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Abstract: Feature selection plays a crucial role in analyzing huge-volume, high-dimensional EEG
signals in human-centered automation systems. However, classical feature selection methods pay little
attention to transferring cross-subject information for emotions. To perform cross-subject emotion
recognition, a classifier able to utilize EEG data to train a general model suitable for different subjects
is needed. However, existing methods are imprecise due to the fact that the effective feelings of
individuals are personalized. In this work, the cross-subject emotion recognition model on both
binary and multi affective states are developed based on the newly designed multiple transferable
recursive feature elimination (M-TRFE). M-TRFE manages not only a stricter feature selection of all
subjects to discover the most robust features but also a unique subject selection to decide the most
trusted subjects for certain emotions. Via a least square support vector machine (LSSVM), the overall
multi (joy, peace, anger and depression) classification accuracy of the proposed M-TRFE reaches
0.6513, outperforming all other methods used or referenced in this paper.

Keywords: emotion recognition; effective computing; physiological signals; recursive feature
elimination; EEG

1. Introduction

Emotions are known as a group of intrinsic cognitive states of the human mind. It adds meanings
to human activities and plays a vital role in human communication, intelligence, and perception [1].
An emotion can be triggered by a specific feeling and will eventually lead to a change in behavior [2].
Since emotions are closely associated with human activities and psychophysiological states, establishing
intelligent emotion recognition is integral to achieve adaptive human-machine interaction (HCI).
One preparatory work for emotion recognition is target emotion tagging, a process that assigns proper
emotional labels to improve the efficiency of annotation methods of final classification performance [3].
Previous pieces of literature have proposed several emotion models. Some of them, such as Ekman’s
and Parrot’s, are widely adopted but are poor in the term of the number of emotions (six emotions).
The wheel of emotions by Plutchik and recently proposed a 3D model hourglass of emotions that is
able to obtain complex emotions (more than 20 emotions in total). As the mainstream of DEAP-based
studies, Russell’s valence-arousal (V-A) model is used in this literature [4-7]. The V-A plane with
arousal score as a horizontal axis and valence score as vertical axis could be set up, from which each
emotional state has an arousal dimension and a valence dimension [8]. Arousal scores range from
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inactivity to activity of one participant and the valence score measures the level of pleasure of him.
Then, the V-A plane is ready to divide the target emotions (see Section 3.2).

Emotions can be expressed in both verbal and nonverbal manners. Therefore, it is important to
build an HCI system that can recognize emotions by identifying facial or voice expressions of users [9].
The corresponding effective computing system must contain multifaceted processes. First, the HCI
system should detect whether a specific emotion is expressed, and thus correctly label the emotional
class (e.g., happiness or sadness) [10]. However, either facial or voice indicators are not always reliable.
Past studies utilizing these indicators for HCI system emotion recognition show that subjects often
intend to make their tones or manners in an exaggerated way to achieve a satisfactory performance [11].
Thus, emotion recognition via recording and analyzing physiological signals becomes a promising
alternative [12]. Particularly, electroencephalography (EEG), with its non-invasive technique that easily
yields input data for emotion classifiers, is becoming a preferred indicator [13]. EEG signals are immense
in volume and high in dimension. For example, one single participant provides 8064-dimension
original data in DEAP database, which are impossible to be handled directly. Another significant
problem with emotion recognition via EEG is the response from each individual varies differently
upon receiving the same affective stimuli. This is because emotions are personal and the evaluation
should use an individual-specific assessment model. Since there is an existence of data distribution
between subjects a long period of time is inevitable and required to train the classifiers. Furthermore,
EEG signals could also be distributed differently in different days due to its non-stationarity. A proper
model trained using the EEG data from a specific individual may not be well adapted for use on
novel users, and therefore, feasible feature selection methods are imperative to transfer the useful
information among individuals. Thus, the machine learning approach is adopted to extract useful
information as clues for emotion recognition.

This paper focuses on the importance of selecting salient EEG indicators. All the algorithms
mentioned below can be used for cloud services or non-cloud services. To examine high-dimensional
EEG features, the recursive feature selection (RFE) combined with the least square support vector
machine (LSSVM) was developed. The RFE-LSSVM has the capability to rank EEG features and
selects the most relevant variables [14]. Choosing LSSVM over a vector machine (SVM) is because
LSSVM shows less computational consumption [15]. Considering the need for cross-subject emotion
recognition, it is reasonable to modify traditional RFE into the transferable recursive feature elimination
(TRFE) [16]. This approach eliminates the EEG indicators that are not generic for all users and forms a
set of robust EEG indicators that are steadily distributed among all training subjects and the specific
novel testing subject.

With TREFE, the classifier does not necessarily require the corresponding specific training set up
for the novel testing subject. By processing the reusable historical data collected from all other subjects,
the training dataset is identified and produced. Following this concept, the development of TRFE,
single TRFE (S-TRFE) and multiple TRFE (M-TRFE) are proposed. Both algorithms are based on a
novel transferring set that contains the most trustful features from other subjects. While the S-TRFE
algorithm directly adds the transferring set to the entire training set of one subject, M-TRFE removes
some worst features from the entire training set of one subject and replaces them with the given
transferring set to improve classification performance. In addition, M-TRFE also tries to select the most
trusted subjects with better performance in cross-subject emotion recognition. Thus, the more a subject
is trusted, the more he is donating to the transferring set. This process can be described as getting rid
of the outliers who have not reacted commonly as most people do.

Based on this M-TRFE algorithm, the expected cross-subject classifier should have better performance.
The accuracies given by this classifier are expected to be higher than others. Throughout this entire
process, we exploit the DEAP database as the working resource.

To be concise, in the rest of the paper, TRFE will be used as a collective name that encompasses a
series of RFE based cross-subject schemes. The original TRFE algorithm will be renamed as general
TRFE (G-TRFE) to make a distinction. The newly proposed M-TRFE algorithm will be compared
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against all strategies previously mentioned, as well as the subject-specific (SS) case on both binary and
multiclass emotion recognition.

The rest of the paper consists of several sections. Section 2 dedicates to the summary of related
works that inspire this work, and Section 3 provides a short description of DEAP dataset, the
EEG preprocessing scheme, and the feature extraction methods on DEAP. Current section will also
demonstrate the workflow of LSSVM and the detailed process of M-TRFE as well. Section 4 consists of
binary and multiclass emotion recognition, where different cross-subject or subject-specific methods
are expounded, tried, and compared. The last two sections focus on result analysis, main contribution,
the implication of this work, its limitations and its potentials.

2. Related Works

Emotion recognition is utilized in many fields. He et al. proposed a convolutional neural network
(CNN) that recognizes emotion from an image by combining a binary classification network and a
deep network [17]. In addition, a facial recognition system has been applied to evaluate the quality
of distance teachings [18]. In speech analysis, emotion recognition is implemented by using the
extreme learning machine (ELM) [19]. Music, in which emotions are expressed, can be analyzed to
tell the difference between contemporary commercial music and classical singing techniques [20].
Classification performances of speech and music recognition systems are not ideal (around 50%), but
facial and voice recognition systems have achieved high accuracies of 0.8170 and 0.8753, respectively.

Aside from facial and vocal features, physiological features have also been widely used in emotion
recognition. To be more specific, EEG signals are also investigated via machine learning based classifiers.
For instance, gender recognition with entropy measurement is achieved in Hu et al. [21]. The connection
between mental fatigue and aging has been studied. The recognition of mental fatigue was found
to be efficient when adaptive weights switch in deep belief networks (DBN) [22,23]. Even though
DBN has also been applied in the recognition of emotion more studies use SVM which combines
feature smoothing or selection methods, such as canonical correlation analysis (CCA) and principal
component analysis (PCA) [24-26]. An end-to-end model based on CNN is used to reduce the cost
of designing the feature set, and as a result, the average accuracy of 0.7548 was reported [27]. In a
recent study, Tong et al. [28] combined the International Affective Picture System (IAPS) that sorted
eight valence levels with similar arousal values, with nonlinear feature based SVM. These EEG-based
emotion recognition methods are very encouraging and have gained widespread attention.

Several studies have already been done and shown the efficacy of various feature selection
methods and their use in EEG based emotion recognition. Zhang et al. combined feature extraction
methods of empirical mode decomposition and sample entropy [29]. Atkinson and Campos” work
integrated mutual information based on EEG feature selection and kernel classifiers [30]. A novel
feature termed as DE-PCCM proposed by Li et al. has good outcomes when a differential entropy (DE)
feature extraction was employed [31].

RFE approaches are of particular interest to us due to the previous work which demonstrates the
applicability of these approaches to emotion recognition. SVM-RFE detecting scalp spectral dynamics
of interest (SSDOIs) has promising clinical applications [32]. Another modification of the RFE approach,
D-REFE (stands for dynamical-RFE), was proposed to improve the inter-class discrimination [33]. In a
series of previous works, we investigated OFS classification using LSSVM based on RFE [34]. Motivated
by these studies, we adopted the supervised learning methodology, the 2D V-A plane to target four
emotions and M-TRFE algorithm for EEG feature selection.

3. Methods

3.1. EEG Datasets for Effective Modeling

In this study, the DEAP (a database for emotion analysis using physiological signals) database was
used to validate the proposed machine learning-based feature selector. Total of 32 subjects with (average
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age was 26.9, 50% of them were female) took part in the experiment for physiological data acquisition.
The International 10-20 System was implemented for recording EEG signals in which 32-channel data
were collected under a sampling rate of 256 Hz [35]. There were 40 video clips (i.e., 40 trials, each trial
lasted about 1 min) prepared for each participant as the emotional stimuli, which equates to 40 trials
for each subject to complete. The physiological responses were simultaneously recorded while the
participant was watching the video. All subjects accomplished a self-assessment after each trial where
arousal, valence, dominance, liking, and familiarity scales were labeled. With the exception of the
familiarity scale (range 1-5), the remaining four rating scales ranged from 1 to 9. Then the VA-model
was used to determine the target emotion classes [36].

3.2. Feature Extraction and the Target Emotion Classes

The Butterworth filter with a cutoff frequency of 4.0 and 45.0 Hz was used to filter the noise in the
EEG data [37]. Then, an independent component analysis (ICA) was employed to eliminate muscular
artifacts [38]. In each trial, 60-s continuous EEG signals were selected and split into three segments: 3-s
baseline segment, 6-s (10%) validating segment, and 54-s working segment. The validating segment
was used to rank features and avoid overfitting in the M-TRFE model, while the working segment
was used to select features and perform the classifier training and testing. The baseline segment was
discarded in this work because it is collected before the subject watches the video.

In this work, 11 channels out of 32 channels were picked. These channels are F3, F4, Fz, C3, C4, Cz,
P3, P4, Pz, O1 and O2. This particular choice of channels follows the channel employment in previous
work of Zhang et al. [39]. Overall, 137-dimensions EEG features were extracted, which consists of
60 frequency domain features and 77 time domain features. By using a fast Fourier transformation,
the frequency features (60 power features, 16 power difference features) were prepared. In each channel,
the power features were computed on four frequency bands, i.e., theta (4-8 Hz), alpha (8-12 Hz),
beta (12-30 Hz) and gamma (3045 Hz). Power difference features were employed to detect the
variation in cerebral activity between the left and right cortical areas. There are four channel pairs,
F4-F3, C4-C3, P4-P3 and O2-01, used for power differences extraction with each pair, contributing
four features of four bands. For each channel, seven temporal features were computed as seven
indexes: mean, variance, zero crossing rate, Shannon entropy, spectral entropy, kurtosis, and skewness.
All features were standardized with mean = 0 and s.d. = 1. The detailed descriptions of the features
are shown in Table 1.

Table 1. Notations of EEG features.

Feature Index Notations

44 EEG Power Features Average PSD in four bands for all channels.

Difference of average PSD in four bands for four channel
pairs. (F4-F3, C4-C3, P4-P3 and O2-01).
Mean, variance, zero crossing rate, Shannon entropy, spectral
entropy, kurtosis and skewness of eleven channels.

Note: Eleven channels were sequential: F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, O1 and O2. Four bands were theta
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-45 Hz).

16 EEG Power Differences

77 EEG Time Domain Features

Emotion classification achieved based on supervised learning requires predetermined emotion
labels. In the DEAP database, participants used self-assessment manikins to rate the valence and
arousal levels in the range from 1 to 9. The subject rated valence or arousal levels from the lowest
of 1 to the highest of 9. A threshold is conventionally set up and calculated to determine high/low
valence or arousal classes. The value of the threshold point here was determined in a participant
generic manner. With each of 32 subjects selected rating values, the mean values of both valence and
arousal indexes from all subjects and trials were calculated. For every subject’s 40 arousal ratings aj,
ay, ..., ay (a; € R?), arousal threshold point c; is computed as follows:
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B Z?il 2?21 aj
C 4032

The same process using valence ratings was used to compute the valence threshold point, c;.
It was found that ¢; = 5.2543 and ¢, = 5.1567 were the threshold values for arousal and valence
dimensions. The ratings above c; were assigned as the state of high arousal and the ratings above c;
were the state of high valence.

The entire V-A plane was split into 4 parts: HVHA (high valence high arousal), HVLA (high
valence low arousal), LVHA (low valence high arousal), and LVLA (low valence low arousal). This is
illustrated in Figure 1. Finally, the four emotions of joy, peace, depression and anger were assigned to
each respective quadrant in the V-A plane.
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Figure 1. V-A plane that defines four emotions with each subject’s self-assessment ratings and the
subject-generic thresholds.

3.3. Multiple Transferable Feature Elimination Based on LSSVM

M-TRFE was developed via LSSVM due to its merits in faster-training and better performance
in avoiding overfitting. Here is the principle to select the feature instance. Given the training
set D = {(x;, y;) |i=1,2,...,1} with the input data x; € R" and the corresponding output labels
yi € {+1,-1}. The nonlinear mapping ¢(x) was used to generate a higher dimensional feature space
aiming at finding the optimal decision function,

y(x) = w-p(x) +b 2)

In Equation (2), w stands for the weight vector of the classification separating hyperplane and
y(x) is the linear estimation function in feature space. To achieve minimization of structural risk,
the scheme was carried out as below:
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minJ(w, C) = HwlP? + X, &

st.yi = p(xi)W+b+( ®)

where y is the regularization parameter for adjusting the punishment degree of training error, |lw/||? is
in control of the complexity of the model, and the last term Zi’:l C? is an empirical error on the training
set, where the slack variable (; is introduced in case of nonlinear separable of the instances in two
classes. The Lagrangian function can be constructed with the kernel function K(x;, x;) = ¢(x;)-¢(x;)
to find solutions of a linear equation system. Applying the least square method, a nonlinear prediction
model is exposed via kernel function K:

y=aK(x,x;)+b 4)

According to the equations above, M-TRFE measures if a feature is salient by checking the
classification margin and the loss of the margin when the kth feature is eliminated, i.e.,

AD =|lIwl* - [w (k)] )

In Equation (5), w(k) is the weight vector of the classification plane with the kth feature eliminated.
If the elimination of a particular feature leads to the largest A®, the corresponding feature is considered
as the most influential one.

The goal of M-TRFE is to determine a set of best indicators among a group of participants. It is
noted that the binary LSSVM is not capable of the four-class classification task. Here the one against
one ensemble (OvO) of multiclass classifiers is utilized to fulfill the task. With OvO structure, each two
emotion classes are tackled as a pair via an M-TRFE-LSSVM model. The details are shown as follows.

Given a sample set D = {(x;, v;) |i=1,2,...,N} with v; € {1,2,...,1}, initialize the feature set
S ={1,2,..., D}, the feature-ranking set R = [|, and the feature ranking vector p = []. Combine two
training samples as a pair, and eventually generate /(I-1)/2 novel training sample, the last classifier
can be built as:

Xj = {(xi,y)li=1,2,...N_1+Ni};j = @ - ,...,@;
whenv; =1-1,y; = I;whenv;, =1, y; = -1.

(6)

In the first step, we can use the obtained x; to train an LSSVM model with the computed weight
vector wj( j=1,2,...,1). Then, the sorting criterion score can be calculated as follows,

2
p:argminka k=1,2,...,S. (7)
Ik

Update the feature ranking set as R = [p,R] and delete the feature in S. This process repeats
till S = ].

In M-TREFE, credible training data contain the best feature instances from others. At the same
time, the selected training data eliminate some of the worst performing features from the original
training set. M-TRFE will also rate the pick of only a few subjects to take part in the building of this
set. The influence of the variation of the training set of the TRFE concept is illustrated in Figure 2.
The construction of the M-TRFE novel training set is unfolded in Figure 3a.

Notably for the use of multiclass M-TRFE, for the training set D = {(x;, y;) |i =1,2,...,n} with
the multiclass label y; € {1,2, 3,4}, several separate binary classifiers robustly analyze each emotion
and encode the label into binary values y; € {~1, +1}. This would give each emotion a feature ranking
and subject selection. To fulfill the multiclass subject-generic emotion feature selection, a mutual
feature-ranking list is generated based on four separate rankings of joy, peace, anger and depression,
to detect the best features and most trusted subjects for each emotion. We consider one subject is more
trusted if he achieves better results in cross-subject classification accuracy. The more one subject is
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trusted, the more he contributes to the transferring training set. Meanwhile, the least trusted ones stop
contributing the set as is shown in Figure 3b. The weighted score of each feature can be averaged from
all ranking lists.

Winutual = I/vjoy + Wpeace + Wanger + Wdepression

when W=1-0.1r,r=0,1,2,...,9 ®)

In Equation (8), if one feature is determined as the worst feature, the ranking index r-value will be
0. The r-value of the second worst feature would be considered as 1 and so on. By choosing the least
trusted 10 features, rankings for different emotions would be given. In fact, the W value evaluates how
favorable one feature is. Moreover, instead of using separate feature ranking arrays, the mutual array
can be calculated in the proposed M-TRFE multiclass model.

X, X2
A A
w-x+b=1
w-x+b=0
wx+b=-1
[
[
O
o ©0 ® o
o O [ o
O °
@)

Figure 2. Illustration of influence of the alteration of the training set.

(a) (b)

Credible training

data from subject 1 __| Selected training

data of subject 7

Credible training Credible training
data from subject 2 — data from most

trusted subject 1

Credible training
data from most
trusted subject 2

— cee M-TRFE traning data
for subject 7

TRFE traning data
for subject 1

Selected training
data of subject 7 —

— - Credible training
data from most
trusted subject m
(r<s)

Credible training
data from subject s

Figure 3. The schemes for building subject-specific training set for (a) TRFE and (b) M-TRFE.

The workflow of M-TREFE is as follows. For a given high emotion state (V-A or multiclass) as Vg
and the low emotion state as Vi, the corresponding state centers vy and vy, are computed. For the jth
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feature of the ith subject, we define the Euclidean distance between the original EEG feature set to a
novel transferring set as

€ = [Ixj — vyl

The H-value can be calculated as

No,
No,e - Z,j:f €

H =

No. No.
\/2]_011 (NOie_ Z]:Oi 6)

©)

(10)

In Equation (10), N, is the cardinal number of O;, while O; is the newly extended space. H <0

indicates the feature value is far away from Vi and such feature will be eliminated from the high class.

The details of M-TRFE are written in the form of pseudo codes and are given in Tables 2 and 3.

Table 2. Pseudo codes of the algorithm for M-TREFE initialization.

Initialization of M-TRFE Algorithm

R IO U1 b= WN =

L o)
= W N -k O

Ty
O 0N &N G

20
21

Start initialization

forl=1:s
forj=1f
Define V' = {xy, yx} using fth validating segment of subject i
Define J(w, b, ) =4lIwi? + 3 (127, &)
Train LSSVM model y;(x) = sign(zl’;’:1 QY XkX) + b)
end for
(i)

Select the model and the regularization parameter y,

by a cross-validation technique

for j;=1:s
if jij=s+1
j1=1
else j1=i
end if

Define cross-subject data V/1 = {x, yx} from working segment of subject j;
Define J(w, b, () =3Iwl? + %(yél> 'Zzil (k) and train the model
Test model with the validating segment Vi= {xk1 , ykl} from subject i
Create subject ranking vector Ay = A; U Ay
end for
Rank the most trusted subjects through ranking Ay
end for

End initialization

There are several details that need to be explained in Table 2. s in line 2 stands for the number

of subjects that took part in the trials, while f value in line 4 controls the number of folds if L-fold
cross-validation technique is applied. In this study, s = 32 and f = 10. j; from line 9 starts the subject
ranking. A; records cross-subject performance of subject i.

In Table 3, the high state of emotion is taken as an example. The low state of emotion can also

track the pseudo codes. There are several parameters that need to be explained. L = 137 in line 10
represents the dimensionality of the feature set. Since L is a prime number in this work, the step
length of iteration of each elimination has to be taken as 1. In line 15, diy (and di) quantifies the
distance between the original set and transferring set for the high (and low) class, and the distance
difference D(r1) is considered equally influential as LSSVM margin loss @(r; ) by taking A, = A= 0.5.

An auxiliary function f, has also been used in the pseudo codes, which is introduced to simplify the

representation of the algorithm:
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_ Lol -Fi, ek
JUEL, ) - FEE wib)?

To evaluate the classification performance of the proposed feature selection model, several
assessment metrics are introduced as accuracy, F1 score, and kappa value.

fa[w (k)] (11)

Table 3. Pseudo codes of the algorithm for M-TRFE feature ranking.

Feature Ranking of M-TRFE Algorithm

1 Start feature ranking
2 fori=1:s
3 Load V! = {x, ¥}, V((f)
4 Calculate Vy for a certain emotion and create blank space
Si=0
5 forj = 1:N,,
6 if HP(X]') <0
7 Si = SiVx;
8 elseS; = S;
9 end if
10 forj=1:L
11 Build the Oi = V! U Si used for transferring task
12 Define J(w, b, &) =2wl? + (722, &)
13 Find support vector w = 21?;1 QR YrXic
14 forr=1:L
15 w(r) = fallw(r)I?], D(r) = faldu(r) +dp(r)],A®(r) = Aw(r) + A2D(r)
16 end for
17 Create a blank feature ranking set R = @
18 R(j) =R(j)u argminA(B
19 Eliminate R from feature set S
20 end for
21 Return feature ranking set S = U?le( 7)
22 End feature ranking
4. Results

All the experiments and following results were carried out via Matlab R2016b, with the computer
running on Windows 10 operating system with Intel® Core™ i5-7200U CPU @ 2.50 GHz 2.71 GHz
and 8 GB RAM.

4.1. Data Split and Cross-Validation Technique

In this subsection, several strategies for data splits based on different cross-validation techniques
were tested. Since our feature extraction had enlarged the feature space, we needed to take different
proportions of data randomly (not orderly) from the working segment as training sets. As the
training/test set was completely different between each repetition, the subject-specific emotion
recognition was run for five times to test the stability of the random use of the working segment.
The value of accuracy is shown in Figure 4, the results of which correspond to random data splits
under hold-out or 10-fold cross validation conditions.

According to Figure 4, the hold-out cross-validation only yields accuracy values around 50%.
Therefore, it would be impractical to evaluate generalization capability. To tackle this issue, we
used the 10-fold cross-validation to achieve an acceptable classification performance (AVG arousal
accuracy = 0.6549, AVG valence accuracy = 0.6865). In contrast to hold-out cross-validation, 10-fold
cross validation divides the validating segment equally into ten small folds, with each fold estimating
the accuracy. This was found to be a better model to enhance the classification performance. Thus,
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the analysis in the rest of the paper all employ 10-fold cross-validation. Figure 4 also shows that
the classification results across different repetitions do not significantly fluctuate, which indicate the
random use of the working segment is feasible.

(@)

08 T T
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Accuracy
o
(o))
1

o
($)]
T
I

I I |

1 2 3 4 5

Test Number
~$— Hold-out 7/3
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0.8 (L?) % 10-fold crossvalidation
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Test Number

o
~

o
\‘
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o
(o]

o
(8]
T
|

—_
N

Figure 4. Binary subject-specific classification accuracies on (a) arousal and (b) valence dimensions.

4.2. Cross-Subject Feature Selection and Binary Classification

There are several strategies to realize binary cross-subject emotion recognition. In the strategy of
S-TREE, the entire training set from one subject remains, while different amounts of relevant features
from other subjects are added to create a novel training set. We gradually increased the use of the
transferring set, but despite alterations to the set, we found that the classification performance was
generally unchanged. The value of Fl-score did not significantly vary as well. On the dimension of the
valence, accuracy ranged from 0.6865 to 0.6875. However, for the arousal dimension, the accuracy
dropped from 0.6549 to 0.6470.

In the case of M-TRFE, two key factors of the paradigm are given in Tables 3 and 4. We labeled
the participant who reached the highest classification accuracy in the direct cross-subject scheme as
the most trusted subject, and the assigned ranks are listed in Table 4. In this direct scheme, the RFE
based feature selection was not performed. Instead, all subjects were directly involved in training
the classifier. The AVG arousal and valance accuracy reached 0.5089 and 0.4961. The unsatisfactory
performance of direct cross-subject scheme paradigm confirmed the notion that cross-subject emotion
recognition faces tough obstacles.

The worst features given by M-TRFE feature ranking were ranked and are presented in Table 5
with their corresponding physiological significance. The PSD features from the beta band were
unwelcomed in the binary classification.

For all 32 subjects, the mean arousal and valence accuracies peaked when the worst feature was
eliminated. As a result, the highest value of 0.6531 for arousal and 0.6867 for valence dimension were
determined. Figure 5 reveals the variation of the classification performance when different numbers of
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features were excluded. With the worst feature eliminated, the classification performance achieved the
highest value. Although all these metrics were slightly improve compared to SS, the enhancement was
not significant.

Table 4. The most trusted subjects for binary classification.

Most Trusted Subject Arousal Valence
1 16 9
2 4 7
3 3 20
4 6 15
5 15 18

Note: Subject No. 16 contributed his credible features to the transferring set in M-TRFE for arousal. Subject No. 9
contributed his credible features to the transferring set in M-TRFE for valence.

Table 5. The worst features and corresponding physiological significance ranked for binary classification.

Corresponding Physiological

Corresponding Physiological

Worst Feature Arousal Significance Valence Significance
1 61 CZ, 3,PSD 69 Fz,v, PSD
2 66 02, 3, PSD 62 P3, B, PSD
3 52 P4, «, PSD 66 02, 3, PSD
4 129 FZ, Zero-crossing rate 61 CZ, 3, PSD
5 63 P4, 3, PSD 64 Pz, «, PSD
6 65 01, 3, PSD 70 C3, vy, PSD
7 62 P3, 3, PSD 129 FZ, Zero-crossing rate
8 67 F3,v, PSD 65 01, B, PSD
9 127 F3, Zero-crossing rate 71 C4,v, PSD
10 58 FZ, 3, PSD 58 FZ, 3, PSD

M-TREFE paradigm uses a certain amount of relevant features from other most trusted subjects
to replace an equal amount of the least relevant features of one specific subject that was eliminated.
With the single most trusted subject contributing to the transferring set and with the most relevant
feature of this subject being employed, we found that the classification accuracies on binary emotional
dimensions peak. The classification performance on SS, RFE, S-TRFE and M-TRFE for each subject is
illustrated in Figure 6. M-TRFE overtakes other cross-subject methods, yet inferior to SS. However,
with all cross-subject methods analyzed, the recognition performances were actually close.

(a) (b)
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Figure 5. Influence of M-TRFE feature elimination on binary classification: (a) arousal accuracy,

(b) valence accuracy, (c) arousal 1 score, (d) valence f1 score, with different amounts of features eliminated.



Symmetry 2019, 11, 683 12 of 20

0.8 T T T T T T T T T T T T T T T
R 8 ’
0.7 S * Q@ o @ & * % + - =
X + N + 6 o) é
— 54 + R O] ¥ Q
g 5 T ofi.%e 3 °:9° & 19
3 506F+ * R X T A
° 3 Q
<< + +
05r@ + 4
04 | | | | | | | | | | | | | | | |
O ss 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
+ RFE Subject
S-TRFE (b)
X M-TRFE [T T T T T T T T T T T T
08+ % X .
* ® T o
X @] @
0.75 o+ o X ¥ X Q i
o B o) o) o) &
@ 07 x 90 I S X + 1
o 3 Q ) *
s Boes| o 4 © *5 0 % 5 &+ |
< X + 9 @) i@ o © @)
06 * X % _
X
0.55 - X N .
(@)
05 | | | | | | | | | | | | | | | |

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Subject

Figure 6. Binary classification accuracy on arousal (a) and valence (b) dimensions under the feature
selection paradigms of subject-specific, RFE and S-TRFE and M-TRFE.

The average accuracies of all 32 participants are listed in Table 6. With regards to S-TRFE, altering
the number of transferring features dis not influence the classification performance, and all the indexes
remained the same except that the F1 score of arousal decreases progressively with the number of
feature increases. Thus, S-TRFE merely shows the impact of transferring features, and the specific
subject himself leads the classification performance. M-TRFE, meanwhile, performs the best when the
most trusted subject was donated and its performance surpassed S-TRFE. We also used the G-TRFE
algorithm, which was proposed by Yin in 2017 and was the inspiration of this work. However, it seemed
not suitable for our feature extraction. The arousal accuracy was found to be 0.5580, and the valence
accuracy was 0.5860. Unfortunately, accuracies of both dimensions were worse than M-TRFE.

Table 6. Binary classification performances of different cross-subject feature selections and SS methods.

Index
Classification

Scheme Mean Mean Mean F1 Mean F1
Accuracy-Arousal  Accuracy-Valence  Score-Arousal Score-Valence
Direct Scheme 0.5089 (0.0257) 0.5506 (0.0467) 0.4961 (0.2701) 0.4818 (0.0363)
S-TRFE 0.6470 (0.0740) 0.6875 (0.0588) 0.6163 (0.0245) 0.6838 (0.0489)
M-TRFE 0.6494 (0.0496) 0.6898 (0.0676) 0.6571 (0.0513) 0.6773 (0.0363)
G-TRFE 0.5580 (0.0801) 0.5680 (0.0696) 0.5055 (0.0166) 0.5361 (0.0482)
SS 0.6549 (0.0701) 0.6865 (0.1581) 0.5364 (0.2864) 0.6389 (0.1816)

Note: All classification performances listed above adopted an optimal number of transferring features.
The subject-specific average value of accuracy is shown. The values in the brackets are the corresponding
standard deviation.
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4.3. Multiclass Cross-Subject Emotion Recognition

As is illustrated in Figure 1, a total of four states of emotions were extracted. Especially,
by converting the multiclass task into several binary classifications, we took four separate binary
classifiers to identify the worst feature for each emotion state and the most trusted subject for the
transferring feature set. Therefore, each emotion would have its most trusted subject. The least credible
features and most trusted subjects were ranked and used to implement M-TRFE, and these features are
presented separately in Tables 7 and 8. According to Equation (8), the over-all most trusted subjects and
most credible features could be calculated and titled as “mutual”, aiming to identify the worst features
and most trusted subjects in multi-classification for OvO structures. Additionally, the corresponding
physiological significances of this mutual ranking were given. We applied several previous methods,
including S-TRFE, M-TRFE, and G-TRFE in this subsection.

Table 7. Worst features ranked for multiclass and corresponding physiological significance
in multi-classification.

Worst Jo Peace Anger  Depression Mutual Corresponding
Feature y & P Ranking Physiological Significance
1 61 132 63 69 63 P4, 3, PSD
2 58 66 61 52 61 CZ, 3, PSD
3 66 63 52 66 52 P4, x, PSD
4 63 52 129 63 66 02, 3, PSD
5 134 61 66 61 132 CZ, Zero-crossing rate
6 127 65 50 67 127 F3, Zero-crossing rate
7 129 127 51 62 129 FZ, Zero-crossing rate
8 137 67 127 71 69 FZ,v,PSD
9 132 71 71 132 58 Fz, 3, PSD
10 52 49 67 51 67 F3, v, PSD

Table 8. Most trusted subjects selected in multi classification.

Most Trusted Subject Joy Peace Anger  Depression Mutual
1 31 21 23 14 31
2 15 9 26 32 21
3 11 13 31 7 23
4 16 30 4 24 14
5 8 25 6 21 26

Note: Subject No. 31 and 21 contributed their credible features to the transferring set in multiclass M-TRFE.

With the M-TRFE implemented, classification accuracies given by separate classifiers were all
above 0.7 and the overall accuracy (OA) reaches 0.7538. Peace was considered as the best performing
emotion, which gives an OA of 0.8932 and F1 score of 0.8025. Notably, for subject 3, the classification
accuracy of class joy achieved 100%. The perfect recognition of the emotion anger was found in subjects
23 and 26.

The results of three different strategies are illustrated in Figure 7. G-TRFE was the worst performer
(OA =10.5390). S-TRFE performed better (OA = 0.6811) but it was still inferior to M-TRFE (OA = 0.7538)
for all emotions. However, it should be noted that the achieved results are specific for only one
particular emotion and are not the actual results of multiclass classification.
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Figure 7. Classification performances of three strategies for four emotions, (a) joy, (b) peace, (c) anger
and (d) depression using separate binary classifiers.

It should be mentioned that only one worst feature was removed in the binary state case, according
to M-TRFE. During multiclass classification using OvO structure, more feature instances and more
trusted subjects were available for M-TRFE to develop. As previously stated, the transferring set for
OvO structure was decided by the mutual rankings given by separate binary classifiers. The results of
feature elimination are depicted in Figure 8a,b and the corresponding eliminated amount of features
are also shown. Since the maximum number of the eliminated features was limited to eighteen,
the maximum number of other subjects employed would also be limited to eighteen. Under that
condition, every subject employed provided one’s most relevant feature to the transferring set. Notably,
when the two most trusted subjects were donated to the transferring set, M-TRFE performed the best,
which can be seen in Figure 8c.

The results of M-TRFE, SS, S-TRFE and G-TRFE are all listed in Table 9. With the highest values
of performance indexes including the kappa value and OA, M-TRFE was still the best choice for
cross-subject emotion recognition. The kappa value suggests that there is a moderate level of agreement
between the actual class and the predicted class of M-TRFE, which is similar to SS. The p-value of the
one-way ANOVA between cross-subject schemes and SS was calculated and revealed that significant
variation did exist. Meanwhile, the other two strategies were only deemed as a fair agreement. M-TRFE
also had a balanced performance on all indexes. It is reasonable to conclude that M-TRFE is feasible
and excellent on multi-classification using OvO structure.
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Table 9. Indexes of multiclass classification performance using OvO structure.

Ss S-TRFE ~ M-TRFE  G-TRFE
OA 0.5908 0.5342 0.6513 0.6205
Kappa Value 0.4212 0.3182 0.4665 0.3016
ANOVA - p<005  p<005 p <0.05
Joy 0.5476 0.3972 0.6416 0.4027
Precisi Peace 0.7551 0.3475 0.7489 0.5212
recision Anger 0.5746 0.3426 0.6146 0.5281
Depression 0.7129 0.3688 0.8891 0.4938
Joy 0.571 0.4822 0.5795 0.4121
Recall Peace 0.4900 0.3049 05173 0.3577
eca Anger 0.7988 0.2978 0.8598 0.8544
Depression 0.3364 0.4610 0.2723 0.2174
Joy 0.5591 0.4356 0.609 0.4073
LS Peace 0.5943 0.3248 0.6119 0.4242
core Anger 0.6684 0.3186 0.7168 0.6527
Depression 0.4571 0.4098 0.4169 0.3019
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5. Discussion

Due to the uncertainty to recognize human emotion through EEG, there is currently no sufficient
knowledge that can be used to find the optimal machine learning method for feature selection.
In this paper, a classical LSSVM-based feature selection algorithm was formed to resolve the existing
cross-subject emotion classification problem. A novel EEG feature set was extracted from DEAP
database to meet the cross-subject need. For physiological signals like EEG, different participants can
have distinct reactions to the same stimuli. In this study, TRFE itself is described as an ideology of
transferring historical data. Several other cross-subject algorithms based on TRFE and algorithms
independent of TRFE are tested in comparisons. These algorithms all demand a delicate balance
between an individual and the other individuals when compiling a novel training set. The proposed
M-TRFE was exactly designed to offset this individual variation. It introduces the transfer learning
principle that retains the shared information for a group of individuals. In other words, M-TRFE
emphasizes the common ground in human emotion.

The feature extraction of this work is unique. The labels of DEAP database are rated for the
entire duration of the video clips but we extended the labels every two seconds. Since the subjects
are all informed of the video contents before the trials, it is reasonable to believe the emotion remains
consistent through the entire course. The expansion of the feature set includes more emotion samples
to the experiments and has a stronger influence on the results.

Through many experiments including binary classification and multiclass classification, M-TRFE
is a particularly outstanding cross-subject method. Unlike other algorithms based on RFE, M-TRFE
requires a careful selection of trusted subjects who are allowed to contribute to the novel training set.
In order to identify these subjects, some special steps were designed to take. In binary classification,
we search for those who perform better in the direct scheme. In the multiclass case, four separate
binary classifiers directly reduce the number of labels from four to two and then forms a mutual
ranking. Accordingly, the PSD of the beta band appears to be the least contributive physiological
significance in multiclass classification. The binary classifiers also reached this conclusion. Meanwhile,
OvO is a classical classifier ensemble that prevents overfitting and has given out the final results of
multiclass classification.

On binary affective states, the allocation of the training/testing set and of 10-fold cross-validation
was determined. Both were used throughout the experiments. Compared to subject-specific results,
all the cross-subject schemes seem to be stagnant in their development. This is mostly because the
feature ranking and elimination only permit the single worst feature to be eliminated, which leaves
no room for M-TRFE to develop. On the other hand, multiclass classification gives the transferring
training set a sufficient fusion. However, the number of trusted subjects that M-TRFE chooses is still
limited. M-TRFE attains its best performance when only two subjects are involved. This might be
partly due to the divergence of human emotion would be enlarged when affective computing recruits
more individuals to participate in the cross-subject task. Even so, M-TRFE still becomes the preferred
paradigm of most of the indexes, and even exceeds SS using OvO structure.

Furthermore, M-TRFE had not only better classification accuracy but also a faster running speed.
The running period of MTRFE-LSSVM was significantly shorter by 86.97% than GTRFE-LSSVM.
The latter appears to be inordinately time-consuming due to the oceanic design of feature set, costing
4784.80 s per training period verse 623.22 s by MTRFE-LSSVM. Moreover, M-TRFE efficiently reduces
resources waste by selecting the best features from other individuals and putting them into use.
This resource efficiency is exactly what the principle of the transfer learning expects. On the other
hand, since the training set of S-TRFE is built by raising the dimension, its testing set dimension will
also be raised. This occurrence is actually contrary to the concept of RFE. However, M-TRFE modifies
this flaw by maintaining the dimension and reinforcing the performance. Thus, all the results bring to
the conclusion that M-TRFE is far more superior in cross-subject emotion recognition.

Our work is also compared to other recent studies on DEAP dataset in Table 10. Our model
achieves top performances in classification performance categories in the demonstration. The OA of
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binary classification was calculated as the average accuracy of the arousal and valance dimension. Here
are some necessary explanations to the abbreviations in the table: SVD = singular value decomposition,
mRMR = minimum redundancy maximum relevance, EC = evolutionary computation, FAWT = flexible
analytic wavelet transform.

Table 10. Comparison of our recognition approach with some other recent studies.

Feature Selection g If or Not Cross OA
Study Method Classifier Subject? Binary Multiclass
Koelstra, 2012 [36] - SVM No 0.6235 -
Naser, 2013 [40] SVD SVM No 0.6525 -
Zhu, 2014 [41] - SVM No 0.5795 -
Li, 2015 [24] - DBN No 0.5130 -
Atkinson, 2015 [30] mRMR SVM No 0.6151 -
Chen, 2016 [25] CCA SVM No 0.6040 -
Shahnaz, 2016 [26] PCA SVM No 0.6561 -
Feradov, 2014 [42] - SVM No - 0.6200
Candra, 2011 [43] - SVM No - 0.6090
Nakisa, 2018 [44] EC PNN No - 0.6408-0.7085
Gupta, 2018 [45] FAWT Random Forest Yes - 0.7143
Yin, 2017 [16] T-RFE LSSVM Yes 0.5630 0.6205
Our work M-TRFE LSSVM Yes 0.6695 0.6513

Note: The result of Nakisa’s EC-PNN had a deviation of +0.0338. The result of Gupta’s work was the average
accuracy of six channels (T7, T8, CP5, CP6, P7, P8). The result of Yin’s T-RFE was applied under our feature extraction.

6. Conclusions

It is an intractable and challenging task for cross-subject emotion recognition to distinguish human
individual emotion. However, the generality of human being and their emotions guarantees the
potential for automated systems to perform cross-subject recognition. In this paper, the cross-subject
emotion recognition has been carried out with the novel M-TRFE feature selection method on both
binary and multiclass classification problems. M-TRFE manages not only the selection of feature
instances but also the selection of individuals. By choosing participants who react closer to the common
reaction, M-TRFE performs similar to the subject-specific recognition on the binary affective state and
it prevails over all methods on multiclass classification. Throughout the work, LSSVM was applied
to accomplish the selection. The binary classification rate achieved 0.6494 and 0.6898 on arousal and
valance dimensions. In the case of multiclass, OA achieved 0.6513. These results have outperformed all
other methods applied in this paper and most of the recently reported studies on the DEAP database.
In general, M-TRFE has made cross-subject emotion recognition more efficient and precise with less
resource waste.

In future work, we will look for more stable and more accurate classifiers to improve emotion
recognition. We will also combine some other physiological signals such as eye gaze, GSR, blood
pressure, etc., with the EEG signals. In addition, compound emotions such as anxiety can be a new
direction for further research, under V-A or other emotion models. Although M-TRFE has been
proven to be an excellent solution to cross-subject emotion classification, there are still flaws that need
further investigation and solution. More complex multiclass tasks with larger quantities of emotions
and participants will challenge the performance of M-TRFE. If there are too many subjects involved,
detecting the most trusted subjects will be difficult. The improvement of M-TRFE will also be a topic
for future research.
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