 x3(1) 1.01582 0.01582
3 x4(1) 1.01582 0.01582

Figure 1. The graph shows that the sequence xn+1(t) = f xn(t) = tcos(t) +
∫ 1

0 t sin(xn(s))ds converges to
the exact solution 0.2.
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Figure 2. The graph shows that the sequence xn+1(t) = f xn(t) = tcos(t) +
∫ 1

0 t sin(xn(s))ds converges to
the exact solution 0.6.

6. Discussion and Conclusions

Since Jleli and Samet’s [2] characterization of the contraction principle, many characterizations of
contraction principle-type results have been presented in the literature. In this article, we introduced
various topics called Θe-contraction, a Hardy–Rogers-type Θ-contraction, and an interpolative
Θ-contraction in extended b-metric space (simply, δe-metric space) and proved pertinent fixed point
theorems. Thereafter, we proposed a simple solution for the nonlinear integral equation and fractional
differential equation using the technique of a fixed point in δe-metric space. We used an iterative method
based on the fixed point approach. We found the approximate solution of Equation (12). The numerical
results have verified that the approach employed in this article is valid.

The obtained results are significant since this will build new avenues for working in Θ-contraction
(and/or its extensions) and its applications to differential, integral, and functional equations with
numerical experiments.
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